Araştırma Makalesi
BibTex RIS Kaynak Göster

The Shift Minimization Personnel Task Scheduling Problem: An Effective Lower Bounding Procedure

Yıl 2016, Cilt: 34 Sayı: 2, 115 - 132, 23.06.2016
https://doi.org/10.17065/huniibf.259136

Öz

This study considers the shift minimization personnel task scheduling problem, which is to assign a set of tasks with fixed start and finish times to a minimum number of workers from a heterogeneous workforce. An effective lower bounding procedure based on solving a new integer programming model of the problem is proposed for the problem. An extensive computational study on benchmark data sets reveals that the proposed lower bounding procedure outperforms those existing in the literature and consistently and rapidly yields high quality lower bounds that are necessary for the decision makers to assess the quality of the obtained schedules. 

Kaynakça

  • Eliiyi, D.T., M. Azizoğlu (2009), “A Fixed Job Scheduling Problem with Machine-Dependent Job Weights”, International Journal of Production Research, 47, 2231–2256.
  • Ernst, A.T., H. Jiang, M. Krishnamoorthy, B. Owens, D. Sier (2004), “An Annotated Bibliography of Personnel Scheduling and Rostering”, Annals of Operations Research, 127, 21–144.
  • Fages, J.G., T. Lapegue (2013), “Filtering Atmostnvalue with Difference Constraints: Application to the Shift Minimisation Personnel Task Scheduling Problem”, Lecture Notes in Computer Science, 8124, 63–79.
  • Gupta, U.L., D.T. Lee, J.T. Leung (1979), “An Optimal Solution for the Channel-Assignment Problem”, IEEE Transactions on Computers, 28, 807–810.
  • Kolen, A.W.J., J.K. Lenstra, C.H. Papadimitriou, F.C.R. Spieksma (2007), “Interval Scheduling: A survey”, Naval Research Logistics, 54, 530–543.
  • Kovalyov, M.Y., C.T. Ng, T.C.E. Cheng (2007), “Fixed Interval Scheduling: Models, Applications, Computational Complexity and Algorithms”, European Journal of Operational Research, 178, 331–342.
  • Krishnamoorthy, M., A.T. Ernst, D. Baatar (2012), “Algorithms for Large Scale Shift Minimisation Personnel Task Scheduling Problems”, European Journal of Operational Research, 219, 34–48.
  • Kroon, L.G., M. Salomon, L.N.V. Wassenhowe (1995), “Exact and Approximation Algorithms for the Operational Fixed Interval Scheduling Problem”, European Journal of Operational Research, 82, 190–205.
  • Kroon, L.G., M. Salomon, L.N.V. Wassenhowe (1997), “Exact and Approximation Algorithms for the Tactical Fixed Interval Scheduling Problem”, Operations Research, 45, 624–638.
  • Lin, S.-W., K.C. Ying (2014), “Minimizing Shifts for Personnel task Scheduling Problems: A three-Phase Algorithm”, European Journal of Operational Research, 237, 323–334.
  • Nemhauser, G.L., L.A. Wolsey (1988), Integer and Combinatorial Optimization, New York: Wiley.
  • Smet, P., G. Vanden Berghe, “A Matheuristic Approach to the Shift Minimization Personnel task Scheduling Problem”, 9th International Conference on the Practice and Theory of Automated Timetabling, 2012, 145–160.
  • Smet, P., T. Wauters, M. Mihaylov, G. Vanden Berghe (2014), “The Shift Minimization Personnel Task Scheduling Problem: A new Hybrid Approach and Computational Insights”, OMEGA, 46, 64–73.

The Shift Minimization Personnel Task Scheduling Problem: An Effective Lower Bounding Procedure

Yıl 2016, Cilt: 34 Sayı: 2, 115 - 132, 23.06.2016
https://doi.org/10.17065/huniibf.259136

Öz

Bu çalışmada,
başlangıç ve bitiş zamanları belli olan bir grup görevin, türdeş olmayan bir
işgücünden en az sayıdaki çalışana atandığı bir vardiya enküçükleyen personel
görev çizelgelemesi problemi ele alınmıştır. Bu problem için, problemin yeni
bir tamsayılı programlama modelini çözmeye dayalı etkin bir alt sınır yöntemi
önerilmiştir. Sayısal sonuçlar, önerilen modelin, literatürde varolan
yöntemlerden daha üstün olduğunu ve karar vericilerin elde edilen çizelgelerin
kalitelerini değerlendirebilmeleri için gerekli olan yüksek kaliteli alt
sınırları tutarlı ve hızlı bir şekilde verdiğini göstermektedir.

 

 

Kaynakça

  • Eliiyi, D.T., M. Azizoğlu (2009), “A Fixed Job Scheduling Problem with Machine-Dependent Job Weights”, International Journal of Production Research, 47, 2231–2256.
  • Ernst, A.T., H. Jiang, M. Krishnamoorthy, B. Owens, D. Sier (2004), “An Annotated Bibliography of Personnel Scheduling and Rostering”, Annals of Operations Research, 127, 21–144.
  • Fages, J.G., T. Lapegue (2013), “Filtering Atmostnvalue with Difference Constraints: Application to the Shift Minimisation Personnel Task Scheduling Problem”, Lecture Notes in Computer Science, 8124, 63–79.
  • Gupta, U.L., D.T. Lee, J.T. Leung (1979), “An Optimal Solution for the Channel-Assignment Problem”, IEEE Transactions on Computers, 28, 807–810.
  • Kolen, A.W.J., J.K. Lenstra, C.H. Papadimitriou, F.C.R. Spieksma (2007), “Interval Scheduling: A survey”, Naval Research Logistics, 54, 530–543.
  • Kovalyov, M.Y., C.T. Ng, T.C.E. Cheng (2007), “Fixed Interval Scheduling: Models, Applications, Computational Complexity and Algorithms”, European Journal of Operational Research, 178, 331–342.
  • Krishnamoorthy, M., A.T. Ernst, D. Baatar (2012), “Algorithms for Large Scale Shift Minimisation Personnel Task Scheduling Problems”, European Journal of Operational Research, 219, 34–48.
  • Kroon, L.G., M. Salomon, L.N.V. Wassenhowe (1995), “Exact and Approximation Algorithms for the Operational Fixed Interval Scheduling Problem”, European Journal of Operational Research, 82, 190–205.
  • Kroon, L.G., M. Salomon, L.N.V. Wassenhowe (1997), “Exact and Approximation Algorithms for the Tactical Fixed Interval Scheduling Problem”, Operations Research, 45, 624–638.
  • Lin, S.-W., K.C. Ying (2014), “Minimizing Shifts for Personnel task Scheduling Problems: A three-Phase Algorithm”, European Journal of Operational Research, 237, 323–334.
  • Nemhauser, G.L., L.A. Wolsey (1988), Integer and Combinatorial Optimization, New York: Wiley.
  • Smet, P., G. Vanden Berghe, “A Matheuristic Approach to the Shift Minimization Personnel task Scheduling Problem”, 9th International Conference on the Practice and Theory of Automated Timetabling, 2012, 145–160.
  • Smet, P., T. Wauters, M. Mihaylov, G. Vanden Berghe (2014), “The Shift Minimization Personnel Task Scheduling Problem: A new Hybrid Approach and Computational Insights”, OMEGA, 46, 64–73.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi
Yazarlar

Oğuz Solyalı

Yayımlanma Tarihi 23 Haziran 2016
Gönderilme Tarihi 23 Haziran 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 34 Sayı: 2

Kaynak Göster

APA Solyalı, O. (2016). The Shift Minimization Personnel Task Scheduling Problem: An Effective Lower Bounding Procedure. Hacettepe Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 34(2), 115-132. https://doi.org/10.17065/huniibf.259136
AMA Solyalı O. The Shift Minimization Personnel Task Scheduling Problem: An Effective Lower Bounding Procedure. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi. Haziran 2016;34(2):115-132. doi:10.17065/huniibf.259136
Chicago Solyalı, Oğuz. “The Shift Minimization Personnel Task Scheduling Problem: An Effective Lower Bounding Procedure”. Hacettepe Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi 34, sy. 2 (Haziran 2016): 115-32. https://doi.org/10.17065/huniibf.259136.
EndNote Solyalı O (01 Haziran 2016) The Shift Minimization Personnel Task Scheduling Problem: An Effective Lower Bounding Procedure. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi 34 2 115–132.
IEEE O. Solyalı, “The Shift Minimization Personnel Task Scheduling Problem: An Effective Lower Bounding Procedure”, Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, c. 34, sy. 2, ss. 115–132, 2016, doi: 10.17065/huniibf.259136.
ISNAD Solyalı, Oğuz. “The Shift Minimization Personnel Task Scheduling Problem: An Effective Lower Bounding Procedure”. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi 34/2 (Haziran 2016), 115-132. https://doi.org/10.17065/huniibf.259136.
JAMA Solyalı O. The Shift Minimization Personnel Task Scheduling Problem: An Effective Lower Bounding Procedure. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi. 2016;34:115–132.
MLA Solyalı, Oğuz. “The Shift Minimization Personnel Task Scheduling Problem: An Effective Lower Bounding Procedure”. Hacettepe Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, c. 34, sy. 2, 2016, ss. 115-32, doi:10.17065/huniibf.259136.
Vancouver Solyalı O. The Shift Minimization Personnel Task Scheduling Problem: An Effective Lower Bounding Procedure. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi. 2016;34(2):115-32.

Dergiye yayımlanmak üzere gönderilecek yazılar Dergi'nin son sayfasında ve Dergi web sistesinde yer alan Yazar Rehberi'ndeki kurallara uygun olmalıdır.


Gizlilik Beyanı

Bu dergi sitesindeki isimler ve e-posta adresleri sadece bu derginin belirtilen amaçları doğrultusunda kullanılacaktır; farklı herhangi bir amaç için veya diğer kişilerin kullanımına açılmayacaktır.