Araştırma Makalesi
BibTex RIS Kaynak Göster

Statinler Doz Bağımlı Olarak Depo-Bağımlı Ca2+ Girişini Baskılar

Yıl 2023, , 87 - 93, 27.04.2023
https://doi.org/10.35440/hutfd.1209500

Öz

Amaç: Bu çalışmada statinlerin hücre içi Ca2+ regülasyonunda önemli bir role sahip olan SOCE mekanizması üzerine olan etkilerinin incelenmesi amaçlandı.
Materyal ve metod: SOCE ölçümleri RBL-1 hücre hatları kullanılarak gerçekleştirildi. Fura-2 ile yüklenen hücreler thapsigargin ile inkübe edilerek hücre içi Ca2+ depolarının boşalması sağlandı ve sonrasında Ca2+ eklenerek SOCE ölçümleri floresan mikroskop kullanılarak gerçekleştirildi. Test grubu için hücreler, Ca2+ görüntülemenin başlamasından önce 15 dakika süreyle istenen bileşik konsantrasyonuyla ön işleme tabi tutuldu. Ca2+ görüntüleme oran-metrik (Fura-2 tabanlı) Ca2+ görüntüleme tekniği kullanılarak gerçekleştirildi.
Bulgular: Pitavastatin haricinden diğer tüm statinlerin SOCE üzerinde istatistiksel olarak anlamlı ölçüde baskılayıcı rolü olduğu bulundu. Özellikle 3 µM konsantrasyonda mevastatin ve atorvastatinin diğer tüm statinlerden SOCE üzerinde daha etkin olduğu anlaşıldı. Yüksek konsantrasyonlarda ise metavastatinin %80 oranından fazla SOCE’yi baskıladığı bulundu. Mevastatin için IC50 değeri 4,76 µM olarak hesaplandı.
Sonuç: Bu çalışmadan elde edilen bulgulara göre kardiyovasküler hastalıkların tedavisinde kolesterol düşürücü olarak kullanılan statinlerin sadece voltaj kapılı kanallar üzerinden değil ayrıca depo-bağımlı Ca2+ kanalları üzerinde etkin olduğu saptandı. Statinlerin SOCE üzerindeki bu etkileri, statinlerin Ca2+ regülasyonundaki rolünün anlaşılmasında ve yeni tedavi metotlarının geliştirilmesi açısından büyük faydalar sağlayabileceğine inanılmaktadır.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

1059B141800131

Teşekkür

Bu çalışmada kullanılan RBL-1 hücre hattını temin eden Cambridge Üniversitesi Farmakolji Anabilim Dalı Öğretim Üyesi Dr. Taufiq Rahman’a teşekkür ederim.

Kaynakça

  • 1. Stancu C, Sima A. Statins: Mechanism of action and effects. J of Cellular and Molecular Medicine. 2001; 5: 378–87.
  • 2. Moneta GL. A Randomized Trial of Rosuvastatin in the Pre-vention of Venous Thromboembolism. Yearb Vasc Surg. 2010;2010(18):301–3.
  • 3. Tobert JA. Lovastatin and beyond: The history of the HMG-CoA reductase inhibitors. Nat Rev Drug Discov. 2003;2(7):517–26.
  • 4. Lennernäs H, Fager G. Pharmacodynamics and pharmacoki-netics of the HMG-CoA reductase inhibitors. Similarities and differences. Clinical Pharmacokinetics. 1997; 32: 403–25.
  • 5. Kavalipati N, Shah J, Ramakrishan A, Vasnawala H. Pleiotro-pic effects of statins. Indian J Endocrinol Metab. 2015;19(5):554–62.
  • 6. Gary PH. JBM. SCT et al. Regression of coronary artery disea-se as a result of intensive lipit-lowering theraphy in men with high levels of apolipoprotein B. New English J Med. 1990;323(16):1120–3.
  • 7. Schachter M. Chemical, pharmacokinetic and pharmacody-namic properties of statins: An update. Fundamental and Clinical Pharmacology. 2005; 19: 117–25.
  • 8. Middleton K, Fish DE. Calcium channel regulation in vascular smooth muscle cells: synergistic effects of statins and cal-cium channel blockers. Curr Rev Musculoskeletal Med. 2009: 2; 94–104.
  • 9. Putney JW. A model for receptor-regulated calcium entry. Cell Calcium. 1986;7(1):1–12.
  • 10. Lewis RS. The molecular choreography of a store-operated calcium channel. Nature. 2007;446(7133):284–7.
  • 11. Pylayeva-Gupta Y, Kelsey C. Martin Mhatre V. Ho J-AL. STIM Is a Ca2+ Sensor Essential for Ca2+-Store-DepletionTriggered Ca2+ Influx. Bone. 2012;23(1):1–7.
  • 12. Gross SA, Wissenbach U, Philipp SE, Freichel M, Cavalié A, Flockerzi V. Murine ORAI2 splice variants form functional Ca2+ release-activated Ca2+ (CRAC) channels. J Biol Chem. 2007;282(27):19375–84.
  • 13. Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Na-ture. 2005;437(7060):902– 5.
  • 14. Wissenbach U, Philipp SE, Gross SA, Cavalié A, Flockerzi V. Primary structure, chromosomal localization and expression in immune cells of the murine ORAI and STIM genes. Cell Calcium. 2007;42(4–5):439–46.
  • 15. Baba A, Yasui T, Fujisawa S, Yamada RX, Yamada MK, Nishi-yama N, et al. Activity-evoked capacitative Ca2+ entry: Imp-lications in synaptic plasticity. J Neurosci. 2003;23(21):7737–41.
  • 16. Mercer JC, DeHaven WI, Smyth JT, Wedel B, Boyles RR, Bird GS, et al. Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem. 2006;281(34):24979–90.
  • 17. Alonso MT, Manjarrés IM, García-Sancho J. Privileged coup-ling between Ca 2+ entry through plasma membrane store-operated Ca 2+ channels and the endoplasmic reticulum Ca 2+ pump. Mol Cell Endocrinol. 2012;353(1–2):37–44.
  • 18. Prakriya M, Lewis RS. Store-Operated Calcium Channels. Physiol Rev. 2015: 95(4); 1383-436.
  • 19. Prakriya M, Lewis RS. Store-Operated Calcium Channels. Physiol Rev. 2015: 95(4);1383–436.
  • 20. Chaudhari S, Wu P, Wang Y, Ding Y, Yuan J, Begg M, et al. High glucose and diabetes enhanced store-operated Ca2+ entry and increased expression of its signaling proteins in mesangial cells. Am J Physiol - Ren Physiol. 2014;306(9):F1069–80.
  • 21. Gökçe Y, Erkan O, Savaş K, Rahman T, Yaraş N. Pharmacolo-gical blockade of angiotensin II receptor restores diabetes-associated reduction of store operated Ca2+ entry in adult cardiomyocytes. Biochem Biophys Res Commun. 2022;610:56–60.
  • 22. Choi KM, Zhong Y, Hoit BD, Grupp IL, Hahn H, Dilly KW, et al. Defective intracellular Ca2+ signaling contributes to cardi-omyopathy in type 1 diabetic rats. Am J Physiol - Hear Circ Physiol. 2002;283(4 52-4):H1398-408.
  • 23. Bouchard RA, Bose D. Influence of experimental diabetes on sarcoplasmic reticulum function in rat ventricular muscle. Am J Physiol - Hear Circ Physiol. 1991;260(2 29-2):H341–54.
  • 24. Yaras N, Bilginoglu A, Vassort G, Turan B. Restoration of diabetes-induced abnormal local Ca2+ release in cardiom-yocytes by angiotensin II receptor blockade. American J of Physiology - Heart and Circulatory Physiology. 2007: 292;H912-20.
  • 25. Ali N, Begum R, Faisal MS, Khan A, Nabi M, Shehzadi G, et al. Current statins show calcium channel blocking activity thro-ugh voltage gated channels. BMC Pharmacol Toxicol. 2016;17(1):1–7.
  • 26. Li H, Wan Z, Li X, Teng T, Du X, Nie J. Effects of atorvastatin on time-dependent change of fast sodium current in simula-ted acute ischaemic ventricular myocytes. Cardiovascular J of Africa. 2021:30(5); 268-74.
  • 27. Abdullaev IF, Bisaillon JM, Potier M, Gonzalez JC, Motiani RK, Trebak M. Stim1 and orai1 mediate crac currents and store-operated calcium entry important for endothelial cell proli-feration. Circ Res. 2008;103(11):1289–99.
  • 28. Parekh AB. Store-operated CRAC channels: Function in health and disease. Nature Reviews Drug Discovery. 2010: 9(5); 399-410.
  • 29. Koch G. Store-operated CRAC channel inhibitors: opportuni-ties and challenges. Chimia (Aarau). 2017;71(10):643.
  • 30. Absi M, Eid BG, Ashton N, Hart G, Gurney AM. Simvastatin causes pulmonary artery relaxation by blocking smooth muscle ROCK and calcium channels: Evidence for an endot-helium-independent mechanism. PLoS One. 2019;14(8):1–17.
  • 31. LaMonte MJ, FitzGerald SJ, Church TS, Barlow CE, Radford NB, Levine BD, et al. Coronary artery calcium score and co-ronary heart disease events in a large cohort of asymptoma-tic men and women. Am J Epidemiol. 2005;162(5):421–9.

Statins Inhibit Store-Operated Ca2+ Channels in a Dose Dependent Manner

Yıl 2023, , 87 - 93, 27.04.2023
https://doi.org/10.35440/hutfd.1209500

Öz

Background: In this study, it was aimed to examine the effects of statins on the Store-Operated Ca2+ Entry (SOCE) mechanism, which has an important role in the regulation of intracellular Ca2+.
Materials and Methods: SOCE measurements were performed using RBL-1 cell lines. Cells loaded with Fura-2 were incubated with thapsigargin to empty the intracellular Ca2+ stores, and then Ca2+ was added to the bath solution to measure SOCE utilizing fluorescent microscope. For the test group, cells were pretreated with the desired compound concentration for 15 minutes prior to the initiation of Ca2+imaging. Ca2+ imaging was performed using rate-metric (Fura-2-based) Ca2+ imaging technique.
Results: All statins except pitavastatin were found to have a statistically significant suppressive role on SOCE. It was found that mevastatin and atorvastatin, especially at 3 µM concentrations, were more effective on SOCE than all other statins. At high concentrations, metavastatin was found to suppress SOCE by more than 80%. The IC50 value for mevastatin was calculated as 4.76 µM.
Conclusions: According to the findings obtained from this study, it was determined that statins, which are used as cholesterol lowering in the treatment of cardiovascular diseases, are effective on store-operated Ca2+ channels. It is believed that these effects of statins on SOCE, which were demonstrated for the first time in this study, may provide great benefits in understanding the role of statins in Ca2+ regulation and in developing new treatment methods.

Key Words: SOCE, Orai1, Statins, Ca2+ Regulation

Proje Numarası

1059B141800131

Kaynakça

  • 1. Stancu C, Sima A. Statins: Mechanism of action and effects. J of Cellular and Molecular Medicine. 2001; 5: 378–87.
  • 2. Moneta GL. A Randomized Trial of Rosuvastatin in the Pre-vention of Venous Thromboembolism. Yearb Vasc Surg. 2010;2010(18):301–3.
  • 3. Tobert JA. Lovastatin and beyond: The history of the HMG-CoA reductase inhibitors. Nat Rev Drug Discov. 2003;2(7):517–26.
  • 4. Lennernäs H, Fager G. Pharmacodynamics and pharmacoki-netics of the HMG-CoA reductase inhibitors. Similarities and differences. Clinical Pharmacokinetics. 1997; 32: 403–25.
  • 5. Kavalipati N, Shah J, Ramakrishan A, Vasnawala H. Pleiotro-pic effects of statins. Indian J Endocrinol Metab. 2015;19(5):554–62.
  • 6. Gary PH. JBM. SCT et al. Regression of coronary artery disea-se as a result of intensive lipit-lowering theraphy in men with high levels of apolipoprotein B. New English J Med. 1990;323(16):1120–3.
  • 7. Schachter M. Chemical, pharmacokinetic and pharmacody-namic properties of statins: An update. Fundamental and Clinical Pharmacology. 2005; 19: 117–25.
  • 8. Middleton K, Fish DE. Calcium channel regulation in vascular smooth muscle cells: synergistic effects of statins and cal-cium channel blockers. Curr Rev Musculoskeletal Med. 2009: 2; 94–104.
  • 9. Putney JW. A model for receptor-regulated calcium entry. Cell Calcium. 1986;7(1):1–12.
  • 10. Lewis RS. The molecular choreography of a store-operated calcium channel. Nature. 2007;446(7133):284–7.
  • 11. Pylayeva-Gupta Y, Kelsey C. Martin Mhatre V. Ho J-AL. STIM Is a Ca2+ Sensor Essential for Ca2+-Store-DepletionTriggered Ca2+ Influx. Bone. 2012;23(1):1–7.
  • 12. Gross SA, Wissenbach U, Philipp SE, Freichel M, Cavalié A, Flockerzi V. Murine ORAI2 splice variants form functional Ca2+ release-activated Ca2+ (CRAC) channels. J Biol Chem. 2007;282(27):19375–84.
  • 13. Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Na-ture. 2005;437(7060):902– 5.
  • 14. Wissenbach U, Philipp SE, Gross SA, Cavalié A, Flockerzi V. Primary structure, chromosomal localization and expression in immune cells of the murine ORAI and STIM genes. Cell Calcium. 2007;42(4–5):439–46.
  • 15. Baba A, Yasui T, Fujisawa S, Yamada RX, Yamada MK, Nishi-yama N, et al. Activity-evoked capacitative Ca2+ entry: Imp-lications in synaptic plasticity. J Neurosci. 2003;23(21):7737–41.
  • 16. Mercer JC, DeHaven WI, Smyth JT, Wedel B, Boyles RR, Bird GS, et al. Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem. 2006;281(34):24979–90.
  • 17. Alonso MT, Manjarrés IM, García-Sancho J. Privileged coup-ling between Ca 2+ entry through plasma membrane store-operated Ca 2+ channels and the endoplasmic reticulum Ca 2+ pump. Mol Cell Endocrinol. 2012;353(1–2):37–44.
  • 18. Prakriya M, Lewis RS. Store-Operated Calcium Channels. Physiol Rev. 2015: 95(4); 1383-436.
  • 19. Prakriya M, Lewis RS. Store-Operated Calcium Channels. Physiol Rev. 2015: 95(4);1383–436.
  • 20. Chaudhari S, Wu P, Wang Y, Ding Y, Yuan J, Begg M, et al. High glucose and diabetes enhanced store-operated Ca2+ entry and increased expression of its signaling proteins in mesangial cells. Am J Physiol - Ren Physiol. 2014;306(9):F1069–80.
  • 21. Gökçe Y, Erkan O, Savaş K, Rahman T, Yaraş N. Pharmacolo-gical blockade of angiotensin II receptor restores diabetes-associated reduction of store operated Ca2+ entry in adult cardiomyocytes. Biochem Biophys Res Commun. 2022;610:56–60.
  • 22. Choi KM, Zhong Y, Hoit BD, Grupp IL, Hahn H, Dilly KW, et al. Defective intracellular Ca2+ signaling contributes to cardi-omyopathy in type 1 diabetic rats. Am J Physiol - Hear Circ Physiol. 2002;283(4 52-4):H1398-408.
  • 23. Bouchard RA, Bose D. Influence of experimental diabetes on sarcoplasmic reticulum function in rat ventricular muscle. Am J Physiol - Hear Circ Physiol. 1991;260(2 29-2):H341–54.
  • 24. Yaras N, Bilginoglu A, Vassort G, Turan B. Restoration of diabetes-induced abnormal local Ca2+ release in cardiom-yocytes by angiotensin II receptor blockade. American J of Physiology - Heart and Circulatory Physiology. 2007: 292;H912-20.
  • 25. Ali N, Begum R, Faisal MS, Khan A, Nabi M, Shehzadi G, et al. Current statins show calcium channel blocking activity thro-ugh voltage gated channels. BMC Pharmacol Toxicol. 2016;17(1):1–7.
  • 26. Li H, Wan Z, Li X, Teng T, Du X, Nie J. Effects of atorvastatin on time-dependent change of fast sodium current in simula-ted acute ischaemic ventricular myocytes. Cardiovascular J of Africa. 2021:30(5); 268-74.
  • 27. Abdullaev IF, Bisaillon JM, Potier M, Gonzalez JC, Motiani RK, Trebak M. Stim1 and orai1 mediate crac currents and store-operated calcium entry important for endothelial cell proli-feration. Circ Res. 2008;103(11):1289–99.
  • 28. Parekh AB. Store-operated CRAC channels: Function in health and disease. Nature Reviews Drug Discovery. 2010: 9(5); 399-410.
  • 29. Koch G. Store-operated CRAC channel inhibitors: opportuni-ties and challenges. Chimia (Aarau). 2017;71(10):643.
  • 30. Absi M, Eid BG, Ashton N, Hart G, Gurney AM. Simvastatin causes pulmonary artery relaxation by blocking smooth muscle ROCK and calcium channels: Evidence for an endot-helium-independent mechanism. PLoS One. 2019;14(8):1–17.
  • 31. LaMonte MJ, FitzGerald SJ, Church TS, Barlow CE, Radford NB, Levine BD, et al. Coronary artery calcium score and co-ronary heart disease events in a large cohort of asymptoma-tic men and women. Am J Epidemiol. 2005;162(5):421–9.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Tıp Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Yasin Gökçe 0000-0002-2811-0709

Proje Numarası 1059B141800131
Erken Görünüm Tarihi 27 Nisan 2023
Yayımlanma Tarihi 27 Nisan 2023
Gönderilme Tarihi 24 Kasım 2022
Kabul Tarihi 1 Aralık 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

Vancouver Gökçe Y. Statinler Doz Bağımlı Olarak Depo-Bağımlı Ca2+ Girişini Baskılar. Harran Üniversitesi Tıp Fakültesi Dergisi. 2023;20(1):87-93.

Harran Üniversitesi Tıp Fakültesi Dergisi  / Journal of Harran University Medical Faculty