Araştırma Makalesi
BibTex RIS Kaynak Göster

Serum Katalaz, Miyeloperoksidaz ve Paraoksonaz 1 Üzerine Bazı Bitki Ekstraktlarının In Vitro Etkisi

Yıl 2020, , 127 - 132, 29.04.2020
https://doi.org/10.35440/hutfd.686810

Öz

Amaç: Fenolik içerik bakımından zengin olan doğal bitkilerin geleneksel ve tamamlayıcı tıpta tedavi amaçlı kullanılabileceği vurgusu yapılmaktadır. Bu amaçla Artemisia absinthium (pelin otu), Ferula communis (çakşır otu), Achillea millefolium (civanperçemi), Equisetum arvense (tarla atkuyruğu) ve Hypericum perforatum (sarı kantaron) su ektraklarının paraoksanaz 1 (PON1), miyeloperoksidaz (MPO) ve katalaz (CAT) enzim aktiviteleri ile serum total anti-oksidan seviye (TAS) ve total oksidan seviye (TOS) üzerine etkileri araştırılmıştır.
Materyal ve metod: Her bir bitkinin su ekstraktı hazırlanmış olup, bu ekstraktlar serum numunelerine belli oranda eklenerek nihai konsantrasyon 60 µg/mL olarak uygulanmıştır. Hazırlanan bu ekstraktların serum parametreleri üzerine etkilerini araştırmak için TAS ve TOS parametreleri Erel, MPO aktivitesi Bradley, PON1 aktivitesi Eckerson, CAT aktivitesi Goth yöntemiyle ölçülmüştür. Reaktifler, Harran Üniversitesi Tıp Fakültesi Tıbbi Biyokimya Anabilim Dalı Laboratuvarında hazırlanmış ve analizler rutin Biyokimya Laboratuvarı otoanalizöründe (Architect C16000, Abbott) spekrofotometrik olarak çalışılmıştır.
Bulgular: Kontrol değerleri CAT (23,233± 1,665 kU/L), MPO (103,483± 4,048 U/L), PON1 (24,833± 1,404 U/L), TAS (1,223± 0,080 mmol Troloks Eqv/L) ve TOS (6,350± 0,481 µmol H2O2 Eqv/L) kantitatif olarak saptanmıştır. Pelin otu, çakşır otu, civanperçemi ve sarı kantaron CAT, MPO ve PON1 enzimlerini inhibe etmiştir (p <0.05, p <0.01). Tarla atkuyruğu ise sadece MPO üzerine inhibisyon etkisi göstermiştir (p <0.01). Civanperçemi ve sarı kantaron TOS düzeyini düşürürken TAS düzeyini artırmıştır (p <0.05, p <0.01).
Sonuç: Çakşır otu ve tarla atkuyruğu bitki ekstraktları in vitro olarak MPO üzerine inhibisyon etkisi gösterirken PON1 üzerine ise zayıf inhibisyon etkisi göstermiştir. Bu bitkilerin in vivo etkinliği ortaya konulabilirse ateroskleroz gibi hastalıklarda intravasküler lipit peroksidasyonu sonucu meydana gelen plak oluşumunu inhibe edebileceği ve vasküler fonksiyonları iyileştirebileceği söylenebilir.
Anahtar Kelimeler: Tıbbi Bitki, Lipit peroksidasyonu, Paraoksanaz 1, Miyeloperoksidaz  

Destekleyen Kurum

YOK

Proje Numarası

YOK

Kaynakça

  • 1. Devasagayam TP, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD. Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India. 2004;52:794-804.
  • 2. Stocker R, Keaney JF, Jr. Role of oxidative modifications in atherosclerosis. Physiol Rev. 2004;84(4):1381-478.
  • 3. Schwenke DC. Antioxidants, dietary fat saturation, lipoprotein oxidation and atherogenesis. Nutrition. 1996;12(5):377-9.
  • 4. Serdar Z, Aslan K, Dirican M, Sarandol E, Yesilbursa D, Serdar A. Lipid and protein oxidation and antioxidant status in patients with angiographically proven coronary artery disease. Clin Biochem. 2006;39(8):794-803.
  • 5. Mates JM, Perez-Gomez C, Nunez de Castro I. Antioxidant enzymes and human diseases. Clin Biochem. 1999;32(8):595-603.
  • 6. Variji A, Shokri Y, Fallahpour S, Zargari M, Bagheri B, Abediankenari S, et al. The combined utility of myeloperoxidase (MPO) and paraoxonase 1 (PON1) as two important HDL-associated enzymes in coronary artery disease: Which has a stronger predictive role? Atherosclerosis. 2019;280:7-13.
  • 7. Khine HW, Teiber JF, Haley RW, Khera A, Ayers CR, Rohatgi A. Association of the serum myeloperoxidase/high-density lipoprotein particle ratio and incident cardiovascular events in a multi-ethnic population: Observations from the Dallas Heart Study. Atherosclerosis. 2017;263:156-62.
  • 8. Jornayvaz FR, Brulhart-Meynet MC, James RW. Myeloperoxidase and paraoxonase-1 in type 2 diabetic patients. Nutr Metab Cardiovasc Dis. 2009;19(9):613-9.
  • 9. Sun H, Shen J, Liu T, Tan Y, Tian D, Luo T, et al. Heat shock protein 65 promotes atherosclerosis through impairing the properties of high density lipoprotein. Atherosclerosis. 2014;237(2):853-61.
  • 10. Nussbaum C, Klinke A, Adam M, Baldus S, Sperandio M. Myeloperoxidase: a leukocyte-derived protagonist of inflammation and cardiovascular disease. Antioxid Redox Signal. 2013;18(6):692-713.
  • 11. Palinkas Z, Furtmuller PG, Nagy A, Jakopitsch C, Pirker KF, Magierowski M, et al. Interactions of hydrogen sulfide with myeloperoxidase. Br J Pharmacol. 2015;172(6):1516-32.
  • 12. van Dalen CJ, Whitehouse MW, Winterbourn CC, Kettle AJ. Thiocyanate and chloride as competing substrates for myeloperoxidase. Biochem J. 1997;327 ( Pt 2):487-92.
  • 13. Gerber M, Boutron-Ruault MC, Hercberg S, Riboli E, Scalbert A, Siess MH. [Food and cancer: state of the art about the protective effect of fruits and vegetables]. Bulletin du cancer. 2002;89(3):293-312.
  • 14. Krishnaiah D, Sarbatly R, Nithyanandam R. A review of the antioxidant potential of medicinal plant species. Food Bioprod Process. 2011;89(3):217-33.
  • 15. Knekt P, Jarvinen R, Reunanen A, Maatela J. Flavonoid intake and coronary mortality in Finland: a cohort study. BMJ (Clinical research ed). 1996;312(7029):478-81.
  • 16. Scartezzini P, Speroni E. Review on some plants of Indian traditional medicine with antioxidant activity. J Ethnopharmacol. 2000;71(1-2):23-43.
  • 17. Matkowski A. Plant in vitro culture for the production of antioxidants--a review. Biotechnol Adv. 2008;26(6):548-60.
  • 18. Bradley PP, Priebat DA, Christensen RD, Rothstein G. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol. 1982;78(3):206–9.
  • 19. Eckerson HW, Wyte CM, La Du BN. The human serum paraoxonase/arylesterase polymorphism. Am J Hum Genet. 1983;35(6):1126-38.
  • 20. Goth L. A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta. 1991;196(2-3):143-51.
  • 21. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004;37(4):277-85.
  • 22. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005;38(12):1103-11.
  • 23. Sahin H, Can Z, Yildiz O, Kolayli S, Innocenti A, Scozzafava G, et al. Inhibition of carbonic anhydrase isozymes I and II with natural products extracted from plants, mushrooms and honey. J Enzyme Inhib Med Chem. 2012;27(3):395-402.
  • 24. Kaya ED, Ergun B, Demir Y, Alım Z, Beydemir Ş. The In Vitro Impacts of Some Plant Extracts on Carbonic Anhydrase I, II and Paraoxonase-1. Hacettepe J Biol Chem. 2019;47(1).
  • 25. Papageorgiou N, Tousoulis D. Is HDL a prognostic biomarker for coronary atherosclerosis? Int J Cardiol. 2014;174(3):465-7.
  • 26. Rosenson RS, Brewer HB, Jr., Ansell B, Barter P, Chapman MJ, Heinecke JW, et al. Translation of high-density lipoprotein function into clinical practice: current prospects and future challenges. Circulation. 2013;128(11):1256-67.
  • 27. Wang G, Mathew AV, Yu H, Li L, He L, Gao W, et al. Myeloperoxidase mediated HDL oxidation and HDL proteome changes do not contribute to dysfunctional HDL in Chinese subjects with coronary artery disease. PloS one. 2018;13(3):e0193782.
  • 28. Forstermann U. Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat Clin Pract Cardiovasc Med. 2008;5(6):338-49.
  • 29. Mahrooz A, Hashemi-Soteh MB, Heydari M, Boorank R, Ramazani F, Mahmoudi A, et al. Paraoxonase 1 (PON1)-L55M among common variants in the coding region of the paraoxonase gene family may contribute to the glycemic control in type 2 diabetes. Clin Chim Acta. 2018;484:40-6.
  • 30. Srivastava RAK. Dysfunctional HDL in diabetes mellitus and its role in the pathogenesis of cardiovascular disease. Mol Cell Biochem. 2018;440(1-2):167-87.
  • 31. Tward A, Xia YR, Wang XP, Shi YS, Park C, Castellani LW, et al. Decreased atherosclerotic lesion formation in human serum paraoxonase transgenic mice. Circulation. 2002;106(4):484-90.
  • 32. Annema W, von Eckardstein A. Dysfunctional high-density lipoproteins in coronary heart disease: implications for diagnostics and therapy. Transl Res. 2016;173:30-57.
  • 33. Tietge UJF. The impact of myeloperoxidase on HDL function in myocardial infarction. Curr Opin Endocrinol Diabetes Obes. 2018;25(2):137-42.
  • 34. Zhang R, Brennan ML, Fu X, Aviles RJ, Pearce GL, Penn MS, et al. Association between myeloperoxidase levels and risk of coronary artery disease. Jama. 2001;286(17):2136-42.
  • 35. Schaub N, Reichlin T, Meune C, Twerenbold R, Haaf P, Hochholzer W, et al. Markers of plaque instability in the early diagnosis and risk stratification of acute myocardial infarction. Clin Chem. 2012;58(1):246-56.
  • 36. Huang Y, DiDonato JA, Levison BS, Schmitt D, Li L, Wu Y, et al. An abundant dysfunctional apolipoprotein A1 in human atheroma. Nat Med. 2014;20(2):193-203.
  • 37. Gu X, Huang Y, Levison BS, Gerstenecker G, DiDonato AJ, Hazen LB, et al. Identification of Critical Paraoxonase 1 Residues Involved in High Density Lipoprotein Interaction. J Biol Chem. 2016;291(4):1890-904.
  • 38. Pabuccuoglu A, Konyalioglu S, Bas M, Meral GE. The in vitro effects of Hypericum species on human leukocyte myeloperoxidase activity. J Ethnopharmacol. 2003;87(1):89-92.

In Vitro Effect of Some Plant Extracts on Serum Catalase, Myeloperoxidase and Paraoxonase 1

Yıl 2020, , 127 - 132, 29.04.2020
https://doi.org/10.35440/hutfd.686810

Öz

Background: It is emphasized that natural plants rich in phenolic content can be used in traditional and complementary medicine for therapeutic purposes. For this purpose, effects of the water extracts of Artemisia absinthium, Ferula communis, Achillea millefolium, Equisetum arvense and Hypericum perforatum on the serum total anti-oxidant (TAS) level and total oxidant level (TAS) and paraoxanase 1 (PON1), myeloperoxidase (MPO) and catalase (CAT) enzyme activities has been investigated.
Material and method: The water extract of each plant was prepared, and these extracts were added to the serum samples in a certain amount and the final concentration was applied as 60 µg/mL. TAS and TOS parameters were measured by Erel, MPO activity Bradley, PON1 activity Eckerson, CAT activity Goth method to investigate the effects of these prepared extracts on serum parameters. The reagents were prepared in Harran University Medical Faculty Medical Biochemistry Department Laboratory and analyzes were performed spectrophotometrically in the routine Biochemistry Laboratory autoanalyst (Architect C16000, Abbott).
Results: Control values CAT (23,233 ± 1,665 kU/L), MPO (103,483 ± 4,048 U/L), PON1 (24,833 ± 1,404 U/L), TAS (1,223 ± 0.080 mmol Trolox Eqv/L) and TOS (6.350 ± 0,481 µmol H2O2 Eqv/L) was detected quantitatively. Artemisia absinthium, Ferula communis, Achillea millefolium and Hypericum perforatum inhibited CAT, MPO and PON1 enzymes (p <0.05, p <0.01). Equisetum arvense only showed an inhibition effect on MPO (p <0.01). Achillea millefolium and Hypericum perforatum decreased the TOS level, while increasing the TAS level (p <0.05, p <0.01).
Conclusion: Ferula communis and Equisetum arvense plant extracts showed an inhibition effect on MPO activity in vitro, while a weak inhibition effect on PON1 activity. If the in vivo efficacy of these plants can be demonstrated, it can be said that in diseases such as atherosclerosis, it can inhibit plaque formation caused by intravascular lipid peroxidation and improve vascular functions.

Key words: Medicinal Plant, Lipid peroxidation, Paraoxonase 1, Myeloperoxidase

Proje Numarası

YOK

Kaynakça

  • 1. Devasagayam TP, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD. Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India. 2004;52:794-804.
  • 2. Stocker R, Keaney JF, Jr. Role of oxidative modifications in atherosclerosis. Physiol Rev. 2004;84(4):1381-478.
  • 3. Schwenke DC. Antioxidants, dietary fat saturation, lipoprotein oxidation and atherogenesis. Nutrition. 1996;12(5):377-9.
  • 4. Serdar Z, Aslan K, Dirican M, Sarandol E, Yesilbursa D, Serdar A. Lipid and protein oxidation and antioxidant status in patients with angiographically proven coronary artery disease. Clin Biochem. 2006;39(8):794-803.
  • 5. Mates JM, Perez-Gomez C, Nunez de Castro I. Antioxidant enzymes and human diseases. Clin Biochem. 1999;32(8):595-603.
  • 6. Variji A, Shokri Y, Fallahpour S, Zargari M, Bagheri B, Abediankenari S, et al. The combined utility of myeloperoxidase (MPO) and paraoxonase 1 (PON1) as two important HDL-associated enzymes in coronary artery disease: Which has a stronger predictive role? Atherosclerosis. 2019;280:7-13.
  • 7. Khine HW, Teiber JF, Haley RW, Khera A, Ayers CR, Rohatgi A. Association of the serum myeloperoxidase/high-density lipoprotein particle ratio and incident cardiovascular events in a multi-ethnic population: Observations from the Dallas Heart Study. Atherosclerosis. 2017;263:156-62.
  • 8. Jornayvaz FR, Brulhart-Meynet MC, James RW. Myeloperoxidase and paraoxonase-1 in type 2 diabetic patients. Nutr Metab Cardiovasc Dis. 2009;19(9):613-9.
  • 9. Sun H, Shen J, Liu T, Tan Y, Tian D, Luo T, et al. Heat shock protein 65 promotes atherosclerosis through impairing the properties of high density lipoprotein. Atherosclerosis. 2014;237(2):853-61.
  • 10. Nussbaum C, Klinke A, Adam M, Baldus S, Sperandio M. Myeloperoxidase: a leukocyte-derived protagonist of inflammation and cardiovascular disease. Antioxid Redox Signal. 2013;18(6):692-713.
  • 11. Palinkas Z, Furtmuller PG, Nagy A, Jakopitsch C, Pirker KF, Magierowski M, et al. Interactions of hydrogen sulfide with myeloperoxidase. Br J Pharmacol. 2015;172(6):1516-32.
  • 12. van Dalen CJ, Whitehouse MW, Winterbourn CC, Kettle AJ. Thiocyanate and chloride as competing substrates for myeloperoxidase. Biochem J. 1997;327 ( Pt 2):487-92.
  • 13. Gerber M, Boutron-Ruault MC, Hercberg S, Riboli E, Scalbert A, Siess MH. [Food and cancer: state of the art about the protective effect of fruits and vegetables]. Bulletin du cancer. 2002;89(3):293-312.
  • 14. Krishnaiah D, Sarbatly R, Nithyanandam R. A review of the antioxidant potential of medicinal plant species. Food Bioprod Process. 2011;89(3):217-33.
  • 15. Knekt P, Jarvinen R, Reunanen A, Maatela J. Flavonoid intake and coronary mortality in Finland: a cohort study. BMJ (Clinical research ed). 1996;312(7029):478-81.
  • 16. Scartezzini P, Speroni E. Review on some plants of Indian traditional medicine with antioxidant activity. J Ethnopharmacol. 2000;71(1-2):23-43.
  • 17. Matkowski A. Plant in vitro culture for the production of antioxidants--a review. Biotechnol Adv. 2008;26(6):548-60.
  • 18. Bradley PP, Priebat DA, Christensen RD, Rothstein G. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol. 1982;78(3):206–9.
  • 19. Eckerson HW, Wyte CM, La Du BN. The human serum paraoxonase/arylesterase polymorphism. Am J Hum Genet. 1983;35(6):1126-38.
  • 20. Goth L. A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta. 1991;196(2-3):143-51.
  • 21. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004;37(4):277-85.
  • 22. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005;38(12):1103-11.
  • 23. Sahin H, Can Z, Yildiz O, Kolayli S, Innocenti A, Scozzafava G, et al. Inhibition of carbonic anhydrase isozymes I and II with natural products extracted from plants, mushrooms and honey. J Enzyme Inhib Med Chem. 2012;27(3):395-402.
  • 24. Kaya ED, Ergun B, Demir Y, Alım Z, Beydemir Ş. The In Vitro Impacts of Some Plant Extracts on Carbonic Anhydrase I, II and Paraoxonase-1. Hacettepe J Biol Chem. 2019;47(1).
  • 25. Papageorgiou N, Tousoulis D. Is HDL a prognostic biomarker for coronary atherosclerosis? Int J Cardiol. 2014;174(3):465-7.
  • 26. Rosenson RS, Brewer HB, Jr., Ansell B, Barter P, Chapman MJ, Heinecke JW, et al. Translation of high-density lipoprotein function into clinical practice: current prospects and future challenges. Circulation. 2013;128(11):1256-67.
  • 27. Wang G, Mathew AV, Yu H, Li L, He L, Gao W, et al. Myeloperoxidase mediated HDL oxidation and HDL proteome changes do not contribute to dysfunctional HDL in Chinese subjects with coronary artery disease. PloS one. 2018;13(3):e0193782.
  • 28. Forstermann U. Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat Clin Pract Cardiovasc Med. 2008;5(6):338-49.
  • 29. Mahrooz A, Hashemi-Soteh MB, Heydari M, Boorank R, Ramazani F, Mahmoudi A, et al. Paraoxonase 1 (PON1)-L55M among common variants in the coding region of the paraoxonase gene family may contribute to the glycemic control in type 2 diabetes. Clin Chim Acta. 2018;484:40-6.
  • 30. Srivastava RAK. Dysfunctional HDL in diabetes mellitus and its role in the pathogenesis of cardiovascular disease. Mol Cell Biochem. 2018;440(1-2):167-87.
  • 31. Tward A, Xia YR, Wang XP, Shi YS, Park C, Castellani LW, et al. Decreased atherosclerotic lesion formation in human serum paraoxonase transgenic mice. Circulation. 2002;106(4):484-90.
  • 32. Annema W, von Eckardstein A. Dysfunctional high-density lipoproteins in coronary heart disease: implications for diagnostics and therapy. Transl Res. 2016;173:30-57.
  • 33. Tietge UJF. The impact of myeloperoxidase on HDL function in myocardial infarction. Curr Opin Endocrinol Diabetes Obes. 2018;25(2):137-42.
  • 34. Zhang R, Brennan ML, Fu X, Aviles RJ, Pearce GL, Penn MS, et al. Association between myeloperoxidase levels and risk of coronary artery disease. Jama. 2001;286(17):2136-42.
  • 35. Schaub N, Reichlin T, Meune C, Twerenbold R, Haaf P, Hochholzer W, et al. Markers of plaque instability in the early diagnosis and risk stratification of acute myocardial infarction. Clin Chem. 2012;58(1):246-56.
  • 36. Huang Y, DiDonato JA, Levison BS, Schmitt D, Li L, Wu Y, et al. An abundant dysfunctional apolipoprotein A1 in human atheroma. Nat Med. 2014;20(2):193-203.
  • 37. Gu X, Huang Y, Levison BS, Gerstenecker G, DiDonato AJ, Hazen LB, et al. Identification of Critical Paraoxonase 1 Residues Involved in High Density Lipoprotein Interaction. J Biol Chem. 2016;291(4):1890-904.
  • 38. Pabuccuoglu A, Konyalioglu S, Bas M, Meral GE. The in vitro effects of Hypericum species on human leukocyte myeloperoxidase activity. J Ethnopharmacol. 2003;87(1):89-92.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Tıp Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Adnan Kirmit 0000-0003-2799-8416

Mesut Işık 0000-0002-4677-8104

Proje Numarası YOK
Yayımlanma Tarihi 29 Nisan 2020
Gönderilme Tarihi 11 Şubat 2020
Kabul Tarihi 28 Nisan 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

Vancouver Kirmit A, Işık M. Serum Katalaz, Miyeloperoksidaz ve Paraoksonaz 1 Üzerine Bazı Bitki Ekstraktlarının In Vitro Etkisi. Harran Üniversitesi Tıp Fakültesi Dergisi. 2020;17(1):127-32.

Harran Üniversitesi Tıp Fakültesi Dergisi  / Journal of Harran University Medical Faculty