Araştırma Makalesi
BibTex RIS Kaynak Göster

Emetropik, Miyop ve Hipermetrop Gözlerde Lenstar 900 Kullanarak Gözün Biyometrik Ölçümlerinin Anatomik Çalışması

Yıl 2022, Cilt: 19 Sayı: 1, 188 - 192, 28.04.2022
https://doi.org/10.35440/hutfd.1005057

Öz

Amaç: Kırma kusurları ve gözün biyometrik ölçüleri arasındaki ilişkiyi araştırmak.
Materyal ve metod: Bu çalışma oftalmoloji kliniğimizde hasta dosyalarının geçmişe dönük taranmasıyla gerçekleştirildi. Tüm veriler hasta arşivinden elde edildi. Gözün biyometrik ölçümleri 120 fakik bireyin gözü LenStar LS 900 (Haag-Streit AG) cihazı ile ölçülerek elde edildi. Çalışmamıza 40 emetrop, 40 miyop ve 40 hipermetrop birey dahil edildi. Sonuç ölçümleri için tek yönlü ANOVA testi kullanılarak üç grup karşılaştırıldı. Bunlar; Ön kamara derinliği, santral kornea kalınlığı, lens kalınlığı, pupil çapı, aksiyel uzunluk ve retina sinir lifi tabakası kalınlığıdır. Bu çalışmada midriatik ajan damlatılmadı.
Bulgular: Gruplar arası yaş ortalaması emetropik grupta (±SD; 31 ± 5), miyopik grupta (±SD; 33 ± 6), hiper-metropik grupta (±SD; 32 ± 8) olarak bulundu. Gruplar arasında yaş ortalaması açısından anlamlı fark görül-medi (p=0.653). Gruplar arasında ön kamara derinliği (p <0.001), lens kalınlığı (p = 0.016) ve aksiyel uzunluk-ta (p <0.001) anlamlı farklılık vardı. Ön kamara derinliği ve aksiyel uzunluk miyopik grupta anlamlı olarak yüksek bulunurken lens kalınlığı ise hipermetropik grupta anlamlı olarak yüksek bulundu (p< 0.05). Bunun yanı sıra merkez kornea kalınlığı (p = 0.756), göz bebeği çapı (p = 0.462) ve retina kalınlığı (p = 0.646) bakı-mından istatistiksel olarak anlamlı bir fark yoktu.
Sonuç: Bu çalışma gruplar arasında aksiyel uzunluk, ön kamara derinliği ve lens kalınlığı ölçüleri açısından fark olduğunu göstermiştir. Bu anatomik ölçümler arasındaki farkı bilmek bize klinik ve cerrahi çalışmaları-mızda yol gösterici olacaktır.

Kaynakça

  • 1. Rabsilber TM, Jepsen C, Auffarth GU, Holzer MP. Intraocular lens power calculation: clinical comparison of 2 optical biometry devices. J Cataract Refract Surg 2010;36:230–4.
  • 2. Saw SM, Chua WH, Gazzard G, Koh D, Tan DTH, Stone RA. Eye growth changes in myopic children in Singapore. B J Ophthalmol 2005;89:1489–94.
  • 3. Konstantopoulos A, Hossain P, Anderson DF. Recent Advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis? Br J Ophthalmol 2007;91:551-7.
  • 4. Drexler W, Findl O, Menapace R, Rainer G, Vass C, Hitzenberger CK, et al. Partial coherence interferometry: a novel approach to biometry in cataract surgery. Am J Ophthalmol 1998;126:524–34.
  • 5. Lege BA, Haigis W. Laser interference biometry versus ultrasound biometry in certain clinical conditions. Graefes Arch Clin Exp Ophthalmol 2004;242:8–12.
  • 6. Rajan MS, Keilhorn I, Bell JA. Partial coherence laser interferometry vs. conventional ultrasound biometry in intraocular lens power calculations. Eye 2002;16:552–6.
  • 7. Meyer F, Renard JP, Roux L, Rigal-Sastourne JC, Tuil A, Dot C, et al. Value of a new non-contact biometer for intraocular crystalline lens power calculation. J Fr Ophtalmol 2001;24:1060–6.
  • 8. Holzer MP, Mamusa M, Auffarth GU. Accuracy of a new partial coherence interferometry analyser for biometric measurements. Br J Ophthalmol 2009;93:807–10.
  • 9. Buckhurst PJ, Wolffsohn JS, Shah S, Naroo SA, Davies LN, Berrow EJ. A new optical low coherence reflectometry device for ocular biometry in cataract patients. Br J Ophthalmol 2009;93:949–53.
  • 10. Su P-F, Lo AY, Hu C-Y, et al. Anterior chamber depth measurements in phakic and pseudophakic eyes. Optom Vis Sci 2008;85:1193-200.
  • 11. Spadea L, Giammaria D, Di Genova L, et al. Comparison of optical low coherence reflectometry and ultrasound pachymetry in the measurements of central corneal thickness before and after photorefractive keratectomy. J Refract Surg 2007;23:661-6.
  • 12. Chen MJ, Liu YT, Tsai CC, Chen YC, Chou CK, Lee SM. Relationship between central corneal thickness, refractive error, corneal curvature, anterior chamber depth and axial length. J Chin Med Assoc 2009;72:133–7.
  • 13. Su P-F, Lo AY, Hu C-Y, et al. Anterior chamber depth measurements in phakic and pseudophakic eyes. Optom Vis Sci 2008;85:1193-200.
  • 14. Buckhurst PJ, Wolffsohn JS, Shah S, Naroo SA, Davies LN, Berrow EJ. A new optical low coherence reflectometry device for ocular biometry in cataract patients.Br J Ophthalmol 2009;93:949–53.
  • 15. Cruysberg LP, Doors M, Verbakel F, Berendschot TT, De Brabander J, Nuijts RM. Evaluation of the Lenstar LS 900 all-in-one non contact biometry meter. Br J Ophthalmol 2010;94:106–10.
  • 16. Zadnik K, Mutti DO, Fusaro RE, Adams AJ. Longitudinal evidence of crystalline lens thinning in children. Invest Ophthalmol Vis Sci 1995;36:1581–7.
  • 17. Su P-F, Lo AY, Hu C-Y, et al. Anterior chamber depth measurements in phakic and pseudophakic eyes. Optom Vis Sci 2008;85:1193-200.
  • 18. Atchison DA, Schmid KL, Pritchard N. Neural and optical limits to visual performance in myopia. Vision Res 2006;46:3707–22.
  • 19. Gilmartin B. Myopia: precedents for research in the twenty-first century. Clin Exp Ophthalmol 2004;32:305–24.
  • 20. Mutti DO, Hayes JR, Mitchell GL, Jones LA, Moeschberger ML, Cotter SA, et al. Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Invest Ophthalmol Vis Sci 2007;48:2510–9.
  • 21. Garner LF, Yap MK. Changes in ocular dimensions and refraction with accommodation. Ophthalmic Physiol Opt 1997;17:12–7.
  • 22. Bolz M, Prinz A, Drexler W, Findl O. Linear relationship of refractive and biometric lenticular changes during accommodation in emmetropic and myopic eyes. Br J Ophthalmol 2007;91:360–5.
  • 23. Drexler W, Findl O, Schmetterer L, Hitzenberger CK, Fercher AF. Eye elongation during accommodation in humans: differences between emmetropes and myopes. Invest Ophthalmol Vis Sci 1998;39:2140–7.
  • 24. Celorio JM, Pruett RC (1991) Prevalence of lattice degeneration and its relation to axial length in severe myopia. Am J Ophthalmol 111:20–23.
  • 25. Reiner A, Shih YF, Fitzgerald ME (1995) The relationship of choroidal blood flow and accommodation to the control of ocular growth. Vision Res 35:1227–1245. doi:10.1016/ 0042-6989(94)00242-E.
  • 26. Funata M, Tokoro T (1990) Scleral change in experimentally myopic monkeys. Graefes Arch Clin Exp Ophthalmol 228:174–179.
  • 27. Phillips JR, McBrien NA (1995) Form deprivation myopia: elastic properties of sclera. Ophthalmic Physiol Opt 15:357–362. doi:10.1016/0275-5408(95)00062-I.
  • 28. Mehmet Taş, Veysi Oner, Fatih Mehmet Türkcü, Mehmet Fuat Alakuş, Ali Simşek, Yalçin Işcan, Ahmet Taylan Yazici Peripapillary retinal nerve fiber layer thickness in hyperopic children Optom Vis Sci. 2012 Jul;89(7):1009-13.doi: 10.1097/OPX.0b013e31825dcfe2.
  • 29. Sihota R, Sony P, Gupta V, Dada T, Singh R. Comparing glaucomatous optic neuropathy in primary open angle and chronic primary angle closure glaucoma eyes by optical coherence tomography. Ophthalmic Physiol Opt 2005;25(5):408-15.
  • 30. Şatana B, Emeç SD, Yalvaç I, Ekşioğlu Ü, Duman S. Comparison of OCT Parameters between Primary Open Angle Glaucoma and Primary Chronic Angle Closure Glaucoma Patients]. Glo-Kat 2011;6:86-91.
  • 31. Rauscher FM, Sekhon N, Feuer WJ, Budenz DL. Myopia affects retinal nerve fiber layer measurements as determined by optical coherence tomography. J Glaucoma 2009;18(7):501–5.
  • 32. Kirbas S, Turkyilmaz K, Tufekci A, Durmus M. Retinal nerve fiber layer thickness in Parkinson disease. J Neuroophthalmol 2013;33(1):62-5.
  • 33. Oray M, Onal S, Bayraktar S, Izgi B, Tugal-Tutkun I. Nonglaucomatous Localized Retinal Nerve Fiber Layer Defects in Behçet Uveitis. Am J Ophthalmol. 2014 Nov 26. doi: 10.1016/j.ajo.2014.11.029.
  • 34. Taş M, Oner V, Türkcü FM, Alakuş MF, Simşek A, Işcan Y, Yazici AT. Peripapillary retinal nerve fiber layer thickness in hyperopic children. Optom Vis Sci. 2012 Jul;89(7):1009.

Anatomic Study of Ocular Biometric Measures of Emmetropic Eyes, Myopic Eyes, and Hyperopic Eyes Using the LenStar 900

Yıl 2022, Cilt: 19 Sayı: 1, 188 - 192, 28.04.2022
https://doi.org/10.35440/hutfd.1005057

Öz

Background: To evaluate the correlation between refractive error and ocular biometric measures.
Materials and Methods: This study was performed in our ophthalmology clinic by scanning the patients files retrospectively. All data were obtained from the patient archive. Ocular biometric measures were obtained with a LenStar LS 900 optical biometry (Haag-Streit AG) on one eye of 120 phakic subjects. In our study, 40 emmetropes, 40 myopes, and 40 hipermetropes were included. Outcome measures were com-pared for the three groups using One-way ANOVA test. The measures were central anterior chamber depth , central corneal thickness, lens thickness, pupil diameter, axial length and retinal nerve fiber layer thickness. Mydriatic agent was not distilled in our study.
Results: The mean age between the groups was found to be in the emmetropic group (±SD; 31 ± 5), in the myopic group (±SD; 33 ± 6), and in the hyperopic group (±SD; 32 ± 8). There was no significant difference between the groups in terms of mean age (p=0.653). In our study, there were significant differences among groups in anterior chamber depth (p <0.001), lens thickness (p = 0.016), and axial length (p < 0.001). Anteri-or chamber depth and axial length were found to be significantly higher in the myopic group, while lens thickness was significantly higher in the hyperopic group (p< 0.05). However, there were not significant differences among groups for central corneal thickness, (p = 0.756), pupil diameter (p = 0.462), and retinal thickness (p= 0.646).
Conclusions: This study demonstrated the anterior chamber depth, lens thickness, and axial length mea-surements are different among groups. Knowing the difference between these anatomical measurements will guide us in our clinical and surgical studies.

Keywords: Ocular biometry, LenStar, Myopia, Hipermetropi

Kaynakça

  • 1. Rabsilber TM, Jepsen C, Auffarth GU, Holzer MP. Intraocular lens power calculation: clinical comparison of 2 optical biometry devices. J Cataract Refract Surg 2010;36:230–4.
  • 2. Saw SM, Chua WH, Gazzard G, Koh D, Tan DTH, Stone RA. Eye growth changes in myopic children in Singapore. B J Ophthalmol 2005;89:1489–94.
  • 3. Konstantopoulos A, Hossain P, Anderson DF. Recent Advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis? Br J Ophthalmol 2007;91:551-7.
  • 4. Drexler W, Findl O, Menapace R, Rainer G, Vass C, Hitzenberger CK, et al. Partial coherence interferometry: a novel approach to biometry in cataract surgery. Am J Ophthalmol 1998;126:524–34.
  • 5. Lege BA, Haigis W. Laser interference biometry versus ultrasound biometry in certain clinical conditions. Graefes Arch Clin Exp Ophthalmol 2004;242:8–12.
  • 6. Rajan MS, Keilhorn I, Bell JA. Partial coherence laser interferometry vs. conventional ultrasound biometry in intraocular lens power calculations. Eye 2002;16:552–6.
  • 7. Meyer F, Renard JP, Roux L, Rigal-Sastourne JC, Tuil A, Dot C, et al. Value of a new non-contact biometer for intraocular crystalline lens power calculation. J Fr Ophtalmol 2001;24:1060–6.
  • 8. Holzer MP, Mamusa M, Auffarth GU. Accuracy of a new partial coherence interferometry analyser for biometric measurements. Br J Ophthalmol 2009;93:807–10.
  • 9. Buckhurst PJ, Wolffsohn JS, Shah S, Naroo SA, Davies LN, Berrow EJ. A new optical low coherence reflectometry device for ocular biometry in cataract patients. Br J Ophthalmol 2009;93:949–53.
  • 10. Su P-F, Lo AY, Hu C-Y, et al. Anterior chamber depth measurements in phakic and pseudophakic eyes. Optom Vis Sci 2008;85:1193-200.
  • 11. Spadea L, Giammaria D, Di Genova L, et al. Comparison of optical low coherence reflectometry and ultrasound pachymetry in the measurements of central corneal thickness before and after photorefractive keratectomy. J Refract Surg 2007;23:661-6.
  • 12. Chen MJ, Liu YT, Tsai CC, Chen YC, Chou CK, Lee SM. Relationship between central corneal thickness, refractive error, corneal curvature, anterior chamber depth and axial length. J Chin Med Assoc 2009;72:133–7.
  • 13. Su P-F, Lo AY, Hu C-Y, et al. Anterior chamber depth measurements in phakic and pseudophakic eyes. Optom Vis Sci 2008;85:1193-200.
  • 14. Buckhurst PJ, Wolffsohn JS, Shah S, Naroo SA, Davies LN, Berrow EJ. A new optical low coherence reflectometry device for ocular biometry in cataract patients.Br J Ophthalmol 2009;93:949–53.
  • 15. Cruysberg LP, Doors M, Verbakel F, Berendschot TT, De Brabander J, Nuijts RM. Evaluation of the Lenstar LS 900 all-in-one non contact biometry meter. Br J Ophthalmol 2010;94:106–10.
  • 16. Zadnik K, Mutti DO, Fusaro RE, Adams AJ. Longitudinal evidence of crystalline lens thinning in children. Invest Ophthalmol Vis Sci 1995;36:1581–7.
  • 17. Su P-F, Lo AY, Hu C-Y, et al. Anterior chamber depth measurements in phakic and pseudophakic eyes. Optom Vis Sci 2008;85:1193-200.
  • 18. Atchison DA, Schmid KL, Pritchard N. Neural and optical limits to visual performance in myopia. Vision Res 2006;46:3707–22.
  • 19. Gilmartin B. Myopia: precedents for research in the twenty-first century. Clin Exp Ophthalmol 2004;32:305–24.
  • 20. Mutti DO, Hayes JR, Mitchell GL, Jones LA, Moeschberger ML, Cotter SA, et al. Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Invest Ophthalmol Vis Sci 2007;48:2510–9.
  • 21. Garner LF, Yap MK. Changes in ocular dimensions and refraction with accommodation. Ophthalmic Physiol Opt 1997;17:12–7.
  • 22. Bolz M, Prinz A, Drexler W, Findl O. Linear relationship of refractive and biometric lenticular changes during accommodation in emmetropic and myopic eyes. Br J Ophthalmol 2007;91:360–5.
  • 23. Drexler W, Findl O, Schmetterer L, Hitzenberger CK, Fercher AF. Eye elongation during accommodation in humans: differences between emmetropes and myopes. Invest Ophthalmol Vis Sci 1998;39:2140–7.
  • 24. Celorio JM, Pruett RC (1991) Prevalence of lattice degeneration and its relation to axial length in severe myopia. Am J Ophthalmol 111:20–23.
  • 25. Reiner A, Shih YF, Fitzgerald ME (1995) The relationship of choroidal blood flow and accommodation to the control of ocular growth. Vision Res 35:1227–1245. doi:10.1016/ 0042-6989(94)00242-E.
  • 26. Funata M, Tokoro T (1990) Scleral change in experimentally myopic monkeys. Graefes Arch Clin Exp Ophthalmol 228:174–179.
  • 27. Phillips JR, McBrien NA (1995) Form deprivation myopia: elastic properties of sclera. Ophthalmic Physiol Opt 15:357–362. doi:10.1016/0275-5408(95)00062-I.
  • 28. Mehmet Taş, Veysi Oner, Fatih Mehmet Türkcü, Mehmet Fuat Alakuş, Ali Simşek, Yalçin Işcan, Ahmet Taylan Yazici Peripapillary retinal nerve fiber layer thickness in hyperopic children Optom Vis Sci. 2012 Jul;89(7):1009-13.doi: 10.1097/OPX.0b013e31825dcfe2.
  • 29. Sihota R, Sony P, Gupta V, Dada T, Singh R. Comparing glaucomatous optic neuropathy in primary open angle and chronic primary angle closure glaucoma eyes by optical coherence tomography. Ophthalmic Physiol Opt 2005;25(5):408-15.
  • 30. Şatana B, Emeç SD, Yalvaç I, Ekşioğlu Ü, Duman S. Comparison of OCT Parameters between Primary Open Angle Glaucoma and Primary Chronic Angle Closure Glaucoma Patients]. Glo-Kat 2011;6:86-91.
  • 31. Rauscher FM, Sekhon N, Feuer WJ, Budenz DL. Myopia affects retinal nerve fiber layer measurements as determined by optical coherence tomography. J Glaucoma 2009;18(7):501–5.
  • 32. Kirbas S, Turkyilmaz K, Tufekci A, Durmus M. Retinal nerve fiber layer thickness in Parkinson disease. J Neuroophthalmol 2013;33(1):62-5.
  • 33. Oray M, Onal S, Bayraktar S, Izgi B, Tugal-Tutkun I. Nonglaucomatous Localized Retinal Nerve Fiber Layer Defects in Behçet Uveitis. Am J Ophthalmol. 2014 Nov 26. doi: 10.1016/j.ajo.2014.11.029.
  • 34. Taş M, Oner V, Türkcü FM, Alakuş MF, Simşek A, Işcan Y, Yazici AT. Peripapillary retinal nerve fiber layer thickness in hyperopic children. Optom Vis Sci. 2012 Jul;89(7):1009.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Tıp Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Ali Şimşek 0000-0002-5077-8721

Ali Aydın 0000-0003-2464-4743

Çağrı Mutaf 0000-0001-6612-8160

Yayımlanma Tarihi 28 Nisan 2022
Gönderilme Tarihi 5 Ekim 2021
Kabul Tarihi 21 Nisan 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 19 Sayı: 1

Kaynak Göster

Vancouver Şimşek A, Aydın A, Mutaf Ç. Emetropik, Miyop ve Hipermetrop Gözlerde Lenstar 900 Kullanarak Gözün Biyometrik Ölçümlerinin Anatomik Çalışması. Harran Üniversitesi Tıp Fakültesi Dergisi. 2022;19(1):188-92.

Harran Üniversitesi Tıp Fakültesi Dergisi  / Journal of Harran University Medical Faculty