Derleme
BibTex RIS Kaynak Göster

Approach to Experimental Animals in Learning and Memory Experiments and Evaluation of Experimental Models

Yıl 2024, Cilt: 21 Sayı: 3, 547 - 556, 27.12.2024
https://doi.org/10.35440/hutfd.1487260

Öz

Learning and memory are processes that enable living beings to acquire and store new informa-tion and recall it when necessary, and are necessary for them to continue their lives in a healthy way. The main parts of our brain related to learning and memory are the amygdala, hippocam-pus, cerebellum and prefrontal cortex. Deteriorations in these areas affect learning and memory mechanisms. Animal studies provide important information about the pathophysiology of lear-ning and memory disorders in humans and contribute to the discovery of new pharmacological agents for treatment. However, before starting animal studies, it is very important to determine the purpose of the study to be conducted, which type of experimental animal will be used in the study to achieve this purpose, which test and model are appropriate for this type of experimen-tal animal, and to have information about the validity and reliability of the model in the selected animal species. For this purpose, this review aims to present basic information about learning and memory models and tests commonly used in experimental animals and to provide the op-portunity to make a comparison between the tests.

Etik Beyan

Since it is a review article, there is no need for an ethical statement.

Destekleyen Kurum

The author(s) received no financial support for the research.

Kaynakça

  • 1. Sweatt JD. Mechanisms of memory: Academic Press; 2009.
  • 2. James’s W. Principles of psychology: British Royal Archives; 1863.
  • 3. Özen NE, Rezaki M. Prefrontal korteks: Bellek işlevi ve buna-ma ile ilişkisi. Türk Psikiyatri Dergisi. 2007;18(3):262-9.
  • 4. Kandel ER. The molecular biology of memory storage: A dia-logue between genes and synapses. J Science. 2001;294(5544):1030-8.
  • 5. Hall JE, Guyton AC. Medical physiology Amsterdam: Elsevier Saunders; 2006.
  • 6. Berktaş F, Kıroğlu O, Aksu F. Antidepresan İlaçların öğrenme ve bellek mekanizmasına etkileri. Arşiv Kaynak Tarama Dergisi. 2017;26(2):178-206.
  • 7. Jawabri KH, Cascella M. Physiology, explicit memory. StatPearls [Internet]. 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554551/.
  • 8. Cascella M, Al Khalili Y. Short-term memory impairment. StatPearls [Internet]. 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK545136/.
  • 9. Graf P, Schacter DL. Implicit and explicit memory for new associations in normal and amnesic subjects. Journal of ex-perimental psychology Learning, memory, and cognition. 1985;11(3):501-18.
  • 10. Danieli K, Guyon A, Bethus I. Episodic memory formation: A review of complex hippocampus input pathways. Progress in neuro-psychopharmacology & biological psychiatry. 2023;126:110757.
  • 11. Moscovitch M, Cabeza R, Winocur G, Nadel L. Episodic memory and beyond: The hippocampus and neocortex in transformation. Annual review of psychology. 2016;67:105-34.
  • 12. Robertson LT. Memory and the brain. Journal of dental edu-cation. 2002;66(1):30-42.
  • 13. Pape H-C, Pare D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiological reviews. 2010;90(2):419-63.
  • 14. Schmahmann JD. The cerebellum and cognition. J Neurosci-ence letters. 2019;688:62-75.
  • 15. Ivry R, Fiez J. Cerebellar contributions to cognition and image-ry. 2000. In: The Cognitive Neurosciences [Internet]. Cam-bridge: MIT Press.; [999-1011].
  • 16. Ullman MT. Contributions of memory circuits to language: The declarative/procedural model. Cognition. 2004;92(1-2):231-70.
  • 17. Xie T-T, Wang T-Z, Wei Y-P, Ye E-C, Exercise. Declarative memory affects procedural memory: The role of semantic as-sociation and sequence matching. J Psychology of Sport. 2019;43:253-60.
  • 18. Hutter SA, Wilson AI. A novel role for the hippocampus in category learning. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2018;38(31):6803-5.
  • 19. Small SA, Nava AS, Perera GM, DeLaPaz R, Mayeux R, Stern Y. Circuit mechanisms underlying memory encoding and re-trieval in the long axis of the hippocampal formation. Nature neuroscience. 2001;4(4):442- 9.
  • 20. Schlichting ML, Preston AR. Memory integration: Neural mechanisms and implications for behavior. Current opinion in behavioral sciences. 2015;1:1-8.
  • 21. Oscar-Berman M. Function and dysfunction of prefrontal brain circuitry in alcoholic korsakoff's syndrome. Neuropsy-chology review. 2012;22(2):154-69.
  • 22. Kensinger EA, Addis DR, Atapattu RK. Amygdala activity at encoding corresponds with memory vividness and with memory for select episodic details. Neuropsychologia. 2011;49(4):663-73.
  • 23. Hamann S, Mao H. Positive and negative emotional verbal stimuli elicit activity in the left amygdala. Neuroreport. 2002;13(1):15-9.
  • 24. Dyomina AV, Smolensky IV, Zaitsev AV. Refinement of the barnes and morris water maze protocols improves characteri-zation of spatial cognitive deficits in the lithium-pilocarpine rat model of epilepsy. Epilepsy & Behavior. 2023;147:109391.
  • 25. Paul C-M, Magda G, Abel S. Spatial memory: Theoretical basis and comparative review on experimental methods in ro-dents. Behavioural brain research. 2009;203(2):151-64.
  • 26. Zhai Q, Zhang Y, Ye M, Zhu S, Sun J, Wang Y, et al. Reducing complement activation during sleep deprivation yields cogni-tive improvement by dexmedetomidine. British journal of anaesthesia. 2023;131(3):542-55.
  • 27. Vuralli D, Wattiez AS, Russo AF, Bolay H. Behavioral and cogni-tive animal models in headache research. Journal Headache Pain. 2019;20(1):11.
  • 28. Lin JC, Lee MY, Chan MH, Chen YC, Chen HH. Betaine en-hances antidepressant-like, but blocks psychotomimetic ef-fects of ketamine in mice. Psychopharmacology. 2016;233(17):3223-35.
  • 29. Denninger JK, Smith BM, Kirby ED. Novel object recognition and object location behavioral testing in mice on a budget. Journal of visualized experiments : JoVE. 2018(141).
  • 30. Allen RS, Motz CT, Feola A, Chesler KC, Haider R, Ramachan-dra Rao S, et al. Long-term functional and structural conse-quences of primary blast overpressure to the eye. Journal of neurotrauma. 2018;35(17):2104-16.
  • 31. Gudapati K, Singh A, Clarkson-Townsend D, Phillips SQ, Douglass A, Feola AJ, et al. Behavioral assessment of visual function via optomotor response and cognitive function via y-maze in diabetic rats. Journal of visualized experiments : JoVE. 2020(164).
  • 32. Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of alzheimer's disease: A review of progress. Journal of neurology, neurosurgery, and psychiatry. 1999;66(2):137-47.
  • 33. McNamara RK, Skelton RW. The neuropharmacological and neurochemical basis of place learning in the morris water maze. Brain research Brain research reviews. 1993;18(1):33-49.
  • 34. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. Journal of neuroscience methods. 1984;11(1):47-60.
  • 35. Terry AV, Jr. Frontiers in neuroscience spatial navigation (water maze) tasks. In: Buccafusco JJ, editor. Methods of be-havior analysis in neuroscience. Boca Raton (FL): CRC Press/Taylor & Francis 2009.
  • 36. Othman MZ, Hassan Z, Che Has AT. Morris water maze: A versatile and pertinent tool for assessing spatial learning and memory. Experimental animals. 2022;71(3):264-80.
  • 37. Koşar B, Burak T, Altunkaya M, Cem S, Dursun N. Sıçanlarda 6-n-propil-2-tiourasil ile bozulan öğrenme ve bellek perfor-mansına selenyumun etki. Mersin Üniversitesi Sağlık Bilimleri Dergisi. 2022;15(3):480-9.
  • 38. Vorhees CV, Williams MT. Assessing spatial learning and memory in rodents. ILAR journal. 2014;55(2):310-32.
  • 39. Mactutus C, Booze R. Accuracy of spatial navigation: The role of platform and tank size. Soc Neurosci Abst. 1994;20:1014.
  • 40. Williams MT, Braun AA, Amos-Kroohs RM, McAllister II JP, Lindquist DM, Mangano FT, et al. Kaolin-induced ventriculo-megaly at weaning produces long-term learning, memory, and motor deficits in rats. International Journal of Develop-mental Neuroscience. 2014;35:7-15.
  • 41. She L, Sun J, Xiong L, Li A, Li L, Wu H, et al. Ginsenoside rk1 improves cognitive impairments and pathological changes in alzheimer's disease via stimulation of the ampk/nrf2 signaling pathway. Phytomedicine : international journal of phytother-apy and phytopharmacology. 2024;122:155168.
  • 42. Liu Y, Xia P, Zong S, Zheng N, Cui X, Wang C, et al. Inhibition of alzheimer's disease by 4-octyl itaconate revealed by rna-seq transcriptome analysis. European journal of pharmacology. 2024;968:176432.
  • 43. Kang S, Lee J, Choi S, Nesbitt J, Min PH, Trushina E, et al. Moderate ethanol exposure reduces astrocyte-induced neu-roinflammatorysignaling and cognitive decline in presympto-matic app/ps1 mice. Research square. 2023.
  • 44. Ennaceur A, Delacour J. A new one-trial test for neurobiologi-cal studies of memory in rats. 1: Behavioral data. Behavioural brain research. 1988;31(1):47-59.
  • 45. Winters BD, Saksida LM, Bussey TJ. Object recognition memory: Neurobiological mechanisms of encoding, consoli-dation and retrieval. J Neuroscience Biobehavioral Reviews. 2008;32(5):1055-70.
  • 46. Dere E, Huston JP, Silva MADS. The pharmacology, neuroana-tomy and neurogenetics of one-trial object recognition in ro-dents. J Neuroscience Biobehavioral Reviews. 2007;31(5):673-704.
  • 47. Wu C, Yang L, Li Y, Dong Y, Yang B, Tucker LD, et al. Effects of exercise training on anxious-depressive-like behavior in alz-heimer rat. Medicine and science in sports and exercise. 2020;52(7):1456-69.
  • 48. Szczepańska K, Bojarski AJ, Popik P, Malikowska-Racia N. Novel object recognition test as an alternative approach to assessing the pharmacological profile of sigma-1 receptor lig-ands. Pharmacological reports : PR. 2023;75(5):1291-8.
  • 49. Colettis NC, Habif M, Oberholzer MV, Filippin F, Jerusalinsky DA. Differences in learning and memory between middle-aged female and male rats. Learning & memory (Cold Spring Harbor, NY). 2022;29(5):120-5.
  • 50. Barrett RM, Malvaez M, Kramar E, Matheos DP, Arrizon A, Cabrera SM, et al. Hippocampal focal knockout of cbp affects specific histone modifications, long-term potentiation, and long-term memory. Neuropsychopharmacology : official pub-lication of the American College of Neuropsychopharmacolo-gy. 2011;36(8):1545-56.
  • 51. Lueptow LM. Novel object recognition test for the investiga-tion of learning and memory in mice. Journal of visualized ex-periments : JoVE. 2017(126).
  • 52. Chen HH, Chiang YC, Yuan ZF, Kuo CC, Lai MD, Hung TW, et al. Buprenorphine, methadone, and morphine treatment during pregnancy: Behavioral effects on the offspring in rats. Neu-ropsychiatric disease and treatment. 2015;11:609-18.
  • 53. Küçükkarapınar M, Dönmez A, Candansayar S, Bozkurt A, Akçay E, Gülbahar Ö, et al. Erken dönem müdahalelerin erişkin wistar sıçanlarında davranışsal ve nörogelişimsel etkileri. Arch Neuropsychiatry 2020.
  • 54. Ennaceur A, Meliani K. A new one-trial test for neurobiologi-cal studies of memory in rats. Iii. Spatial vs. Non-spatial work-ing memory. Behavioural brain research. 1992;51(1):83-92.
  • 55. Gawel K, Gibula E, Marszalek-Grabska M, Filarowska J, Kotlin-ska JH. Assessment of spatial learning and memory in the barnes maze task in rodents—methodological consideration. Naunyn-Schmiedeberg's archives of pharmacology. 2019;392:1-18.
  • 56. Pitts MW. Barnes maze procedure for spatial learning and memory in mice. Bio-protocol. 2018;8(5).
  • 57. Puzzo D, Lee L, Palmeri A, Calabrese G, Arancio O. Behavioral assays with mouse models of alzheimer's disease: Practical considerations and guidelines. Biochemical pharmacology. 2014;88(4):450-67.
  • 58. Illouz T, Madar R, Clague C, Griffioen KJ, Louzoun Y, Okun E. Unbiased classification of spatial strategies in the barnes maze. Bioinformatics. 2016;32(21):3314-20.
  • 59. Harrison F, Hosseini A, McDonald M. Endogenous anxiety and stress responses in water maze and barnes maze spatial memory tasks. Behavioural brain research. 2009;198(1):247-51.
  • 60. Stewart S, Cacucci F, Lever C. Which memory task for my mouse? A systematic review of spatial memory performance in the tg2576 alzheimer's mouse model. Journal of Alzhei-mer's disease. 2011;26(1):105-26.
  • 61. Walesiuk A, Braszko JJ. Gingkoselect alleviates chronic corti-costerone-induced spatial memory deficits in rats. Fitotera-pia. 2010;81(1):25-9.
  • 62. O’Leary TP, Savoie V, Brown RE. Learning, memory and search strategies of inbred mouse strains with different visu-al abilities in the barnes maze. Behavioural brain research. 2011;216(2):531-42.
  • 63. Gawel K, Labuz K, Gibula-Bruzda E, Jenda M, Marszalek-Grabska M, Filarowska J, et al. Cholinesterase inhibitors, donepezil and rivastigmine, attenuate spatial memory and cognitive flexibility impairment induced by acute ethanol in the barnes maze task in rats. Naunyn-Schmiedeberg's ar-chives of pharmacology. 2016;389:1059-71.
  • 64. Morel GR, Andersen T, Pardo J, Zuccolilli GO, Cambiaggi VL, Hereñú CB, et al. Cognitive impairment and morphological changes in the dorsal hippocampus of very old female rats. J Neuroscience Biobehavioral Reviews. 2015;303:189-99.
  • 65. Sunyer B, Patil S, Höger H, Lubec G. Barnes maze, a useful task to assess spatial reference memory in the mice. PROTO-KOL2007.
  • 66. Greferath U, Bennie A, Kourakis A, Barrett G. Impaired spatial learning in aged rats is associated with loss of p75-positive neurons in the basal forebrain. J Neuroscience. 2000;100(2):363-73.
  • 67. Marszalek-Grabska M, Gibula-Bruzda E, Bodzon-Kulakowska A, Suder P, Gawel K, Talarek S, et al. Adx-47273, a mglu5 re-ceptor positive allosteric modulator, attenuates deficits in cognitive flexibility induced by withdrawal from ‘binge-like’ethanol exposure in rats. Behavioural brain research. 2018;338:9-16.
  • 68. Vargas-López V, Lamprea MR, Múnera A. Characterizing spatial extinction in an abbreviated version of the barnes maze. Behavioural processes. 2011;86(1):30-8.
  • 69. Yamada M, Sakurai Y. An observational learning task using barnes maze in rats. Cognitive neurodynamics. 2018;12:519-23.
  • 70. Wijnen K, Genzel L, van der Meij J. Rodent maze studies: From following simple rules to complex map learning. Brain Structure Function. 2024:1-19.
  • 71. Dember WN, Fowler H. Spontaneous alternation behavior. J Psychological bulletin. 1958;55(6):412.
  • 72. Warden C. A standard unit animal maze for general laborato-ry use. J The Pedagogical Seminary Journal of Genetic Psy-chology. 1929;36(1):174-6.
  • 73. Coutrot A, Manley E, Goodroe S, Gahnstrom C, Filomena G, Yesiltepe D, et al. Entropy of city street networks linked to fu-ture spatial navigation ability. Nature. 2022;604(7904):104-10.
  • 74. da Cruz Rodrigues KC, Kim SC, Uner AA, Hou ZS, Young J, Campolim C, et al. Lrp1 in gabaergic neurons is a key link be-tween obesity and memory function. Molecular metabolism. 2024;84:101941.
  • 75. Deacon RM, Rawlins JNP. T-maze alternation in the rodent. Nature protocols. 2006;1(1):7-12.
  • 76. Abdulbasit A, Stephen Michael F, Shukurat Onaopemipo A, Abdulmusawwir AO, Aminu I, Nnaemeka Tobechukwu A, et al. Glucocorticoid receptor activation selectively influence performance of wistar rats in y-maze. Pathophysiology : the official journal of the International Society for Pathophysiolo-gy. 2018;25(1):41-50.
  • 77. Havekes R, Nijholt IM, Luiten PG, Van der Zee EA. Differential involvement of hippocampal calcineurin during learning and reversal learning in a y-maze task. Learning & memory (Cold Spring Harbor, NY). 2006;13(6):753-9.
  • 78. Jia G, Sun Y, An P, Wu W, Shen Y, Liu H, et al. Auditory training remodels hippocampus-related memory in adult rats. Cere-bral Cortex. 2024;34(2).
  • 79. Dost T, Fırat Z, Tamer M, Ulugöl A, Karadağ ÇH. The role of histaminergic system in learning and memory functions. Bal-kan Medical Journal. 2002;2002(1).
  • 80. You C, Zhang Z, Ying H, Yang Z, Ma Y, Hong J, et al. Blockage of calcium-sensing receptor improves chronic intermittent hy-poxia-induced cognitive impairment by perk-atf4-chop path-way. Experimental neurology. 2023;368:114500.
  • 81. Kaya E, Bölükbaşı Hatip FF, Yılmaz İ, Hatip-Al-Khat İ. Effect of nilvadipine on memory impairment and hippocampal malondialdehyde in rats with 4-vessel occlusion ischemia. Duzce Medical Journal. 2013.
  • 82. Banerjee S, Mukherjee B, Poddar MK, Dunbar GL. Carnosine improves aging-induced cognitive impairment and brain re-gional neurodegeneration in relation to the neuropathologi-cal alterations in the secondary structure of amyloid beta (aβ). Journal of neurochemistry. 2021;158(3):710-23.
  • 83. Nascimento C, Guerreiro-Pinto V, Pawlak S, Caulino-Rocha A, Amat-Garcia L, Cunha-Reis D. Impaired response to mismatch novelty in the li(2+)-pilocarpine rat model of tle: Correlation with hippocampal monoaminergic inputs. Biomedicines. 2024;12(3).
  • 84. Sanz-Martos AB, Roca M, Ruiz-Gayo M, Del Olmo N. Tributyr-in reverses the deleterious effect of saturated fat on working memory and synaptic plasticity in juvenile mice: Differential effects in males and females. European journal of pharma-cology. 2024;977:176726.
  • 85. Şavik E, Gültekin F, Karakoyun İ, Doğuç DK, Demirin H, Delibaş N. Klorpirifosun sıçanlarda öğrenmeye etkileri. Medical Jour-nal of Süleyman Demirel University. 2008;15(3):1-6.
  • 86. Setkowicz Z, Gaździńska A, Osoba JJ, Karwowska K, Majka P, Orzeł J, et al. Does long-term high fat diet always lead to smaller hippocampi volumes, metabolite concentrations, and worse learning and memory? A magnetic resonance and be-havioral study in wistar rats. PLoS One. 2015;10(10):e0139987.

Öğrenme ve Bellek Deneylerinde Deney Hayvanlarına Yaklaşım ve Deney Modellerinin Değerlendirilmesi

Yıl 2024, Cilt: 21 Sayı: 3, 547 - 556, 27.12.2024
https://doi.org/10.35440/hutfd.1487260

Öz

Öğrenme ve bellek, canlıların yeni bilgiler edinip depolanmasını ve gerektiğinde geri çağrılmasını sağlayan ve yaşamlarını sağlıklı bir şekilde devam ettirebilmeleri için gerekli olan bir süreçlerdir. Öğrenme ve bellek ile ilgili beynimizin ana bölümleri amigdala, hipokampus, beyincik ve prefron-tal kortekstir. Bu alanlardaki bozulmalar öğrenme ve bellek mekanizmalarını etkilemektedir. Hayvan çalışmaları insanlarda öğrenme ve bellek bozukluklarının patofizyolojisi hakkında önemli bilgiler sunarak tedavi için yeni farmakolojik ajanların keşfedilmesine katkıda bulunur. Ancak hayvan çalışmalarına başlamadan önce yapılacak çalışmanın amacını ve bu amaca ulaşabilmek için çalışmada hangi tür deney hayvanının kullanılacağını ve bu tür deney hayvanında hangi test ve modelin uygun olduğunu belirlemek, seçilen hayvan türünde modelin geçerliliği ve güvenilirliği hakkında bilgi sahibi olmak oldukça önem arz eder. Bu amaçla bu derlemede, deney hayvanla-rında yaygın olarak kullanılan öğrenme ve bellek modelleri ve testleriyle ilgili temel bilgilerin sunulması ve testler arasında bir kıyaslama yapma imkanının sunulması amaçlanmıştır.

Etik Beyan

Derleme makale olduğu için etik beyana ihtiyaç yoktur.

Destekleyen Kurum

Yazarlar bu çalışma için finansal destek almamıştır.

Kaynakça

  • 1. Sweatt JD. Mechanisms of memory: Academic Press; 2009.
  • 2. James’s W. Principles of psychology: British Royal Archives; 1863.
  • 3. Özen NE, Rezaki M. Prefrontal korteks: Bellek işlevi ve buna-ma ile ilişkisi. Türk Psikiyatri Dergisi. 2007;18(3):262-9.
  • 4. Kandel ER. The molecular biology of memory storage: A dia-logue between genes and synapses. J Science. 2001;294(5544):1030-8.
  • 5. Hall JE, Guyton AC. Medical physiology Amsterdam: Elsevier Saunders; 2006.
  • 6. Berktaş F, Kıroğlu O, Aksu F. Antidepresan İlaçların öğrenme ve bellek mekanizmasına etkileri. Arşiv Kaynak Tarama Dergisi. 2017;26(2):178-206.
  • 7. Jawabri KH, Cascella M. Physiology, explicit memory. StatPearls [Internet]. 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554551/.
  • 8. Cascella M, Al Khalili Y. Short-term memory impairment. StatPearls [Internet]. 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK545136/.
  • 9. Graf P, Schacter DL. Implicit and explicit memory for new associations in normal and amnesic subjects. Journal of ex-perimental psychology Learning, memory, and cognition. 1985;11(3):501-18.
  • 10. Danieli K, Guyon A, Bethus I. Episodic memory formation: A review of complex hippocampus input pathways. Progress in neuro-psychopharmacology & biological psychiatry. 2023;126:110757.
  • 11. Moscovitch M, Cabeza R, Winocur G, Nadel L. Episodic memory and beyond: The hippocampus and neocortex in transformation. Annual review of psychology. 2016;67:105-34.
  • 12. Robertson LT. Memory and the brain. Journal of dental edu-cation. 2002;66(1):30-42.
  • 13. Pape H-C, Pare D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiological reviews. 2010;90(2):419-63.
  • 14. Schmahmann JD. The cerebellum and cognition. J Neurosci-ence letters. 2019;688:62-75.
  • 15. Ivry R, Fiez J. Cerebellar contributions to cognition and image-ry. 2000. In: The Cognitive Neurosciences [Internet]. Cam-bridge: MIT Press.; [999-1011].
  • 16. Ullman MT. Contributions of memory circuits to language: The declarative/procedural model. Cognition. 2004;92(1-2):231-70.
  • 17. Xie T-T, Wang T-Z, Wei Y-P, Ye E-C, Exercise. Declarative memory affects procedural memory: The role of semantic as-sociation and sequence matching. J Psychology of Sport. 2019;43:253-60.
  • 18. Hutter SA, Wilson AI. A novel role for the hippocampus in category learning. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2018;38(31):6803-5.
  • 19. Small SA, Nava AS, Perera GM, DeLaPaz R, Mayeux R, Stern Y. Circuit mechanisms underlying memory encoding and re-trieval in the long axis of the hippocampal formation. Nature neuroscience. 2001;4(4):442- 9.
  • 20. Schlichting ML, Preston AR. Memory integration: Neural mechanisms and implications for behavior. Current opinion in behavioral sciences. 2015;1:1-8.
  • 21. Oscar-Berman M. Function and dysfunction of prefrontal brain circuitry in alcoholic korsakoff's syndrome. Neuropsy-chology review. 2012;22(2):154-69.
  • 22. Kensinger EA, Addis DR, Atapattu RK. Amygdala activity at encoding corresponds with memory vividness and with memory for select episodic details. Neuropsychologia. 2011;49(4):663-73.
  • 23. Hamann S, Mao H. Positive and negative emotional verbal stimuli elicit activity in the left amygdala. Neuroreport. 2002;13(1):15-9.
  • 24. Dyomina AV, Smolensky IV, Zaitsev AV. Refinement of the barnes and morris water maze protocols improves characteri-zation of spatial cognitive deficits in the lithium-pilocarpine rat model of epilepsy. Epilepsy & Behavior. 2023;147:109391.
  • 25. Paul C-M, Magda G, Abel S. Spatial memory: Theoretical basis and comparative review on experimental methods in ro-dents. Behavioural brain research. 2009;203(2):151-64.
  • 26. Zhai Q, Zhang Y, Ye M, Zhu S, Sun J, Wang Y, et al. Reducing complement activation during sleep deprivation yields cogni-tive improvement by dexmedetomidine. British journal of anaesthesia. 2023;131(3):542-55.
  • 27. Vuralli D, Wattiez AS, Russo AF, Bolay H. Behavioral and cogni-tive animal models in headache research. Journal Headache Pain. 2019;20(1):11.
  • 28. Lin JC, Lee MY, Chan MH, Chen YC, Chen HH. Betaine en-hances antidepressant-like, but blocks psychotomimetic ef-fects of ketamine in mice. Psychopharmacology. 2016;233(17):3223-35.
  • 29. Denninger JK, Smith BM, Kirby ED. Novel object recognition and object location behavioral testing in mice on a budget. Journal of visualized experiments : JoVE. 2018(141).
  • 30. Allen RS, Motz CT, Feola A, Chesler KC, Haider R, Ramachan-dra Rao S, et al. Long-term functional and structural conse-quences of primary blast overpressure to the eye. Journal of neurotrauma. 2018;35(17):2104-16.
  • 31. Gudapati K, Singh A, Clarkson-Townsend D, Phillips SQ, Douglass A, Feola AJ, et al. Behavioral assessment of visual function via optomotor response and cognitive function via y-maze in diabetic rats. Journal of visualized experiments : JoVE. 2020(164).
  • 32. Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of alzheimer's disease: A review of progress. Journal of neurology, neurosurgery, and psychiatry. 1999;66(2):137-47.
  • 33. McNamara RK, Skelton RW. The neuropharmacological and neurochemical basis of place learning in the morris water maze. Brain research Brain research reviews. 1993;18(1):33-49.
  • 34. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. Journal of neuroscience methods. 1984;11(1):47-60.
  • 35. Terry AV, Jr. Frontiers in neuroscience spatial navigation (water maze) tasks. In: Buccafusco JJ, editor. Methods of be-havior analysis in neuroscience. Boca Raton (FL): CRC Press/Taylor & Francis 2009.
  • 36. Othman MZ, Hassan Z, Che Has AT. Morris water maze: A versatile and pertinent tool for assessing spatial learning and memory. Experimental animals. 2022;71(3):264-80.
  • 37. Koşar B, Burak T, Altunkaya M, Cem S, Dursun N. Sıçanlarda 6-n-propil-2-tiourasil ile bozulan öğrenme ve bellek perfor-mansına selenyumun etki. Mersin Üniversitesi Sağlık Bilimleri Dergisi. 2022;15(3):480-9.
  • 38. Vorhees CV, Williams MT. Assessing spatial learning and memory in rodents. ILAR journal. 2014;55(2):310-32.
  • 39. Mactutus C, Booze R. Accuracy of spatial navigation: The role of platform and tank size. Soc Neurosci Abst. 1994;20:1014.
  • 40. Williams MT, Braun AA, Amos-Kroohs RM, McAllister II JP, Lindquist DM, Mangano FT, et al. Kaolin-induced ventriculo-megaly at weaning produces long-term learning, memory, and motor deficits in rats. International Journal of Develop-mental Neuroscience. 2014;35:7-15.
  • 41. She L, Sun J, Xiong L, Li A, Li L, Wu H, et al. Ginsenoside rk1 improves cognitive impairments and pathological changes in alzheimer's disease via stimulation of the ampk/nrf2 signaling pathway. Phytomedicine : international journal of phytother-apy and phytopharmacology. 2024;122:155168.
  • 42. Liu Y, Xia P, Zong S, Zheng N, Cui X, Wang C, et al. Inhibition of alzheimer's disease by 4-octyl itaconate revealed by rna-seq transcriptome analysis. European journal of pharmacology. 2024;968:176432.
  • 43. Kang S, Lee J, Choi S, Nesbitt J, Min PH, Trushina E, et al. Moderate ethanol exposure reduces astrocyte-induced neu-roinflammatorysignaling and cognitive decline in presympto-matic app/ps1 mice. Research square. 2023.
  • 44. Ennaceur A, Delacour J. A new one-trial test for neurobiologi-cal studies of memory in rats. 1: Behavioral data. Behavioural brain research. 1988;31(1):47-59.
  • 45. Winters BD, Saksida LM, Bussey TJ. Object recognition memory: Neurobiological mechanisms of encoding, consoli-dation and retrieval. J Neuroscience Biobehavioral Reviews. 2008;32(5):1055-70.
  • 46. Dere E, Huston JP, Silva MADS. The pharmacology, neuroana-tomy and neurogenetics of one-trial object recognition in ro-dents. J Neuroscience Biobehavioral Reviews. 2007;31(5):673-704.
  • 47. Wu C, Yang L, Li Y, Dong Y, Yang B, Tucker LD, et al. Effects of exercise training on anxious-depressive-like behavior in alz-heimer rat. Medicine and science in sports and exercise. 2020;52(7):1456-69.
  • 48. Szczepańska K, Bojarski AJ, Popik P, Malikowska-Racia N. Novel object recognition test as an alternative approach to assessing the pharmacological profile of sigma-1 receptor lig-ands. Pharmacological reports : PR. 2023;75(5):1291-8.
  • 49. Colettis NC, Habif M, Oberholzer MV, Filippin F, Jerusalinsky DA. Differences in learning and memory between middle-aged female and male rats. Learning & memory (Cold Spring Harbor, NY). 2022;29(5):120-5.
  • 50. Barrett RM, Malvaez M, Kramar E, Matheos DP, Arrizon A, Cabrera SM, et al. Hippocampal focal knockout of cbp affects specific histone modifications, long-term potentiation, and long-term memory. Neuropsychopharmacology : official pub-lication of the American College of Neuropsychopharmacolo-gy. 2011;36(8):1545-56.
  • 51. Lueptow LM. Novel object recognition test for the investiga-tion of learning and memory in mice. Journal of visualized ex-periments : JoVE. 2017(126).
  • 52. Chen HH, Chiang YC, Yuan ZF, Kuo CC, Lai MD, Hung TW, et al. Buprenorphine, methadone, and morphine treatment during pregnancy: Behavioral effects on the offspring in rats. Neu-ropsychiatric disease and treatment. 2015;11:609-18.
  • 53. Küçükkarapınar M, Dönmez A, Candansayar S, Bozkurt A, Akçay E, Gülbahar Ö, et al. Erken dönem müdahalelerin erişkin wistar sıçanlarında davranışsal ve nörogelişimsel etkileri. Arch Neuropsychiatry 2020.
  • 54. Ennaceur A, Meliani K. A new one-trial test for neurobiologi-cal studies of memory in rats. Iii. Spatial vs. Non-spatial work-ing memory. Behavioural brain research. 1992;51(1):83-92.
  • 55. Gawel K, Gibula E, Marszalek-Grabska M, Filarowska J, Kotlin-ska JH. Assessment of spatial learning and memory in the barnes maze task in rodents—methodological consideration. Naunyn-Schmiedeberg's archives of pharmacology. 2019;392:1-18.
  • 56. Pitts MW. Barnes maze procedure for spatial learning and memory in mice. Bio-protocol. 2018;8(5).
  • 57. Puzzo D, Lee L, Palmeri A, Calabrese G, Arancio O. Behavioral assays with mouse models of alzheimer's disease: Practical considerations and guidelines. Biochemical pharmacology. 2014;88(4):450-67.
  • 58. Illouz T, Madar R, Clague C, Griffioen KJ, Louzoun Y, Okun E. Unbiased classification of spatial strategies in the barnes maze. Bioinformatics. 2016;32(21):3314-20.
  • 59. Harrison F, Hosseini A, McDonald M. Endogenous anxiety and stress responses in water maze and barnes maze spatial memory tasks. Behavioural brain research. 2009;198(1):247-51.
  • 60. Stewart S, Cacucci F, Lever C. Which memory task for my mouse? A systematic review of spatial memory performance in the tg2576 alzheimer's mouse model. Journal of Alzhei-mer's disease. 2011;26(1):105-26.
  • 61. Walesiuk A, Braszko JJ. Gingkoselect alleviates chronic corti-costerone-induced spatial memory deficits in rats. Fitotera-pia. 2010;81(1):25-9.
  • 62. O’Leary TP, Savoie V, Brown RE. Learning, memory and search strategies of inbred mouse strains with different visu-al abilities in the barnes maze. Behavioural brain research. 2011;216(2):531-42.
  • 63. Gawel K, Labuz K, Gibula-Bruzda E, Jenda M, Marszalek-Grabska M, Filarowska J, et al. Cholinesterase inhibitors, donepezil and rivastigmine, attenuate spatial memory and cognitive flexibility impairment induced by acute ethanol in the barnes maze task in rats. Naunyn-Schmiedeberg's ar-chives of pharmacology. 2016;389:1059-71.
  • 64. Morel GR, Andersen T, Pardo J, Zuccolilli GO, Cambiaggi VL, Hereñú CB, et al. Cognitive impairment and morphological changes in the dorsal hippocampus of very old female rats. J Neuroscience Biobehavioral Reviews. 2015;303:189-99.
  • 65. Sunyer B, Patil S, Höger H, Lubec G. Barnes maze, a useful task to assess spatial reference memory in the mice. PROTO-KOL2007.
  • 66. Greferath U, Bennie A, Kourakis A, Barrett G. Impaired spatial learning in aged rats is associated with loss of p75-positive neurons in the basal forebrain. J Neuroscience. 2000;100(2):363-73.
  • 67. Marszalek-Grabska M, Gibula-Bruzda E, Bodzon-Kulakowska A, Suder P, Gawel K, Talarek S, et al. Adx-47273, a mglu5 re-ceptor positive allosteric modulator, attenuates deficits in cognitive flexibility induced by withdrawal from ‘binge-like’ethanol exposure in rats. Behavioural brain research. 2018;338:9-16.
  • 68. Vargas-López V, Lamprea MR, Múnera A. Characterizing spatial extinction in an abbreviated version of the barnes maze. Behavioural processes. 2011;86(1):30-8.
  • 69. Yamada M, Sakurai Y. An observational learning task using barnes maze in rats. Cognitive neurodynamics. 2018;12:519-23.
  • 70. Wijnen K, Genzel L, van der Meij J. Rodent maze studies: From following simple rules to complex map learning. Brain Structure Function. 2024:1-19.
  • 71. Dember WN, Fowler H. Spontaneous alternation behavior. J Psychological bulletin. 1958;55(6):412.
  • 72. Warden C. A standard unit animal maze for general laborato-ry use. J The Pedagogical Seminary Journal of Genetic Psy-chology. 1929;36(1):174-6.
  • 73. Coutrot A, Manley E, Goodroe S, Gahnstrom C, Filomena G, Yesiltepe D, et al. Entropy of city street networks linked to fu-ture spatial navigation ability. Nature. 2022;604(7904):104-10.
  • 74. da Cruz Rodrigues KC, Kim SC, Uner AA, Hou ZS, Young J, Campolim C, et al. Lrp1 in gabaergic neurons is a key link be-tween obesity and memory function. Molecular metabolism. 2024;84:101941.
  • 75. Deacon RM, Rawlins JNP. T-maze alternation in the rodent. Nature protocols. 2006;1(1):7-12.
  • 76. Abdulbasit A, Stephen Michael F, Shukurat Onaopemipo A, Abdulmusawwir AO, Aminu I, Nnaemeka Tobechukwu A, et al. Glucocorticoid receptor activation selectively influence performance of wistar rats in y-maze. Pathophysiology : the official journal of the International Society for Pathophysiolo-gy. 2018;25(1):41-50.
  • 77. Havekes R, Nijholt IM, Luiten PG, Van der Zee EA. Differential involvement of hippocampal calcineurin during learning and reversal learning in a y-maze task. Learning & memory (Cold Spring Harbor, NY). 2006;13(6):753-9.
  • 78. Jia G, Sun Y, An P, Wu W, Shen Y, Liu H, et al. Auditory training remodels hippocampus-related memory in adult rats. Cere-bral Cortex. 2024;34(2).
  • 79. Dost T, Fırat Z, Tamer M, Ulugöl A, Karadağ ÇH. The role of histaminergic system in learning and memory functions. Bal-kan Medical Journal. 2002;2002(1).
  • 80. You C, Zhang Z, Ying H, Yang Z, Ma Y, Hong J, et al. Blockage of calcium-sensing receptor improves chronic intermittent hy-poxia-induced cognitive impairment by perk-atf4-chop path-way. Experimental neurology. 2023;368:114500.
  • 81. Kaya E, Bölükbaşı Hatip FF, Yılmaz İ, Hatip-Al-Khat İ. Effect of nilvadipine on memory impairment and hippocampal malondialdehyde in rats with 4-vessel occlusion ischemia. Duzce Medical Journal. 2013.
  • 82. Banerjee S, Mukherjee B, Poddar MK, Dunbar GL. Carnosine improves aging-induced cognitive impairment and brain re-gional neurodegeneration in relation to the neuropathologi-cal alterations in the secondary structure of amyloid beta (aβ). Journal of neurochemistry. 2021;158(3):710-23.
  • 83. Nascimento C, Guerreiro-Pinto V, Pawlak S, Caulino-Rocha A, Amat-Garcia L, Cunha-Reis D. Impaired response to mismatch novelty in the li(2+)-pilocarpine rat model of tle: Correlation with hippocampal monoaminergic inputs. Biomedicines. 2024;12(3).
  • 84. Sanz-Martos AB, Roca M, Ruiz-Gayo M, Del Olmo N. Tributyr-in reverses the deleterious effect of saturated fat on working memory and synaptic plasticity in juvenile mice: Differential effects in males and females. European journal of pharma-cology. 2024;977:176726.
  • 85. Şavik E, Gültekin F, Karakoyun İ, Doğuç DK, Demirin H, Delibaş N. Klorpirifosun sıçanlarda öğrenmeye etkileri. Medical Jour-nal of Süleyman Demirel University. 2008;15(3):1-6.
  • 86. Setkowicz Z, Gaździńska A, Osoba JJ, Karwowska K, Majka P, Orzeł J, et al. Does long-term high fat diet always lead to smaller hippocampi volumes, metabolite concentrations, and worse learning and memory? A magnetic resonance and be-havioral study in wistar rats. PLoS One. 2015;10(10):e0139987.
Toplam 86 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Tıbbi Fizyoloji (Diğer)
Bölüm Derleme
Yazarlar

Melek Altunkaya 0000-0002-6228-7831

Erken Görünüm Tarihi 26 Aralık 2024
Yayımlanma Tarihi 27 Aralık 2024
Gönderilme Tarihi 20 Mayıs 2024
Kabul Tarihi 21 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 21 Sayı: 3

Kaynak Göster

Vancouver Altunkaya M. Öğrenme ve Bellek Deneylerinde Deney Hayvanlarına Yaklaşım ve Deney Modellerinin Değerlendirilmesi. Harran Üniversitesi Tıp Fakültesi Dergisi. 2024;21(3):547-56.

Harran Üniversitesi Tıp Fakültesi Dergisi  / Journal of Harran University Medical Faculty