Araştırma Makalesi
BibTex RIS Kaynak Göster

Isolation and Characterization of Cefotaxime and Ciprofloxacin Co-Resistant Escherichia coli in Retail Chicken Carcasses

Yıl 2023, , 228 - 233, 22.12.2023
https://doi.org/10.31196/huvfd.1395548

Öz

Transmission of antimicrobial-resistant bacteria to humans through the food chain is of great importance for public health. In this study, it was aimed to isolate and characterize the cefotaxime and ciprofloxacin-resistant Escherichia coli in retail chicken meat samples sold in Hatay. The isolates were subjected to phylogenetic group typing and antimicrobial susceptibility testing. The genetic relatedness of the isolates was determined using Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) technique. The isolates were also screened for the presence of both antimicrobial and plasmid-mediated quinolone resistance (PMQR) genes by PCR. Cefotaxime and ciprofloxacin co-resistant E. coli isolates with diverse genetic origins were recovered in 42.3% (22/52) of retail chicken carcasses. The E. coli isolates belonged to the phylogenetic group D2 were dominant (40.9%, 9/22), followed by B1 (27.3%, 6/22), B23 (18.2%, 4/22), and A1 (13.6%, 3/22), respectively. Based on dendrogram analysis, the ERIC-PCR method differentiated the isolates into 10 clusters (I-X). The multidrug resistance (MDR) was observed in 81.8% (18/22) of the isolates. PMQR determinants were not identified in any isolates tested. Molecular analysis revealed one or more β-lactamase-encoding genes in all isolates as a single or in combination: blaCTX-M-blaTEM (n=5), blaCMY-2 (n=5), blaCTX-M (n=5), blaCMY-2-blaSHV (n=3), blaCMY-2-blaTEM (n=3), and blaCTX-M-blaCMY-2 (n=1). This study highlights that retail chicken meat is an important reservoir of cefotaxime and ciprofloxacin co-resistant E. coli isolates. It is necessary to evaluate their contribution to the community and hospital infections.

Kaynakça

  • Ananchaipattana C, Hosotani Y, Kawasaki S, Pongsawat S, Latiful BM, Isobe S, Inatsu Y, 2012: Prevalence of foodborne pathogens in retailed foods in Thailand. Foodborne Pathog Dis, 9 (9), 835-840.
  • Aslantaş Ö, 2020: High occurrence of CMY-2-type beta-lactamase-producing Escherichia coli among broiler flocks in Turkey. Trop Anim Health Prod, 52 (4), 1681-1689.
  • Bilge N, Sezer Ç, Vatansever L, Pehlivanlar Önen S, 2020: Occurrence and molecular characterization of cephalosporin resistant Escherichia coli isolates from chicken meat. Kafkas Univ Vet Fak Derg, 26 (4): 463-468.
  • Buzby JC, Roberts T, 2009: The economics of enteric infections: human foodborne disease costs. Gastroenterology, 136 (6), 1851-1862.
  • Cavaco LM, Hasman H, Xia S, Aarestrup FM, 2009: qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human origin. Antimicrob Agents Chemother, 53, 603–608.
  • Clinical and Laboratory Standards Institute (CLSI), 2022: Performance standards for antimicrobial susceptibility testing. CLSI Document: M100-32. Wayne, PA, USA.
  • Clermont O, Bonacorsi S, Bingen E, 2000: Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol, 10, 4555-4558.
  • Davis GS, Waits K, Nordstrom L, Grande H, Weaver B, Papp K, Horwinski J, Koch B, Hungate BA, Liu CM, Price LB, 2018:Antibiotic-resistant Escherichia coli from retail poultry meat with different antibiotic use claims. BMC Microbiol, 18(1),174.
  • Escobar-Paramo P, Clermont O, Blanc-Potard AB, Bui H, Le Bouguenec C, Denamur E, 2004: A specific genetic background is required for acquisition and expression of virulence factors in Escherichia coli. Mol Biol Evol, 21, 1085-1094.
  • Gonçalves-Tenório A, Silva BN, Rodrigues V, Cadavez V, Gonzales-Barron U, 2018: Prevalence of pathogens in poultry meat: a meta-analysis of European published surveys. Foods, 7 (5), 69.
  • Heyndrickx M, Vandekerchove D, Herman L, Rollier I, Grijspeerdt K, De Zutter L, 2002: Routes for Salmonella contamination of poultry meat: epidemiological study from hatchery to slaughterhouse. Epidemiol Infect, 129 (2), 253-265.
  • Imkamp F, Bodendoerfer E, Mancini S, 2023: QUIRMIA-A Phenotype-Based Algorithm for the Inference of Quinolone Resistance Mechanisms in Escherichia coli. Antibiotics (Basel), 12 (7), 1119.
  • Kim HB, Park CH, Kim CJ, Kim EC, Jacoby GA, Hooper DC, 2009: Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period. Antimicrob Agents Chemother, 53, 639–645.
  • Klaharn K, Pichpol D, Meeyam T, Harintharanon T, Lohaanukul P, Punyapornwithaya V, 2022: Bacterial contamination of chicken meat in slaughterhouses and the associated risk factors: A nationwide study in Thailand. PLoS ONE 17(6): e0269416.
  • Kozak GK, Pearl DL, Parkman J, Reid-Smith RJ, Deckert A, Boerlin P, 2009: Distribution of sulfonamide resistance genes in Escherichia coli and Salmonella from swine and chickens at abattoirs in Ontario and Quebec, Canada. Appl Environ Microbiol, 75, 5999-6001.
  • Kürekci C, Osek C, Aydın M, Tekeli İO, Kurpas M, Wieczorek K, Sakin F, 2019: Evaluation of bulk tank raw milk and raw chicken meat samples as source of ESBL producing Escherichia coli in Turkey: Recent insights. J Food Saf, 39, (2), e12605.
  • Monstein HJ, Ostholm-Balkhed A, Nilsson MV, Nilsson M, Dornbusch K, Nilsson LE, 2007: Multiplex PCR amplification assay for the detection of blaSHV, blaTEM and blaCTX-M genes in Enterobacteriaceae. APMIS, 115 (12), 1400-1408.
  • Ng LK, Martin I, Alfa M, Mulvey M, 2001: Multiplex PCR for the detection of tetracycline-resistant genes. Mol Cell Probes, 15, 209-215.
  • Parisi A, Stanaway J, Sarkar K, Crump J, 2020: The global burden of non-typhoidal Salmonella invasive disease: a systematic analysis for the global burden of disease study 2017. Int J Infect Dis, 101, 341-359.
  • Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC, 2006: Prevalence in the United States of aac(6′)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother, 50, 3953–3955.
  • Ramos S, Silva V, Dapkevicius MLE, Caniça M, Tejedor-Junco MT, Igrejas G, Poeta P, 2020: Escherichia coli as commensal and pathogenic bacteria among food-producing animals: Health implications of extended spectrum β-lactamase (ESBL) production. Animals (Basel), 10, (12), 2239.
  • Şahin S, 2020: Determination of the ciprofloxacin-resistant Escherichia coli isolated from chicken meat in Turkey. J Hellenic Vet Med Soc, 71 (3), 2291–2300.
  • Pehlivanlar Önen S, AslantaŞ Ö, Yılmaz EŞ, Kürekci C, 2015: Prevalence of β-lactamase producing Escherichia coli from retail meat in Turkey. J Food Sci, 80, M2023–M2029.
  • Soufi L, Abbassi MS, Saenz Y, Vinue L, Somalo S, Zarazaga M, Abbas A, Dbaya R, Khanfir L, Ben Hassen A, Hammami S, Torres C, 2009: Prevalence and diversity of integrons and associated resistance genes in Escherichia coli isolates from poultry meat in Tunisia. Foodborne Pathog Dis, 6, 1067–1073.
  • Versalovic J, Koeuth T, Lupski R, 1991: Distribution of repetitive DNA sequences in eubacteria and application to fingerpriting of bacterial genomes. Nucleic Acids Res, 19 (24), 6823-6831.
  • Vanstokstraeten R, Piérard D, Crombé F, De Geyter D, Wybo I, Muyldermans A, Seyler L, Caljon B, Janssen T, Demuyser T, 2023: Genotypic resistance determined by whole genome sequencing versus phenotypic resistance in 234 Escherichia coli isolates. Sci Rep, 13 (1), 449.
  • WHO, 2021: Antimicrobial resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
  • WHO, 2015: WHO estimates of the global burden of foodborne diseases: foodborne disease burden epidemiology reference group 2007-2015. https://www.who.int/publications-detail-redirect/9789241565165
  • Wu H, Xia S, Bu F, Qi J, Liu Y, Xu H, 2015: Identification of integrons and phylogenetic groups of drug-resistant Escherichia coli from broiler carcasses in China. Int J Food Microbiol, 211, 51-65.
  • Wasyl D, 2014: Prevalence and characterization of quinolone resistance mechanisms in commensal Escherichia coli isolated from slaughter animals in Poland, 2009-2012. Microb Drug Resist, 20, 544-549.
  • Xu X, Cui S, Zhang F, Luo Y, Gu Y, Yang B, Li F, Chen Q, Zhou G, Wang Y, Pang L, Lin L, 2014: Prevalence and characterization of cefotaxime and ciprofloxacin co-resistant Escherichia coli isolates in retail chicken carcasses and ground pork, China. Microb Drug Resist, 20 (1), 73-81.
  • Zhao S, White DG, Mc Dermott PF, Friedman S, English L, Ayers S, Meng J, Maurer J, Holland R, Walker RD, 2001: Identification and expression of cephamycinase blaCMY genes in Escherichia coli and Salmonella isolates from food animals and ground meat. Antimicrob Agents Chemother, 45, 3647-3650.

Perakende Tavuk Karkaslarından Sefotaksim ve Siprofloksasin Eş Dirençli Escherichia coli İzolasyonu ve Karakterizasyonu

Yıl 2023, , 228 - 233, 22.12.2023
https://doi.org/10.31196/huvfd.1395548

Öz

Antimikrobiyal dirençli bakterilerin gıda zinciri yoluyla insanlara bulaşması halk sağlığı açısından büyük önem taşımaktadır. Bu çalışmada Hatay'da satışa sunulan perakende tavuk eti örneklerinde sefotaksim ve siprofloksasine dirençli Escherichia coli'nin izolasyonu ve karakterizasyonu amaçlandı. İzolatlar filogenetik grup tiplendirmesine ve antimikrobiyal duyarlılık testlerine tabi tutuldu. Ayrıca izolatlar arasındaki genetik yakınlığı belirlemek için Enterobacterial Repetitive Intergenic Consensus Polimeraz Zincir Reaksiyonu (ERIC-PZR) tekniği kullanıldı. Plazmit aracılı kinolon direnci (PMQR) ile diğer direnç genleri PCR ile araştırıldı. Perakende tavuk karkaslarının %42.3'ünden (22/52) farklı genotipe sahip sefotaksim ve siprofloksasine dirençli E. coli izole edildi. İzolatlar arasında dominant filogenetik grup D2 (%40.9, 9/22) olup; bunu sırasıyla B1 (%27.3, 6/22), B23 (%18.2, 4/22) ve A1 (%13.6, 3/22) filogrupları izledi. Dendrogram analizine dayalı olarak, ERIC-PCR yöntemi izolatları 10 kümeye (I-X) ayırdı. İzolatların %81.8'inde (18/22) çoklu ilaç direnci (MDR) belirlendi. PMQR genleri izolatların hiçbirinde tespit edilmezken, diğer sınıftan antimikrobiyallere dirence aracılık eden çok sayıda gen saptandı. İzolatlarda β-laktamaz sentezinden sorumlu genlerin tek veya kombine olarak bulunduğu görüldü: blaCTX-M-blaTEM (n=5), blaCMY-2 (n=5), blaCTX-M (n=5), blaCMY-2-blaSHV (n=3), blaCMY-2-blaTEM (n=3), and blaCTX-M-blaCMY-2 (n=1). Bu çalışma, perakende tavuk etinin, sefotaksim ve siprofloksasine dirençli E. coli izolatları için önemli bir rezervuar olduğunu göstermiştir. Toplum ve hastane enfeksiyonlarına katkılarının değerlendirilmesi gerekmektedir.

Etik Beyan

Bu çalışma “Hayvan Deneyleri Etik Kurullarının Çalışma Usul ve Esaslarına Dair Yönetmelik” Madde 8 (k) gereği HADYEK iznine tabi değildir.

Destekleyen Kurum

Hatay Mustafa Kemal Üniversitesi Veteriner Fakültesi Bilimsel Araştırma Projeleri (Proje no: 23.LÖKAP.001)

Kaynakça

  • Ananchaipattana C, Hosotani Y, Kawasaki S, Pongsawat S, Latiful BM, Isobe S, Inatsu Y, 2012: Prevalence of foodborne pathogens in retailed foods in Thailand. Foodborne Pathog Dis, 9 (9), 835-840.
  • Aslantaş Ö, 2020: High occurrence of CMY-2-type beta-lactamase-producing Escherichia coli among broiler flocks in Turkey. Trop Anim Health Prod, 52 (4), 1681-1689.
  • Bilge N, Sezer Ç, Vatansever L, Pehlivanlar Önen S, 2020: Occurrence and molecular characterization of cephalosporin resistant Escherichia coli isolates from chicken meat. Kafkas Univ Vet Fak Derg, 26 (4): 463-468.
  • Buzby JC, Roberts T, 2009: The economics of enteric infections: human foodborne disease costs. Gastroenterology, 136 (6), 1851-1862.
  • Cavaco LM, Hasman H, Xia S, Aarestrup FM, 2009: qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human origin. Antimicrob Agents Chemother, 53, 603–608.
  • Clinical and Laboratory Standards Institute (CLSI), 2022: Performance standards for antimicrobial susceptibility testing. CLSI Document: M100-32. Wayne, PA, USA.
  • Clermont O, Bonacorsi S, Bingen E, 2000: Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol, 10, 4555-4558.
  • Davis GS, Waits K, Nordstrom L, Grande H, Weaver B, Papp K, Horwinski J, Koch B, Hungate BA, Liu CM, Price LB, 2018:Antibiotic-resistant Escherichia coli from retail poultry meat with different antibiotic use claims. BMC Microbiol, 18(1),174.
  • Escobar-Paramo P, Clermont O, Blanc-Potard AB, Bui H, Le Bouguenec C, Denamur E, 2004: A specific genetic background is required for acquisition and expression of virulence factors in Escherichia coli. Mol Biol Evol, 21, 1085-1094.
  • Gonçalves-Tenório A, Silva BN, Rodrigues V, Cadavez V, Gonzales-Barron U, 2018: Prevalence of pathogens in poultry meat: a meta-analysis of European published surveys. Foods, 7 (5), 69.
  • Heyndrickx M, Vandekerchove D, Herman L, Rollier I, Grijspeerdt K, De Zutter L, 2002: Routes for Salmonella contamination of poultry meat: epidemiological study from hatchery to slaughterhouse. Epidemiol Infect, 129 (2), 253-265.
  • Imkamp F, Bodendoerfer E, Mancini S, 2023: QUIRMIA-A Phenotype-Based Algorithm for the Inference of Quinolone Resistance Mechanisms in Escherichia coli. Antibiotics (Basel), 12 (7), 1119.
  • Kim HB, Park CH, Kim CJ, Kim EC, Jacoby GA, Hooper DC, 2009: Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period. Antimicrob Agents Chemother, 53, 639–645.
  • Klaharn K, Pichpol D, Meeyam T, Harintharanon T, Lohaanukul P, Punyapornwithaya V, 2022: Bacterial contamination of chicken meat in slaughterhouses and the associated risk factors: A nationwide study in Thailand. PLoS ONE 17(6): e0269416.
  • Kozak GK, Pearl DL, Parkman J, Reid-Smith RJ, Deckert A, Boerlin P, 2009: Distribution of sulfonamide resistance genes in Escherichia coli and Salmonella from swine and chickens at abattoirs in Ontario and Quebec, Canada. Appl Environ Microbiol, 75, 5999-6001.
  • Kürekci C, Osek C, Aydın M, Tekeli İO, Kurpas M, Wieczorek K, Sakin F, 2019: Evaluation of bulk tank raw milk and raw chicken meat samples as source of ESBL producing Escherichia coli in Turkey: Recent insights. J Food Saf, 39, (2), e12605.
  • Monstein HJ, Ostholm-Balkhed A, Nilsson MV, Nilsson M, Dornbusch K, Nilsson LE, 2007: Multiplex PCR amplification assay for the detection of blaSHV, blaTEM and blaCTX-M genes in Enterobacteriaceae. APMIS, 115 (12), 1400-1408.
  • Ng LK, Martin I, Alfa M, Mulvey M, 2001: Multiplex PCR for the detection of tetracycline-resistant genes. Mol Cell Probes, 15, 209-215.
  • Parisi A, Stanaway J, Sarkar K, Crump J, 2020: The global burden of non-typhoidal Salmonella invasive disease: a systematic analysis for the global burden of disease study 2017. Int J Infect Dis, 101, 341-359.
  • Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC, 2006: Prevalence in the United States of aac(6′)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother, 50, 3953–3955.
  • Ramos S, Silva V, Dapkevicius MLE, Caniça M, Tejedor-Junco MT, Igrejas G, Poeta P, 2020: Escherichia coli as commensal and pathogenic bacteria among food-producing animals: Health implications of extended spectrum β-lactamase (ESBL) production. Animals (Basel), 10, (12), 2239.
  • Şahin S, 2020: Determination of the ciprofloxacin-resistant Escherichia coli isolated from chicken meat in Turkey. J Hellenic Vet Med Soc, 71 (3), 2291–2300.
  • Pehlivanlar Önen S, AslantaŞ Ö, Yılmaz EŞ, Kürekci C, 2015: Prevalence of β-lactamase producing Escherichia coli from retail meat in Turkey. J Food Sci, 80, M2023–M2029.
  • Soufi L, Abbassi MS, Saenz Y, Vinue L, Somalo S, Zarazaga M, Abbas A, Dbaya R, Khanfir L, Ben Hassen A, Hammami S, Torres C, 2009: Prevalence and diversity of integrons and associated resistance genes in Escherichia coli isolates from poultry meat in Tunisia. Foodborne Pathog Dis, 6, 1067–1073.
  • Versalovic J, Koeuth T, Lupski R, 1991: Distribution of repetitive DNA sequences in eubacteria and application to fingerpriting of bacterial genomes. Nucleic Acids Res, 19 (24), 6823-6831.
  • Vanstokstraeten R, Piérard D, Crombé F, De Geyter D, Wybo I, Muyldermans A, Seyler L, Caljon B, Janssen T, Demuyser T, 2023: Genotypic resistance determined by whole genome sequencing versus phenotypic resistance in 234 Escherichia coli isolates. Sci Rep, 13 (1), 449.
  • WHO, 2021: Antimicrobial resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
  • WHO, 2015: WHO estimates of the global burden of foodborne diseases: foodborne disease burden epidemiology reference group 2007-2015. https://www.who.int/publications-detail-redirect/9789241565165
  • Wu H, Xia S, Bu F, Qi J, Liu Y, Xu H, 2015: Identification of integrons and phylogenetic groups of drug-resistant Escherichia coli from broiler carcasses in China. Int J Food Microbiol, 211, 51-65.
  • Wasyl D, 2014: Prevalence and characterization of quinolone resistance mechanisms in commensal Escherichia coli isolated from slaughter animals in Poland, 2009-2012. Microb Drug Resist, 20, 544-549.
  • Xu X, Cui S, Zhang F, Luo Y, Gu Y, Yang B, Li F, Chen Q, Zhou G, Wang Y, Pang L, Lin L, 2014: Prevalence and characterization of cefotaxime and ciprofloxacin co-resistant Escherichia coli isolates in retail chicken carcasses and ground pork, China. Microb Drug Resist, 20 (1), 73-81.
  • Zhao S, White DG, Mc Dermott PF, Friedman S, English L, Ayers S, Meng J, Maurer J, Holland R, Walker RD, 2001: Identification and expression of cephamycinase blaCMY genes in Escherichia coli and Salmonella isolates from food animals and ground meat. Antimicrob Agents Chemother, 45, 3647-3650.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Mikrobiyolojisi
Bölüm Araştıma
Yazarlar

Özkan Aslantaş 0000-0003-0407-8633

Ahmet Murat Korkut 0009-0001-1805-3536

Mücella Bayırlı 0000-0001-6120-0071

Erken Görünüm Tarihi 19 Aralık 2023
Yayımlanma Tarihi 22 Aralık 2023
Gönderilme Tarihi 24 Kasım 2023
Kabul Tarihi 6 Aralık 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Aslantaş, Ö., Korkut, A. M., & Bayırlı, M. (2023). Isolation and Characterization of Cefotaxime and Ciprofloxacin Co-Resistant Escherichia coli in Retail Chicken Carcasses. Harran University Journal of the Faculty of Veterinary Medicine, 12(2), 228-233. https://doi.org/10.31196/huvfd.1395548
AMA Aslantaş Ö, Korkut AM, Bayırlı M. Isolation and Characterization of Cefotaxime and Ciprofloxacin Co-Resistant Escherichia coli in Retail Chicken Carcasses. Harran Univ Vet Fak Derg. Aralık 2023;12(2):228-233. doi:10.31196/huvfd.1395548
Chicago Aslantaş, Özkan, Ahmet Murat Korkut, ve Mücella Bayırlı. “Isolation and Characterization of Cefotaxime and Ciprofloxacin Co-Resistant Escherichia Coli in Retail Chicken Carcasses”. Harran University Journal of the Faculty of Veterinary Medicine 12, sy. 2 (Aralık 2023): 228-33. https://doi.org/10.31196/huvfd.1395548.
EndNote Aslantaş Ö, Korkut AM, Bayırlı M (01 Aralık 2023) Isolation and Characterization of Cefotaxime and Ciprofloxacin Co-Resistant Escherichia coli in Retail Chicken Carcasses. Harran University Journal of the Faculty of Veterinary Medicine 12 2 228–233.
IEEE Ö. Aslantaş, A. M. Korkut, ve M. Bayırlı, “Isolation and Characterization of Cefotaxime and Ciprofloxacin Co-Resistant Escherichia coli in Retail Chicken Carcasses”, Harran Univ Vet Fak Derg, c. 12, sy. 2, ss. 228–233, 2023, doi: 10.31196/huvfd.1395548.
ISNAD Aslantaş, Özkan vd. “Isolation and Characterization of Cefotaxime and Ciprofloxacin Co-Resistant Escherichia Coli in Retail Chicken Carcasses”. Harran University Journal of the Faculty of Veterinary Medicine 12/2 (Aralık 2023), 228-233. https://doi.org/10.31196/huvfd.1395548.
JAMA Aslantaş Ö, Korkut AM, Bayırlı M. Isolation and Characterization of Cefotaxime and Ciprofloxacin Co-Resistant Escherichia coli in Retail Chicken Carcasses. Harran Univ Vet Fak Derg. 2023;12:228–233.
MLA Aslantaş, Özkan vd. “Isolation and Characterization of Cefotaxime and Ciprofloxacin Co-Resistant Escherichia Coli in Retail Chicken Carcasses”. Harran University Journal of the Faculty of Veterinary Medicine, c. 12, sy. 2, 2023, ss. 228-33, doi:10.31196/huvfd.1395548.
Vancouver Aslantaş Ö, Korkut AM, Bayırlı M. Isolation and Characterization of Cefotaxime and Ciprofloxacin Co-Resistant Escherichia coli in Retail Chicken Carcasses. Harran Univ Vet Fak Derg. 2023;12(2):228-33.