Araştırma Makalesi
BibTex RIS Kaynak Göster

Response to cobalt toxicity in lichen Pseudevernia furfuracea; uptake, photosynthetic quantum yield, membrane integrity and deoxyribonucleic acid fragmentation

Yıl 2016, Cilt: 2 Sayı: 1, 25 - 31, 09.03.2016
https://doi.org/10.5606/fng.btd.2016.006

Öz

Objectives: This study aims to examine the toxic potential of Cobalt (Co) on photosystem II photosynthetic quantum yield, membrane integrity, and deoxyribonucleic acid (DNA) fragmentation formation.

Materials and methods: Oligonucleosomal DNA fragmentation was detected by terminal deoxynucleotidyl transferase-dUTP nick end labeling (TUNEL) assay. Lipid peroxidation was determined with malondialdehyde analyzing.

Results: The Fv/Fm ratio decreased in Pseudevernia furfuracea following exposure to various concentrations of Co (NO3)2 (5, 15 and 30 mM) for one, three and 24 hours. Co2+-treatment caused the accumulation of Co in lichen, induced severe oxidative stress by the generation of hydrogen peroxide, impaired the membrane integrity, and induced lipid peroxidation as measured by malondialdehyde. Samples treated with 15 mM and 30 mM of Co (NO3)2 had higher percentage of cell death than 5 mM-treated group.

Conclusion: To our knowledge, this is the first study detecting a high rate of DNA fragmentation in situ in phycobiont layer of Pseudevernia furfuracea; while it reveals that mycobiont layer has a lower rate of TUNEL-positive cells. It has been concluded that Co exposure results in impaired photosynthesis accompanied by oxidative stress and DNA fragmentation in Pseudevernia furfuracea; all these effects were concentration-dependent.

Kaynakça

  • Munda LM, Hudnik V. The effect of Zn, Mn and Co accumulation on growth and chemical composition of Fucus vesiculosus under different temperature and salnity conditions. Mar Ecol 1988;9:213-5.
  • Csatorday K, Gombos Z, Szalontai B. Mn and Co toxicity in chlorophyll biosynthesis. Proc Natl Acad Sci U S A 1984;81:476-8.
  • El-Naggar AH, Osman MEH, Dyab MA, El-Mohsenawy EA. Co and lead toxicities on Calothrix fusca and Nostoc muscorum. Egypt J Bot 1999;421-41.
  • Tiwari S, McHanty P. Cobalt induced changes in photosystem activity in Synechocystis PCC 6803: Alterations in energy distribution and stoichiometry. Photosynth Res 1996;50:243-56.
  • Nash III TH. Lichen Biology. New York: Cambridge University Press; 1996. p. 147-50.
  • Pipíska M, Horník M, Vrtoch L, Augustín J, Lesny J. Biosorption of Co2+ ions by lichen Hypogymnia physodes from aqueous solutions. Biologia 2007;62:276-82.
  • Freitas MC, Pacheco AMG. Bioaccumulation of Co in Parmelia sulcata. J Atmos Chem 2004;49:67-82.
  • Heath RL, Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 1968;125:189-98.
  • Sergiev I, Alexieva V, Karanov E. Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Compt Rend Acad Bulg Sci 1997;51:121-4.
  • Loppi S, Pirintsos SA, de Dominicis V. Soil contribution to the elemental composition of epiphytic lichens (Tuscany, central Italy). Environ Monit Assess 1999;58:121-31.
  • Kappen L, Schroeter B, Green TGA, Seppelt RD. Chlorophyll a fluorescence and CO2 exchange of Umblicaria aprina under extreme light stress in the cold. Oecologia 1998;113:325-31.
  • Plekhanov SE, Chemeris IuK. Early toxic effect of zinc, cobalt, and cadmium on photosynthetic activity of green alga Chlorella pyrenoidosa Chick S-39. Izv Akad Nauk Ser Biol 2003;5:610-6. [Abstract]
  • Vangronsveld J, Clijsters H. Toxic effects of metals. In: Farago ME, editor. Plants and the Chemical Elements. Biochemistry, Uptake, Tolerance and Toxicity. Weinheim: VCH Verlagsgesellschaft Publishers; 1994. p. 149-77.
  • Rachlin JW, Grosso A. The growth response of the green alga Chlorella vulgaris to combined divalent cation exposure. Arch Environ Contam Toxicol 1993;24:16-20.
  • Osman ME, El-Naggar AH, El-Sheekh MM, El-Mazally EE. Differential effects of Co(2+) and Ni(2+) on protein metabolism in Scenedesmus obliquus and Nitzschia perminuta. Environ Toxicol Pharmacol 2004;16:169-78.
  • Turton HE, Dawes IW, Grant CM. Saccharomyces cerevisiae exhibits a yAP-1-mediated adaptive response to malondialdehyde. J Bacteriol 1997;179:1096-101.
  • Garty J, Cohen Y, Kloog N, Karnieli A. Effects of air pollution on cell membrane integrity, spectral reflectance and metal and sulfur concentrations in Lichens. Environ Toxicol Chem 1997;16:1396-402.
  • Backor M, Fahselt D, Davidson RD, Wu CT. Effects of copper on wild and tolerant strains of the lichen photobiont Trebouxia erici (Chlorophyta) and possible tolerance mechanisms. Arch Environ Contam Toxicol 2003;45:159-67.
  • Halliwell B, Gutteridge JMC. The chemistry of free radicals and related reactive species. In: Free radicals in biology and medicine. Oxford: Oxford University Press; 1999. p. 36-104.
  • Slesak I, Libik M, Karpinska B, Karpinski S,
  • Miszalski Z. The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim Pol 2007;54:39-50.
  • Romero-Puertas MC, Rodriquez-Serrano M, Corpas FJ, Go´mez M, Del Rio LA, Sandalio LM. Cadmium- induced subcellular accumulation of O2- and H2O2 in pea leaves. Plant Cell Environ 2004;27:1122-34.
  • Maksymiec W, Krupa Z. The effects of short-term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana. Environ Exp Bot 2006;57:187-94.
  • Cho U, Park J. Mercury-induced oxidative stress in tomato seedlings. Plant Sci 2000;156:1-9.
  • de Pinto MC, Tommasi F, De Gara L. Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco Bright-Yellow 2 cells. Plant Physiol 2002;130:698-708.

Pseudevernia furfuracea’da kobalt toksisitesine yanıt; alım, fotosentetik kuantum verimi, membran bütünlüğü ve deoksiribonükleik asit fragmantasyonu

Yıl 2016, Cilt: 2 Sayı: 1, 25 - 31, 09.03.2016
https://doi.org/10.5606/fng.btd.2016.006

Öz

Amaç: Bu çalışmada fotosistem II fotosentetik kuantum verimi, membran bütünlüğü ve deoksiribonükleik asit (DNA) fragmantasyonu formasyonu
üzerinde kobaltın (Co) toksik potansiyeli incelendi.
Gereç ve yöntemler: Oligonükleozomal DNA fragmantasyonu terminal deoksinükleotidil transferaz dUTP çentik uç işaretleme (TUNEL) testi ile tespit
edildi. Lipid peroksidasyonu malondialdehit analizi ile belirlendi.
Bulgular: Bir, üç ve 24 saat boyunca farklı Co konsantrasyonlarına (NO3)2 (5, 15 ve 30 mM) maruziyetten sonra Pseudevernia furfuracea’da Fv/Fm
oranı azaldı. Co2+-tedavisi likende Co birikimine yol açtı, hidrojen peroksit üretimi ciddi oksidatif stres başlattı, membran bütünlüğüne zarar verdi ve
malondialdehit ile ölçüldüğü üzere lipid peroksidasyonu oluşturdu. On beş mM ve 30 mM Co (NO3)2 ile tedavi edilen örneklerin hücre ölümü yüzdesi
5 mM ile tedavi edilen gruptan daha yüksek idi.
Sonuç: Bildiğimiz kadarıyla, bu çalışma Pseudevernia furfuracea’nın fikobiont katmanında in situ yüksek oranda DNA fragmantasyonu tespit ederken
mikobiont katmanda daha düşük oranda TUNEL pozitif hücre olduğunu gösteren ilk çalışmadır. Kobalt maruziyetinin Pseudevernia furfuracea’da
oksidatif stres ve DNA fragmantasyonunun eşlik ettiği bozulmuş fotosenteze yol açtığı sonucuna varıldı; tüm bu etkiler konsantrasyona bağımlı idi.

Kaynakça

  • Munda LM, Hudnik V. The effect of Zn, Mn and Co accumulation on growth and chemical composition of Fucus vesiculosus under different temperature and salnity conditions. Mar Ecol 1988;9:213-5.
  • Csatorday K, Gombos Z, Szalontai B. Mn and Co toxicity in chlorophyll biosynthesis. Proc Natl Acad Sci U S A 1984;81:476-8.
  • El-Naggar AH, Osman MEH, Dyab MA, El-Mohsenawy EA. Co and lead toxicities on Calothrix fusca and Nostoc muscorum. Egypt J Bot 1999;421-41.
  • Tiwari S, McHanty P. Cobalt induced changes in photosystem activity in Synechocystis PCC 6803: Alterations in energy distribution and stoichiometry. Photosynth Res 1996;50:243-56.
  • Nash III TH. Lichen Biology. New York: Cambridge University Press; 1996. p. 147-50.
  • Pipíska M, Horník M, Vrtoch L, Augustín J, Lesny J. Biosorption of Co2+ ions by lichen Hypogymnia physodes from aqueous solutions. Biologia 2007;62:276-82.
  • Freitas MC, Pacheco AMG. Bioaccumulation of Co in Parmelia sulcata. J Atmos Chem 2004;49:67-82.
  • Heath RL, Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 1968;125:189-98.
  • Sergiev I, Alexieva V, Karanov E. Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Compt Rend Acad Bulg Sci 1997;51:121-4.
  • Loppi S, Pirintsos SA, de Dominicis V. Soil contribution to the elemental composition of epiphytic lichens (Tuscany, central Italy). Environ Monit Assess 1999;58:121-31.
  • Kappen L, Schroeter B, Green TGA, Seppelt RD. Chlorophyll a fluorescence and CO2 exchange of Umblicaria aprina under extreme light stress in the cold. Oecologia 1998;113:325-31.
  • Plekhanov SE, Chemeris IuK. Early toxic effect of zinc, cobalt, and cadmium on photosynthetic activity of green alga Chlorella pyrenoidosa Chick S-39. Izv Akad Nauk Ser Biol 2003;5:610-6. [Abstract]
  • Vangronsveld J, Clijsters H. Toxic effects of metals. In: Farago ME, editor. Plants and the Chemical Elements. Biochemistry, Uptake, Tolerance and Toxicity. Weinheim: VCH Verlagsgesellschaft Publishers; 1994. p. 149-77.
  • Rachlin JW, Grosso A. The growth response of the green alga Chlorella vulgaris to combined divalent cation exposure. Arch Environ Contam Toxicol 1993;24:16-20.
  • Osman ME, El-Naggar AH, El-Sheekh MM, El-Mazally EE. Differential effects of Co(2+) and Ni(2+) on protein metabolism in Scenedesmus obliquus and Nitzschia perminuta. Environ Toxicol Pharmacol 2004;16:169-78.
  • Turton HE, Dawes IW, Grant CM. Saccharomyces cerevisiae exhibits a yAP-1-mediated adaptive response to malondialdehyde. J Bacteriol 1997;179:1096-101.
  • Garty J, Cohen Y, Kloog N, Karnieli A. Effects of air pollution on cell membrane integrity, spectral reflectance and metal and sulfur concentrations in Lichens. Environ Toxicol Chem 1997;16:1396-402.
  • Backor M, Fahselt D, Davidson RD, Wu CT. Effects of copper on wild and tolerant strains of the lichen photobiont Trebouxia erici (Chlorophyta) and possible tolerance mechanisms. Arch Environ Contam Toxicol 2003;45:159-67.
  • Halliwell B, Gutteridge JMC. The chemistry of free radicals and related reactive species. In: Free radicals in biology and medicine. Oxford: Oxford University Press; 1999. p. 36-104.
  • Slesak I, Libik M, Karpinska B, Karpinski S,
  • Miszalski Z. The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim Pol 2007;54:39-50.
  • Romero-Puertas MC, Rodriquez-Serrano M, Corpas FJ, Go´mez M, Del Rio LA, Sandalio LM. Cadmium- induced subcellular accumulation of O2- and H2O2 in pea leaves. Plant Cell Environ 2004;27:1122-34.
  • Maksymiec W, Krupa Z. The effects of short-term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana. Environ Exp Bot 2006;57:187-94.
  • Cho U, Park J. Mercury-induced oxidative stress in tomato seedlings. Plant Sci 2000;156:1-9.
  • de Pinto MC, Tommasi F, De Gara L. Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco Bright-Yellow 2 cells. Plant Physiol 2002;130:698-708.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Makaleler
Yazarlar

Gürkan Yiğittürk Bu kişi benim

Dilek Ünal Özakça Bu kişi benim

Türker Çavuşoğlu Bu kişi benim

Kubilay Doğan Kılıç Bu kişi benim

Yiğit Uyanıkgil Bu kişi benim

Atakan Sukatar Bu kişi benim

Yayımlanma Tarihi 9 Mart 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 2 Sayı: 1

Kaynak Göster

APA Yiğittürk, G., Ünal Özakça, D., Çavuşoğlu, T., Kılıç, K. D., vd. (2016). Response to cobalt toxicity in lichen Pseudevernia furfuracea; uptake, photosynthetic quantum yield, membrane integrity and deoxyribonucleic acid fragmentation. İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi, 2(1), 25-31. https://doi.org/10.5606/fng.btd.2016.006
AMA Yiğittürk G, Ünal Özakça D, Çavuşoğlu T, Kılıç KD, Uyanıkgil Y, Sukatar A. Response to cobalt toxicity in lichen Pseudevernia furfuracea; uptake, photosynthetic quantum yield, membrane integrity and deoxyribonucleic acid fragmentation. İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi. Mart 2016;2(1):25-31. doi:10.5606/fng.btd.2016.006
Chicago Yiğittürk, Gürkan, Dilek Ünal Özakça, Türker Çavuşoğlu, Kubilay Doğan Kılıç, Yiğit Uyanıkgil, ve Atakan Sukatar. “Response to Cobalt Toxicity in Lichen Pseudevernia Furfuracea; Uptake, Photosynthetic Quantum Yield, Membrane Integrity and Deoxyribonucleic Acid Fragmentation”. İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi 2, sy. 1 (Mart 2016): 25-31. https://doi.org/10.5606/fng.btd.2016.006.
EndNote Yiğittürk G, Ünal Özakça D, Çavuşoğlu T, Kılıç KD, Uyanıkgil Y, Sukatar A (01 Mart 2016) Response to cobalt toxicity in lichen Pseudevernia furfuracea; uptake, photosynthetic quantum yield, membrane integrity and deoxyribonucleic acid fragmentation. İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi 2 1 25–31.
IEEE G. Yiğittürk, D. Ünal Özakça, T. Çavuşoğlu, K. D. Kılıç, Y. Uyanıkgil, ve A. Sukatar, “Response to cobalt toxicity in lichen Pseudevernia furfuracea; uptake, photosynthetic quantum yield, membrane integrity and deoxyribonucleic acid fragmentation”, İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi, c. 2, sy. 1, ss. 25–31, 2016, doi: 10.5606/fng.btd.2016.006.
ISNAD Yiğittürk, Gürkan vd. “Response to Cobalt Toxicity in Lichen Pseudevernia Furfuracea; Uptake, Photosynthetic Quantum Yield, Membrane Integrity and Deoxyribonucleic Acid Fragmentation”. İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi 2/1 (Mart 2016), 25-31. https://doi.org/10.5606/fng.btd.2016.006.
JAMA Yiğittürk G, Ünal Özakça D, Çavuşoğlu T, Kılıç KD, Uyanıkgil Y, Sukatar A. Response to cobalt toxicity in lichen Pseudevernia furfuracea; uptake, photosynthetic quantum yield, membrane integrity and deoxyribonucleic acid fragmentation. İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi. 2016;2:25–31.
MLA Yiğittürk, Gürkan vd. “Response to Cobalt Toxicity in Lichen Pseudevernia Furfuracea; Uptake, Photosynthetic Quantum Yield, Membrane Integrity and Deoxyribonucleic Acid Fragmentation”. İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi, c. 2, sy. 1, 2016, ss. 25-31, doi:10.5606/fng.btd.2016.006.
Vancouver Yiğittürk G, Ünal Özakça D, Çavuşoğlu T, Kılıç KD, Uyanıkgil Y, Sukatar A. Response to cobalt toxicity in lichen Pseudevernia furfuracea; uptake, photosynthetic quantum yield, membrane integrity and deoxyribonucleic acid fragmentation. İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi. 2016;2(1):25-31.