Araştırma Makalesi
BibTex RIS Kaynak Göster

Thermal Comfort Comparison of Different Dwelling Typologies

Yıl 2022, , 2677 - 2701, 31.12.2022
https://doi.org/10.31198/idealkent.1133752

Öz

Thermal comfort in spaces can be defined as the creation of conditions that will provide the users’ living standards. Therefore, it is important to investigate the thermal comfort conditions in different types of dwellings and the design parameters that affect these conditions. In this study, thermal comfort conditions in different dwellings were investigated. In this context, thermal comfort conditions were measured between December 2020 and January 2022 in four selected dwellings in Bingöl, located in a cold climate. Measurements were made in the daylight living areas, night living areas and service areas of these dwellings. Temperature and humidity, air velocity, and radiation temperatures in the spaces were measured by TESTO 480 multi-purpose air conditioner, Hot Wire Anemometer DT8880, and infrared non-contact thermometer, respectively. Tables and graphics created using the data obtained from these measurements were evaluated according to the ASHRAE 55 standard. In the analyses made, the thermal comfort conditions of the dwellings with different typologies were compared. As a result of the study, the design parameters that are effective in the differences between the dwellings were evaluated and it was aimed to reveal a methodology that could guide the new designs to be made.

Destekleyen Kurum

Bingöl University, Scientific Research Project Fund

Proje Numarası

BAP-MMF.2020.00.004

Kaynakça

  • ASHRAE-handbook. (1989). Physiological principles: comfort and health.
  • ASHRAE-standart-55. (2013). ASHRAE standard 55-Thermal environmental conditions for human occupancy (ANSI approved), Atlanta: American society of heating, refrigerating, and air-conditioning engineers (ASHRAE).
  • Becker, R. and Paciuk, M. (2009). Thermal comfort in residential buildings–failure to predict by the standard model. Building and Environment, 44, 948-960.
  • Bouden, C. and Ghrab, N. (2005). An adaptive thermal comfort model for the Tunisian context: a field study results. Energy and Buildings, 37, 952-963.
  • Chen, X., Yang, H. and Sun, K. (2016). A holistic passive design approach to optimize the indoor environmental quality of a typical residential building in Hong Kong. Energy, 113, 267-281.
  • Choi, J.H., and Yeom, D. (2019) Development of the data-driven thermal satisfaction prediction model as a function of human physiological responses in a built environment. Building and Environment, 150, 206-218.
  • Çakır, Ç. (2006). Assessing thermal comfort conditions; a case study on the metu faculty of architecture building, Master Thesis, Middle East Technical University.
  • De Dear, R. and Schiller Brager, G. (2001) The adaptive model of thermal comfort and energy conservation in the built environment. International journal of biometeorology, 45, 100-108.
  • Dhaka, S., Mathur, J., Brager, G. and Honnekeri, A. (2014). Assessment of thermal environmental conditions and quantification of thermal adaptation in naturally ventilated buildings in composite climate of India. Building and Environment, 86, 17-28.
  • Djamila, H., Chu, C., M. and Kumaresan, S. (2013). Field study of thermal comfort in residential buildings in the equatorial hot-humid climate of Malaysia. Building and Environment, 62, 133-142.
  • Feriadi, H. and Wong, N.H. (2004). Thermal comfort for naturally ventilated houses in Indonesia. Energy and Buildings, 36, 614-626.
  • Fountain, M.E., Arens, E., Xu, T., Bauman, F.S. and Oguru, M. (1996). An investigation of thermal comfort at high humidities, ASHRAE Transactions, 94-103.
  • Harputlugil, G.U. and Harputlugil, T. (2016). Çevresel konfor ve enerji tasarrufu bağlamında konut kullanıcıları davranış profilleri üzerine bir araştırma. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 31.
  • Humphreys, M.A., Nicol, J.F. and Raja, I.A. (2007). Field studies of indoor thermal comfort and the progress of the adaptive approach. Advances in building energy research, 1, 55-88.
  • Jokl, M.V. (2002). Thermal comfort and optimum humidity. Part I. Acta Polytechnica, 42, 12-24.
  • Koç, A., Yağlı, H., Koç, Y. and Uğurlu, İ. (2018). Dünyada ve Türkiye’de enerji görünümünün genel değerlendirilmesi. Mühendis ve Makine, 59, 86-114.
  • Kürüm Varolgüneş, F. (2021). Yerel/Vernaküler mimarinin sürdürebilirlik bağlamında değerlendirilmesi: geleneksel Bingöl konutları örneği (Evaluation of vernacular architecture in the context of sustaınability: the case of Bıngol traditional houses). Journal of International Social Research, 14.
  • Liping, W. and Hien, W.N. (2007). Applying natural ventilation for thermal comfort in residential buildings in Singapore. Architectural Science Review, 50, 224-233.
  • Lomas, K.J. and Kane, T. (2013). Summertime temperatures and thermal comfort in UK homes. Building Research & Information, 41, 259-280.
  • Malama, A. and Sharples, S. (1997). Thermal performance of traditional and contemporary housing in the cool season of Zambia. Building and Environment, 32, 69-78.
  • Nagano, K. and Mochida, T. (2004). Experiments on thermal environmental design of ceiling radiant cooling for supine human subjects. Building and Environment, 39, 267-275.
  • Nicol, J.F. and Humphreys, M.A. (2002). Adaptive thermal comfort and sustainable thermal standards for buildings. Energy and Buildings, 34, 563-572.
  • Özer Yaman, G., Kürüm Varolgüneş, F. and Çulun, P. (2021). Investigation of thermal comfort in university offices: The case of the Bingöl University, Civil Engineering and Architecture, 9(7), 2441-2451.
  • Peeters, L., De Dear, R., Hensen, J. and D’haeseleer, W. (2009). Thermal comfort in residential buildings: Comfort values and scales for building energy simulation. Applied Energy, 86, 772-780.
  • Santamouris, M., Papanikolaou, N., Livada, I., Koronakis, I., Georgakis, C., Argiriou, A. and Assimakopoulos, D.N. (2001). On the impact of urban climate on the energy consumption of buildings. Solar energy, 70, 201-216.
  • Schellen, L., Van Marken Lichtenbelt, W.D., Loomans Tofru, J. and De Wit, M.H. (2010). Differences between young adults and elderly in thermal comfort, productivity, and thermal physiology in response to a moderate temperature drift and a steady-state condition. International Journal of Indoor Environment and Health, 20, 273-283
  • Synnefa, A., Santamouris, M. and Akbari, H. (2007). Estimating the effect of using cool coatings on energy loads and thermal comfort in residential buildings in various climatic conditions. Energy and Buildings, 39, 1167-1174.
  • Üçok, T. and Güngör, A. (2011). Soğutmada enerji verimliliği ve yönetimi. X. Ulusal tesisat mühendisliği kongresi, Türkiye Makine Mühendisleri Odası Birliği, 13 Nisan – 16 Nisan 2011, İzmir, 1123-1139.
  • Wang, Z. (2006). A field study of thermal comfort in residential buildings in Harbin. Building and Environment, 41, 1034-1039.
  • Yang, L., Yan, H. and Lam, JC. (2014) Thermal comfort and building energy consumption implications–a review. Applied Energy, 115, 164-173.
  • Yıldız Y. and Arsan Z.D. (2011). Identification of the building parameters that influence heating and cooling energy loads for apartment buildings in hot-humid climates. Energy, 36, 4287-4296.
  • Yıldız, Y. (2014) Impact of energy efficiency standard and climate change on summer thermal comfort conditions: A case study in apartment buildings. Gazi University Journal of Science, 27, 1005-1013.
  • Yilmaz, Z. (2006). Akıllı binalar ve yenilenebilir enerji. Tesisat Muhendisligi Dergisi,(91), 7-15.

Farklı Konut Tipolojilerinin Termal Konfor Koşulları Bağlamında Karşılaştırılması

Yıl 2022, , 2677 - 2701, 31.12.2022
https://doi.org/10.31198/idealkent.1133752

Öz

Mekânlarda termal konfor, kullanıcıların yaşam standartlarını sağlayacak koşulların oluşturulması olarak tanımlanabilir. Bundan dolayı farklı tip konutlarda termal konfor koşullarının ve bu koşulları etkileyen tasarım parametrelerinin araştırılması önemli bir konudur. Bu çalışmada farklı tip konutlarda termal konfor koşulları araştırılmıştır. Bu kapsamda soğuk iklim bölgesinde bulunan Bingöl ilinde seçilen dört tip konutta termal konfor koşulları Aralık 2020 ve Ocak 2022 tarihleri arasında ölçülmüştür. Belirlenen bu konutların gündüz yaşama mekânları, gece yaşama mekânları ve servis mekânlarında ölçümler yapılmıştır. Mekânlarda sıcaklık ve nem, hava hızı ve radyasyon sıcaklıkları sırasıyla TESTO 480 çok amaçlı iklimlendirme cihazı, Hot Wire Anemometre DT8880 ve kızılötesi temassız termometre ile ölçülmüştür. Bu ölçümlerden elde edilen veriler kullanılarak oluşturulan tablo ve grafikler ASHRAE 55 standardına göre değerlendirilmiştir. Yapılan analizlerde, birbirinden farklı tipolojilere sahip konutların termal konfor koşulları karşılaştırılmıştır. Çalışmada sonuç olarak, konutlar arasında ortaya çıkan farklılıklarda etkili olan tasarım parametreleri değerlendirilmiş ve yapılacak olan yeni tasarımlar için yol gösterebilecek bir metodoloji ortaya konması amaçlanmıştır.

Proje Numarası

BAP-MMF.2020.00.004

Kaynakça

  • ASHRAE-handbook. (1989). Physiological principles: comfort and health.
  • ASHRAE-standart-55. (2013). ASHRAE standard 55-Thermal environmental conditions for human occupancy (ANSI approved), Atlanta: American society of heating, refrigerating, and air-conditioning engineers (ASHRAE).
  • Becker, R. and Paciuk, M. (2009). Thermal comfort in residential buildings–failure to predict by the standard model. Building and Environment, 44, 948-960.
  • Bouden, C. and Ghrab, N. (2005). An adaptive thermal comfort model for the Tunisian context: a field study results. Energy and Buildings, 37, 952-963.
  • Chen, X., Yang, H. and Sun, K. (2016). A holistic passive design approach to optimize the indoor environmental quality of a typical residential building in Hong Kong. Energy, 113, 267-281.
  • Choi, J.H., and Yeom, D. (2019) Development of the data-driven thermal satisfaction prediction model as a function of human physiological responses in a built environment. Building and Environment, 150, 206-218.
  • Çakır, Ç. (2006). Assessing thermal comfort conditions; a case study on the metu faculty of architecture building, Master Thesis, Middle East Technical University.
  • De Dear, R. and Schiller Brager, G. (2001) The adaptive model of thermal comfort and energy conservation in the built environment. International journal of biometeorology, 45, 100-108.
  • Dhaka, S., Mathur, J., Brager, G. and Honnekeri, A. (2014). Assessment of thermal environmental conditions and quantification of thermal adaptation in naturally ventilated buildings in composite climate of India. Building and Environment, 86, 17-28.
  • Djamila, H., Chu, C., M. and Kumaresan, S. (2013). Field study of thermal comfort in residential buildings in the equatorial hot-humid climate of Malaysia. Building and Environment, 62, 133-142.
  • Feriadi, H. and Wong, N.H. (2004). Thermal comfort for naturally ventilated houses in Indonesia. Energy and Buildings, 36, 614-626.
  • Fountain, M.E., Arens, E., Xu, T., Bauman, F.S. and Oguru, M. (1996). An investigation of thermal comfort at high humidities, ASHRAE Transactions, 94-103.
  • Harputlugil, G.U. and Harputlugil, T. (2016). Çevresel konfor ve enerji tasarrufu bağlamında konut kullanıcıları davranış profilleri üzerine bir araştırma. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 31.
  • Humphreys, M.A., Nicol, J.F. and Raja, I.A. (2007). Field studies of indoor thermal comfort and the progress of the adaptive approach. Advances in building energy research, 1, 55-88.
  • Jokl, M.V. (2002). Thermal comfort and optimum humidity. Part I. Acta Polytechnica, 42, 12-24.
  • Koç, A., Yağlı, H., Koç, Y. and Uğurlu, İ. (2018). Dünyada ve Türkiye’de enerji görünümünün genel değerlendirilmesi. Mühendis ve Makine, 59, 86-114.
  • Kürüm Varolgüneş, F. (2021). Yerel/Vernaküler mimarinin sürdürebilirlik bağlamında değerlendirilmesi: geleneksel Bingöl konutları örneği (Evaluation of vernacular architecture in the context of sustaınability: the case of Bıngol traditional houses). Journal of International Social Research, 14.
  • Liping, W. and Hien, W.N. (2007). Applying natural ventilation for thermal comfort in residential buildings in Singapore. Architectural Science Review, 50, 224-233.
  • Lomas, K.J. and Kane, T. (2013). Summertime temperatures and thermal comfort in UK homes. Building Research & Information, 41, 259-280.
  • Malama, A. and Sharples, S. (1997). Thermal performance of traditional and contemporary housing in the cool season of Zambia. Building and Environment, 32, 69-78.
  • Nagano, K. and Mochida, T. (2004). Experiments on thermal environmental design of ceiling radiant cooling for supine human subjects. Building and Environment, 39, 267-275.
  • Nicol, J.F. and Humphreys, M.A. (2002). Adaptive thermal comfort and sustainable thermal standards for buildings. Energy and Buildings, 34, 563-572.
  • Özer Yaman, G., Kürüm Varolgüneş, F. and Çulun, P. (2021). Investigation of thermal comfort in university offices: The case of the Bingöl University, Civil Engineering and Architecture, 9(7), 2441-2451.
  • Peeters, L., De Dear, R., Hensen, J. and D’haeseleer, W. (2009). Thermal comfort in residential buildings: Comfort values and scales for building energy simulation. Applied Energy, 86, 772-780.
  • Santamouris, M., Papanikolaou, N., Livada, I., Koronakis, I., Georgakis, C., Argiriou, A. and Assimakopoulos, D.N. (2001). On the impact of urban climate on the energy consumption of buildings. Solar energy, 70, 201-216.
  • Schellen, L., Van Marken Lichtenbelt, W.D., Loomans Tofru, J. and De Wit, M.H. (2010). Differences between young adults and elderly in thermal comfort, productivity, and thermal physiology in response to a moderate temperature drift and a steady-state condition. International Journal of Indoor Environment and Health, 20, 273-283
  • Synnefa, A., Santamouris, M. and Akbari, H. (2007). Estimating the effect of using cool coatings on energy loads and thermal comfort in residential buildings in various climatic conditions. Energy and Buildings, 39, 1167-1174.
  • Üçok, T. and Güngör, A. (2011). Soğutmada enerji verimliliği ve yönetimi. X. Ulusal tesisat mühendisliği kongresi, Türkiye Makine Mühendisleri Odası Birliği, 13 Nisan – 16 Nisan 2011, İzmir, 1123-1139.
  • Wang, Z. (2006). A field study of thermal comfort in residential buildings in Harbin. Building and Environment, 41, 1034-1039.
  • Yang, L., Yan, H. and Lam, JC. (2014) Thermal comfort and building energy consumption implications–a review. Applied Energy, 115, 164-173.
  • Yıldız Y. and Arsan Z.D. (2011). Identification of the building parameters that influence heating and cooling energy loads for apartment buildings in hot-humid climates. Energy, 36, 4287-4296.
  • Yıldız, Y. (2014) Impact of energy efficiency standard and climate change on summer thermal comfort conditions: A case study in apartment buildings. Gazi University Journal of Science, 27, 1005-1013.
  • Yilmaz, Z. (2006). Akıllı binalar ve yenilenebilir enerji. Tesisat Muhendisligi Dergisi,(91), 7-15.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Perihan Çulun 0000-0002-1797-9695

Fatma Kürüm Varolgüneş 0000-0002-3214-4274

Gonca Özer 0000-0002-0156-3994

Cemre Kılınç 0000-0001-8651-6945

Proje Numarası BAP-MMF.2020.00.004
Yayımlanma Tarihi 31 Aralık 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Çulun, P., Kürüm Varolgüneş, F., Özer, G., Kılınç, C. (2022). Thermal Comfort Comparison of Different Dwelling Typologies. İDEALKENT, 13(38), 2677-2701. https://doi.org/10.31198/idealkent.1133752