Araştırma Makalesi
BibTex RIS Kaynak Göster

Atık Isı Geri Kazanım Teknolojileri ile Termik Santrallerde Enerji Verimliliğinin Artırılması

Yıl 2025, Cilt: 8 Sayı: 2, 53 - 68, 31.12.2025
https://doi.org/10.38061/idunas.1731275

Öz

Termik santrallerde enerji verimliliğinin artırılması, yakıt tüketiminin, işletme maliyetlerinin ve çevresel emisyonlar ile kirleticilerin azaltılmasında kritik bir rol oynayabilir. Bu çalışma, termik enerji üretim sistemlerinin enerji verimliliklerini artırmak amacıyla çeşitli Atık Isı Geri Kazanım (WHR) tekniklerinin (Organik Rankine Çevrimi (ORC), Kalina Çevrimi, ısı değiştiriciler ve absorbsiyonlu ısı pompaları) nitel bir değerlendirmesini sunmaktadır. Burada; tekniklerin simüle edilmiş performans verilerinin sayısal karşılaştırması, WHR sistemlerinin termik santral türleri genelinde verimlilikleri %9,1 ile %36,4 arasında artırabileceğini, kombine çevrim konfigürasyonları kullanıldığında gaz türbinlerinde daha fazla iyileşme sağlandığını göstermektedir. Ekserji verimliliği de, ORC sistemleri ve Kalina Çevrimi kombinasyonları gibi WHR sistemleri eklendiğinde yaklaşık %11,5’e kadar iyileşme olduğunu göstermektedir. Yıllık bazda bitki türüne ve geri kazanım yöntemine bağlı olarak CO₂ emisyonlarının %15–22 oranında azaltılması çevresel fayda olarak ortaya çıkmaktadır. Temel ısı değiştiriciler için kW başına 250 ABD Doları’ndan, en son gelişmiş sistemler için kW başına 950 ABD Doları’na kadar değişen sermaye yatırımı gerektiren WHR sistemlerinin ekonomik analizi, sermaye geri kazanım fonu ile yıllık işletme maliyeti tasarrufları ve yatırım getirisi (ROI) açısından özellikle operasyonel fayda bakımından dikkate değer olduğunu göstermektedir; ORC sistemlerinin MW başına toplam yıllık tasarrufu 85.000 ABD Doları olup, geri ödeme süresi yaklaşık 6,5 yıldır. Ayrıca, bir TRL değerlendirmesi, ısı değiştiriciler ve absorbsiyonlu ısı pompalarının tamamen ticarileştirildiğini (TRL 9), Kalina Çevrimi ve Bulanık-PID denetleyiciler dahil olmak üzere diğer teknolojilerin ise henüz tamamen ticarileştirilmediğini ve geliştirme aşamasında olduğunu göstermiştir. Sonuçlar, WHR’nin yalnızca tesis performansına katkı sağlamakla kalmayıp, aynı zamanda hem atıkların hem de emisyonların en aza indirilmesi yoluyla sürdürülebilir enerji uygulamalarını da mümkün kıldığını doğrulamaktadır.

Kaynakça

  • 1. Abbass, A. (2024). Waste Heat Recovery: An Energy-Efficient and Sustainability Approach in Industry. Journal of Sustainable Innovations, 1(1), 33–42. https://doi.org/10.61552/jsi.2024.01.004
  • 2. Alrobaian, A. A. (2020). Combination of passive and active enhancement methods for higher efficiency of waste-fired plants; flue gas and solar thermal processing. Journal of The Brazilian Society of Mechanical Sciences and Engineering, 42(11), 1–13. https://doi.org/10.1007/S40430-020-02692-W
  • 3. Alrobaian, A. A. (2020). Improving waste incineration CHP plant efficiency by waste heat recovery for feedwater preheating process: energy, exergy, and economic (3E) analysis. Journal of The Brazilian Society of Mechanical Sciences and Engineering, 42(8), 1–14. https://doi.org/10.1007/S40430-020-02460-W
  • 4. Cerza, M., Meinster, B., & Blair, S. (2022). Implementation of a Waste Heat Recovery Combined Cycle System Employing the Organic Rankine Cycle for a Gas Turbine. AIAA SCITECH 2022 Forum, 1–10. https://doi.org/10.2514/6.2022-1406
  • 5. Elwardany, M., Nassi̇b, A. M., & Mohamed, H. (2024). Advancing sustainable thermal power generation: insights from recent energy and exergy studies. Process Safety and Environmental Protection, 180, 502–516. https://doi.org/10.1016/j.psep.2024.01.039
  • 6. Fujii, M. (2019). An Outlook for Efficient Use of Energy Recovered from Waste. Material Cycles and Waste Management Research, 30(4), 233–238. https://doi.org/10.3985/MCWMR.30.233
  • 7. Grisolia, T., Vannoni, A., Sorce, A., & Calabria, M. (2022). Sustainable opportunities to recover power plants’ waste heat: a benchmark of techno-economically optimized heat pumps. Journal of Physics: Conference Series, 2385(1), 012130. https://doi.org/10.1088/1742-6596/2385/1/012130
  • 8. Huang, L., Chen, G., Xu, X., Tan, R., Gao, X., Zhang, H., & Yu, J. (2024). Recovering Low-Grade Heat from Flue Gas in a Coal-Fired Thermal Power Unit. Energies, 17(20), 5204. https://doi.org/10.3390/en17205204
  • 9. Huang, S., Li, C., Tan, T., Fu, P., Wang, L., & Yang, Y. (2018). Comparative Evaluation of Integrated Waste Heat Utilization Systems for Coal-Fired Power Plants Based on In-Depth Boiler-Turbine Integration and Organic Rankine Cycle. Entropy, 20(2), 89. https://doi.org/10.3390/E20020089
  • 10. Khankari, G., & Karmakar, S. (2018). 4-E Analysis and Optimization of a 660 MW Supercritical Combined Rankine-Kalina Cycle Coal-Fired Thermal Power Plant for Condenser Waste Heat Recovery. In: Kalogirou S. A., Karellas S., & Panopoulos K. D. (Eds.), Waste Heat Recovery in Energy Systems, Springer, Cham, pp. 245–266. https://doi.org/10.1007/978-3-319-89845-2_18
  • 11. Li, L., Qian, J., Teng, S., Zhang, Y., Yin, J., & Zhou, Q. (2023). Comparative analysis and optimization of waste-heat recovery systems with large-temperature-gradient heat transfer. Applied Thermal Engineering, 234, 121179. https://doi.org/10.1016/j.applthermaleng.2023.121179
  • 12. Liu, Q. (2019). Waste Heat Recovery from Fossil-Fired Power Plants by Organic Rankine Cycles. IntechOpen. https://doi.org/10.5772/INTECHOPEN.89354
  • 13. Majumder, P., Sinha, A., & Gupta, R. (2021). Futuristic Approaches of Low-Grade Industrial Waste Heat Recovery. In: Thirugnanasambandam, M., & Manikandan, S. (Eds.), Recent Developments in Waste Heat Recovery, Springer, Singapore, pp. 163–172. https://doi.org/10.1007/978-981-16-0159-0_15
  • 14. Mehrdad, S., Dadsetani, R., Amiriyoon, A., Leon, A. S., Safaei, M. R., & Goodarzi, M. (2020). Exergo-Economic Optimization of Organic Rankine Cycle for Saving of Thermal Energy in a Sample Power Plant by Using of Strength Pareto Evolutionary Algorithm II. Processes, 8(3), 264. https://doi.org/10.3390/PR8030264
  • 15. Mishra, R. K. (2021). An Empirical Study of Waste Heat Re-utilization in Thermal Power Plant Using Advanced Fuzzy –PID Technology. SPAST Tech Rep, 1(01), 12–19. https://spast.org/techrep/article/view/2470
  • 16. Mishra, R. K., Venkatesan, S. P., & Kanta, N. (2022). An Empirical Study of Waste Heat Reutilization in Thermal Power Plant Using Advanced Fuzzy – PID Technology. ECS Transactions, 107(1), 9351–9358. https://doi.org/10.1149/10701.9351ecst
  • 17. Ng, W. W. Y., Christopher, S., & Bari, S. (2024). The Potential of Exhaust Waste Heat Recovery (WHR) from a Diesel-Gen-Set via Rankine Cycle. 2024 International Conference on Electrical, Computer and Energy Technologies (ICECET), 1–6. https://doi.org/10.1109/icecet61485.2024.10698738
  • 18. Oyedepo, S. O., & Fakeye, B. A. (2020). Waste heat recovery technologies: Pathway to sustainable energy development. Journal of Thermal Engineering, 7(1), 324–348. https://doi.org/10.18186/THERMAL.850796
  • 19. Şeneren, M., & Gümrükçüoğlu Yiğit, M. (2023). The Carbon Footprint Reduction Related to Domestic Heating Using Thermal Power Plant Waste Heat. International Journal of Environment and Climate Change, 13(7), 716–723. https://doi.org/10.9734/ijecc/2023/v13i71924
  • 20. Shamsi, S. S. M., Negash, A. A., Cho, G. B., & Kim, Y.-M. (2019). Waste Heat and Water Recovery System Optimization for Flue Gas in Thermal Power Plants. Sustainability, 11(7), 1881. https://doi.org/10.3390/SU11071881
  • 21. Talib, R., Khan, Z., Khurram, S., Inayat, A., Ghauri, M., Abbas, M., & Watson, I. (2023). Energy efficiency enhancement of a thermal power plant by novel heat integration of Internal Combustion Engine, Boiler, and Organic Rankine Cycle. Asia-Pacific Journal of Chemical Engineering, 18(1), e3013. https://doi.org/10.1002/apj.3013
  • 22. Talib, R., Khan, Z., Khurram, S., Inayat, A., Khurram, S., & Watson, I. (2024). Efficiency enhancement of a combined cycle power plant by thermal integration of multiple waste heat streams with organic Rankine cycle. Asia-Pacific Journal of Chemical Engineering, 18(2), e3168. https://doi.org/10.1002/apj.3168
  • 23. Wang, Y., Ma, Z., & Stanford, R. J. (2023). The feasibility study of cascade waste heat recovery in a molten carbonate fuel cell-driven system. Applied Thermal Engineering, 226, 122284. https://doi.org/10.1016/j.applthermaleng.2023.122284
  • 24. You, M.-L., Zhang, F., Liao, G., Jiaqiang, E., Yang, C., & Zhou, J. (2023). Improvement design and performance assessment of two supercritical carbon dioxide power cycles for waste heat recovery. Thermal Science and Engineering Progress, 40, 102122. https://doi.org/10.1016/j.tsep.2023.102122
  • 25. Zhang, H., Liu, X., Liu, Y., Hao, R. X., Liu, C., Duan, C., Dou, Z., & Qin, J. (2022). Energy and Exergy Analysis of a New Cogeneration Heating System Based on Condensed Waste-Heat Utilization in the Direct Air Cooling Coal-Fired Power Plant. Journal of Energy Engineering (ASCE), 148(2), 04022007. https://doi.org/10.1061/(asce)ey.1943-7897.0000820
  • 26. Olodu, D. D., & Okpoko, J. S. (2023). Mechanical properties of alloys and thermoplastic composites derived from non-biodegradable municipal solid waste. Uniport Journal of Engineering and Scientific Research (UJESR), 8(1), 61–74. ISSN: 2616-1192
  • 27. Akter, M. (2024). Interdisciplinary outlook: Integrating artificial intelligence with environmental science for sustainable solutions. Deleted Journal, 1(1), 18–23. https://doi.org/10.60087/jaigs.v1i1.p23
  • 28. Olodu, D. D., Ihenyen, O. I., & Inegbedion, F. (2025). Advances in renewable energy systems: Integrating solar, wind, and hydropower for a carbon-neutral future. International Journal of Novel Frontiers in Engineering, Science and Technology (IJONFEST), 3(1), 14–24. https://doi.org/10.61150/ijonfest.2025030102
  • 29. Khosravi, A., & Ashkpour, M. (2024). Machine learning and digital innovation for managing and monitoring water resources. In Advances in Environmental Engineering and Green Technologies Book Series (pp. 241–284). https://doi.org/10.4018/979-8-3693-9879-1.ch010
  • 30. Olodu, D. D., Ihenyen, O. I., & Erameh, A. (2025). Comprehensive analysis of green hydrogen production: Technologies, costs, environmental impacts, and policy frameworks. Journal of Sustainable and Advanced Technologies (JSAT), 3(1), 1–12. https://doi.org/10.63063/jsat.1611951
  • 31. Olodu, D. D., Inegbedion, F., & Ihenyen, O. I. (2025). Smart water management systems: Engineering innovations for water conservation and distribution. Journal of Sustainable and Advanced Technologies (JSAT), 3(1), 13–31. https://doi.org/10.63063/jsat.1613583
  • 32. Olodu, D. D., Erameh, A., & Ihenyen, O. I. (2025). A multidimensional assessment of waste-to-energy technologies: Economic feasibility, social acceptance, and future trends of gasification and pyrolysis. International Journal of Modern Science and Innovative Technology (IJMSIT), 9(1), 14–22. https://doi.org/10.36287/ijmsit.9.1.3
  • 33. Olodu D. D. & Erameh, A. (2023). Waste to Energy: Review on the Development of Land Fill Gas for Power Generation in Sub-Saharan Africa, Black Sea Journal of Engineering and Science, 6(3). 296–307. https://doi.org/10.34248/bsengineering.1195247.

Enhancing Energy Efficiency in Thermal Power Plants through Waste Heat Recovery Technologies

Yıl 2025, Cilt: 8 Sayı: 2, 53 - 68, 31.12.2025
https://doi.org/10.38061/idunas.1731275

Öz

Energy efficiency improvements in thermal power plants can play a crucial role in reducing fuel consumption, operating costs, and environmental emissions and pollutants. This study presents a qualitative assessment of various Waste Heat Recovery (WHR) techniques (Organic Rankine Cycle (ORC), Kalina Cycle, heat exchangers, and absorption heat pumps) to improve thermal power generation system energy efficiencies, where; comparing the simulated performance data of the techniques numerically indicated WHR systems can improve the efficiencies across thermal power plant types by 9.1% to 36.4%, with gas turbines showing more improvement using combined cycle configurations. The exergy efficiency also indicated approximately up to 11.5% improvement when WHR systems like ORC systems and Kalina Cycle combinations were added too. The environmental benefit of reduced CO₂ emissions of 15–22% annually dependent on plant type and recovery method. The economic analysis of WHR systems that require a capital investment that ranges $250/kW for basic heat exchangers and up to $950/kW for the latest advances, shows that the capital recovery fund with annual operating cost savings and return on investment (ROI) are considerable with regards specifically to the operational benefit, the ORC systems' total yearly savings per MW of $85,000 and a payback of about 6.5 years. In addition, a TRL assessment showed that while heat exchangers and absorption heat pumps are fully commercialized (TRL 9), other technologies including Kalina Cycle and Fuzzy-PID controllers are not yet fully commercialized and are still in development. The results corroborate that WHR not only helps plant performance, but also enables sustainable energy practices through the minimization of both waste and emissions.

Kaynakça

  • 1. Abbass, A. (2024). Waste Heat Recovery: An Energy-Efficient and Sustainability Approach in Industry. Journal of Sustainable Innovations, 1(1), 33–42. https://doi.org/10.61552/jsi.2024.01.004
  • 2. Alrobaian, A. A. (2020). Combination of passive and active enhancement methods for higher efficiency of waste-fired plants; flue gas and solar thermal processing. Journal of The Brazilian Society of Mechanical Sciences and Engineering, 42(11), 1–13. https://doi.org/10.1007/S40430-020-02692-W
  • 3. Alrobaian, A. A. (2020). Improving waste incineration CHP plant efficiency by waste heat recovery for feedwater preheating process: energy, exergy, and economic (3E) analysis. Journal of The Brazilian Society of Mechanical Sciences and Engineering, 42(8), 1–14. https://doi.org/10.1007/S40430-020-02460-W
  • 4. Cerza, M., Meinster, B., & Blair, S. (2022). Implementation of a Waste Heat Recovery Combined Cycle System Employing the Organic Rankine Cycle for a Gas Turbine. AIAA SCITECH 2022 Forum, 1–10. https://doi.org/10.2514/6.2022-1406
  • 5. Elwardany, M., Nassi̇b, A. M., & Mohamed, H. (2024). Advancing sustainable thermal power generation: insights from recent energy and exergy studies. Process Safety and Environmental Protection, 180, 502–516. https://doi.org/10.1016/j.psep.2024.01.039
  • 6. Fujii, M. (2019). An Outlook for Efficient Use of Energy Recovered from Waste. Material Cycles and Waste Management Research, 30(4), 233–238. https://doi.org/10.3985/MCWMR.30.233
  • 7. Grisolia, T., Vannoni, A., Sorce, A., & Calabria, M. (2022). Sustainable opportunities to recover power plants’ waste heat: a benchmark of techno-economically optimized heat pumps. Journal of Physics: Conference Series, 2385(1), 012130. https://doi.org/10.1088/1742-6596/2385/1/012130
  • 8. Huang, L., Chen, G., Xu, X., Tan, R., Gao, X., Zhang, H., & Yu, J. (2024). Recovering Low-Grade Heat from Flue Gas in a Coal-Fired Thermal Power Unit. Energies, 17(20), 5204. https://doi.org/10.3390/en17205204
  • 9. Huang, S., Li, C., Tan, T., Fu, P., Wang, L., & Yang, Y. (2018). Comparative Evaluation of Integrated Waste Heat Utilization Systems for Coal-Fired Power Plants Based on In-Depth Boiler-Turbine Integration and Organic Rankine Cycle. Entropy, 20(2), 89. https://doi.org/10.3390/E20020089
  • 10. Khankari, G., & Karmakar, S. (2018). 4-E Analysis and Optimization of a 660 MW Supercritical Combined Rankine-Kalina Cycle Coal-Fired Thermal Power Plant for Condenser Waste Heat Recovery. In: Kalogirou S. A., Karellas S., & Panopoulos K. D. (Eds.), Waste Heat Recovery in Energy Systems, Springer, Cham, pp. 245–266. https://doi.org/10.1007/978-3-319-89845-2_18
  • 11. Li, L., Qian, J., Teng, S., Zhang, Y., Yin, J., & Zhou, Q. (2023). Comparative analysis and optimization of waste-heat recovery systems with large-temperature-gradient heat transfer. Applied Thermal Engineering, 234, 121179. https://doi.org/10.1016/j.applthermaleng.2023.121179
  • 12. Liu, Q. (2019). Waste Heat Recovery from Fossil-Fired Power Plants by Organic Rankine Cycles. IntechOpen. https://doi.org/10.5772/INTECHOPEN.89354
  • 13. Majumder, P., Sinha, A., & Gupta, R. (2021). Futuristic Approaches of Low-Grade Industrial Waste Heat Recovery. In: Thirugnanasambandam, M., & Manikandan, S. (Eds.), Recent Developments in Waste Heat Recovery, Springer, Singapore, pp. 163–172. https://doi.org/10.1007/978-981-16-0159-0_15
  • 14. Mehrdad, S., Dadsetani, R., Amiriyoon, A., Leon, A. S., Safaei, M. R., & Goodarzi, M. (2020). Exergo-Economic Optimization of Organic Rankine Cycle for Saving of Thermal Energy in a Sample Power Plant by Using of Strength Pareto Evolutionary Algorithm II. Processes, 8(3), 264. https://doi.org/10.3390/PR8030264
  • 15. Mishra, R. K. (2021). An Empirical Study of Waste Heat Re-utilization in Thermal Power Plant Using Advanced Fuzzy –PID Technology. SPAST Tech Rep, 1(01), 12–19. https://spast.org/techrep/article/view/2470
  • 16. Mishra, R. K., Venkatesan, S. P., & Kanta, N. (2022). An Empirical Study of Waste Heat Reutilization in Thermal Power Plant Using Advanced Fuzzy – PID Technology. ECS Transactions, 107(1), 9351–9358. https://doi.org/10.1149/10701.9351ecst
  • 17. Ng, W. W. Y., Christopher, S., & Bari, S. (2024). The Potential of Exhaust Waste Heat Recovery (WHR) from a Diesel-Gen-Set via Rankine Cycle. 2024 International Conference on Electrical, Computer and Energy Technologies (ICECET), 1–6. https://doi.org/10.1109/icecet61485.2024.10698738
  • 18. Oyedepo, S. O., & Fakeye, B. A. (2020). Waste heat recovery technologies: Pathway to sustainable energy development. Journal of Thermal Engineering, 7(1), 324–348. https://doi.org/10.18186/THERMAL.850796
  • 19. Şeneren, M., & Gümrükçüoğlu Yiğit, M. (2023). The Carbon Footprint Reduction Related to Domestic Heating Using Thermal Power Plant Waste Heat. International Journal of Environment and Climate Change, 13(7), 716–723. https://doi.org/10.9734/ijecc/2023/v13i71924
  • 20. Shamsi, S. S. M., Negash, A. A., Cho, G. B., & Kim, Y.-M. (2019). Waste Heat and Water Recovery System Optimization for Flue Gas in Thermal Power Plants. Sustainability, 11(7), 1881. https://doi.org/10.3390/SU11071881
  • 21. Talib, R., Khan, Z., Khurram, S., Inayat, A., Ghauri, M., Abbas, M., & Watson, I. (2023). Energy efficiency enhancement of a thermal power plant by novel heat integration of Internal Combustion Engine, Boiler, and Organic Rankine Cycle. Asia-Pacific Journal of Chemical Engineering, 18(1), e3013. https://doi.org/10.1002/apj.3013
  • 22. Talib, R., Khan, Z., Khurram, S., Inayat, A., Khurram, S., & Watson, I. (2024). Efficiency enhancement of a combined cycle power plant by thermal integration of multiple waste heat streams with organic Rankine cycle. Asia-Pacific Journal of Chemical Engineering, 18(2), e3168. https://doi.org/10.1002/apj.3168
  • 23. Wang, Y., Ma, Z., & Stanford, R. J. (2023). The feasibility study of cascade waste heat recovery in a molten carbonate fuel cell-driven system. Applied Thermal Engineering, 226, 122284. https://doi.org/10.1016/j.applthermaleng.2023.122284
  • 24. You, M.-L., Zhang, F., Liao, G., Jiaqiang, E., Yang, C., & Zhou, J. (2023). Improvement design and performance assessment of two supercritical carbon dioxide power cycles for waste heat recovery. Thermal Science and Engineering Progress, 40, 102122. https://doi.org/10.1016/j.tsep.2023.102122
  • 25. Zhang, H., Liu, X., Liu, Y., Hao, R. X., Liu, C., Duan, C., Dou, Z., & Qin, J. (2022). Energy and Exergy Analysis of a New Cogeneration Heating System Based on Condensed Waste-Heat Utilization in the Direct Air Cooling Coal-Fired Power Plant. Journal of Energy Engineering (ASCE), 148(2), 04022007. https://doi.org/10.1061/(asce)ey.1943-7897.0000820
  • 26. Olodu, D. D., & Okpoko, J. S. (2023). Mechanical properties of alloys and thermoplastic composites derived from non-biodegradable municipal solid waste. Uniport Journal of Engineering and Scientific Research (UJESR), 8(1), 61–74. ISSN: 2616-1192
  • 27. Akter, M. (2024). Interdisciplinary outlook: Integrating artificial intelligence with environmental science for sustainable solutions. Deleted Journal, 1(1), 18–23. https://doi.org/10.60087/jaigs.v1i1.p23
  • 28. Olodu, D. D., Ihenyen, O. I., & Inegbedion, F. (2025). Advances in renewable energy systems: Integrating solar, wind, and hydropower for a carbon-neutral future. International Journal of Novel Frontiers in Engineering, Science and Technology (IJONFEST), 3(1), 14–24. https://doi.org/10.61150/ijonfest.2025030102
  • 29. Khosravi, A., & Ashkpour, M. (2024). Machine learning and digital innovation for managing and monitoring water resources. In Advances in Environmental Engineering and Green Technologies Book Series (pp. 241–284). https://doi.org/10.4018/979-8-3693-9879-1.ch010
  • 30. Olodu, D. D., Ihenyen, O. I., & Erameh, A. (2025). Comprehensive analysis of green hydrogen production: Technologies, costs, environmental impacts, and policy frameworks. Journal of Sustainable and Advanced Technologies (JSAT), 3(1), 1–12. https://doi.org/10.63063/jsat.1611951
  • 31. Olodu, D. D., Inegbedion, F., & Ihenyen, O. I. (2025). Smart water management systems: Engineering innovations for water conservation and distribution. Journal of Sustainable and Advanced Technologies (JSAT), 3(1), 13–31. https://doi.org/10.63063/jsat.1613583
  • 32. Olodu, D. D., Erameh, A., & Ihenyen, O. I. (2025). A multidimensional assessment of waste-to-energy technologies: Economic feasibility, social acceptance, and future trends of gasification and pyrolysis. International Journal of Modern Science and Innovative Technology (IJMSIT), 9(1), 14–22. https://doi.org/10.36287/ijmsit.9.1.3
  • 33. Olodu D. D. & Erameh, A. (2023). Waste to Energy: Review on the Development of Land Fill Gas for Power Generation in Sub-Saharan Africa, Black Sea Journal of Engineering and Science, 6(3). 296–307. https://doi.org/10.34248/bsengineering.1195247.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tasarım Yönetimi, Termik Enerji Sistemleri, Sera Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Dıckson Davıd Olodu 0000-0003-3383-2543

Andrew Erameh 0000-0002-6463-143X

Francis Inegbedion 0000-0002-2142-8079

Gönderilme Tarihi 12 Ağustos 2025
Kabul Tarihi 5 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 2

Kaynak Göster

APA Olodu, D. D., Erameh, A., & Inegbedion, F. (2025). Enhancing Energy Efficiency in Thermal Power Plants through Waste Heat Recovery Technologies. Natural and Applied Sciences Journal, 8(2), 53-68. https://doi.org/10.38061/idunas.1731275