BibTex RIS Kaynak Göster

YSA VE GA TEMELLİ YENİ BİR ALGORİTMA İLE DOĞRUSAL OLMAYAN OPTİMİZASYON

Yıl 2007, Cilt: 8 Sayı: 2, 219 - 231, 01.06.2007

Öz

Bu çalışmada doğrusal olmayan optimizasyon problemlerinin çözümünde yapay sinir ağlarının ve genetik algoritmaların kullanımıyla ilgili yeni bir yaklaşım önerilmektedir. Önerilen optimizasyon metodu, kısıtları öğrenmek için yapay sinir ağları, global optimum çözüme yakınsamak için genetik algoritmayı ve özellikle bazı kısıtların olurlu çözümü ihlal ettiği durumlarda metodun sonuçlarını değerlendirmek için ise amaç programlamayı seçenek çözüm olarak sunmaktadır. Yöntemin klasik yöntemlere göre hesaplama karmaşıklığı açısından avantajları incelenerek kullanım sınırlamaları belirlenmiştir.

Kaynakça

  • Benson, H.Y., Shanno, D.F. & Vanderbei, R.J. (2001). A Comparative Study Proceedings of the Workshop on High Performance Algorithms and Software for Nonlinear Optimization, Erice, Italy. Algorithms,
  • Haupt, R.L. & Haupt, S.E. (2004). Practical Genetic Algorithm 2nd Edt., John Wiley and Sons Inc. Publication, New Jersey.
  • Holland, J.H. (1975). Adaptation in Natural and Artificial Systems, An Harbor, University of Michigan Press.
  • Kelley, C.T. (1999). Iterative Methods for Optimization, Published by SIAM
  • Kitano, H. (1994). Neurogenetic Learning: An Integrated Method of Designing and Training Neural Networks Using Genetic Algorithms, Physica D, 75: 225–238.
  • Lewis, R.M., Torczon, V. & Trosset, M.W. (2000). Direct Search Methods: Then and Now. Journal of Computational and Applied Mathematics, 124: 191-207.
  • Mitchell, M. (1999). An Introduction to Genetic Algorithms 5th Edt., London.
  • McCulloch, W.S. & Pitts, W.H. (1943). A Logical Calculus of The Ideas Immanent in Nervous Activity. Bulletin of Mathematical Biophysics, 5: 115-133.
  • Rodrigueza, J.F., Renaudb, J.E., Wujekc, B.A. & Tappeta, R.V. (2000). Trust region model management in multidisciplinary design optimization, Journal of Computational and Applied Mathematics, 124: 139-154.
  • Wah, B.W. & Chen, Y. (2001). Hybrid Constrained Simulated Annealing and Genetic Algorithms for Nonlinear Constrained Optimization, Proc. IEEE Congress on Evolutionary Computation, 925-932.
  • Yu, N. (2008). Numerical Methods for Semidefinite Programming, İndirilme Tarihi: 1/3/2008. WWW:Web:http://www.core.ucl.ac.be/ Doctoral Courses /Lecture1.pdf
  • Zanden, B.V. (2008). Analysis of Algorithms and Selection of Algorithms, İndirilme edu/~bvz/bvz/classes/cs302/notes/complexity.html
  • WWW:Web:http://www.cs.utk.

YSA VE GA TEMELLİ YENİ BİR ALGORİTMA İLE DOĞRUSAL OLMAYAN OPTİMİZASYON

Yıl 2007, Cilt: 8 Sayı: 2, 219 - 231, 01.06.2007

Öz

Bu çalışmada doğrusal olmayan optimizasyon problemlerinin çözümünde yapay sinir ağlarının ve genetik algoritmaların kullanımıyla ilgili yeni bir yaklaşım önerilmektedir. Önerilen optimizasyon metodu, kısıtları öğrenmek için yapay sinir ağları, global optimum çözüme yakınsamak için genetik algoritmayı ve özellikle bazı kısıtların olurlu çözümü ihlal ettiği durumlarda metodun sonuçlarını değerlendirmek için ise amaç programlamayı seçenek çözüm olarak sunmaktadır. Yöntemin klasik yöntemlere göre hesaplama karmaşıklığı açısından avantajları incelenerek kullanım sınırlamaları belirlenmiştir.

Kaynakça

  • Benson, H.Y., Shanno, D.F. & Vanderbei, R.J. (2001). A Comparative Study Proceedings of the Workshop on High Performance Algorithms and Software for Nonlinear Optimization, Erice, Italy. Algorithms,
  • Haupt, R.L. & Haupt, S.E. (2004). Practical Genetic Algorithm 2nd Edt., John Wiley and Sons Inc. Publication, New Jersey.
  • Holland, J.H. (1975). Adaptation in Natural and Artificial Systems, An Harbor, University of Michigan Press.
  • Kelley, C.T. (1999). Iterative Methods for Optimization, Published by SIAM
  • Kitano, H. (1994). Neurogenetic Learning: An Integrated Method of Designing and Training Neural Networks Using Genetic Algorithms, Physica D, 75: 225–238.
  • Lewis, R.M., Torczon, V. & Trosset, M.W. (2000). Direct Search Methods: Then and Now. Journal of Computational and Applied Mathematics, 124: 191-207.
  • Mitchell, M. (1999). An Introduction to Genetic Algorithms 5th Edt., London.
  • McCulloch, W.S. & Pitts, W.H. (1943). A Logical Calculus of The Ideas Immanent in Nervous Activity. Bulletin of Mathematical Biophysics, 5: 115-133.
  • Rodrigueza, J.F., Renaudb, J.E., Wujekc, B.A. & Tappeta, R.V. (2000). Trust region model management in multidisciplinary design optimization, Journal of Computational and Applied Mathematics, 124: 139-154.
  • Wah, B.W. & Chen, Y. (2001). Hybrid Constrained Simulated Annealing and Genetic Algorithms for Nonlinear Constrained Optimization, Proc. IEEE Congress on Evolutionary Computation, 925-932.
  • Yu, N. (2008). Numerical Methods for Semidefinite Programming, İndirilme Tarihi: 1/3/2008. WWW:Web:http://www.core.ucl.ac.be/ Doctoral Courses /Lecture1.pdf
  • Zanden, B.V. (2008). Analysis of Algorithms and Selection of Algorithms, İndirilme edu/~bvz/bvz/classes/cs302/notes/complexity.html
  • WWW:Web:http://www.cs.utk.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Sabri Erdem Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2007
Yayımlandığı Sayı Yıl 2007 Cilt: 8 Sayı: 2

Kaynak Göster

APA Erdem, S. (2007). YSA VE GA TEMELLİ YENİ BİR ALGORİTMA İLE DOĞRUSAL OLMAYAN OPTİMİZASYON. Dokuz Eylül Üniversitesi İşletme Fakültesi Dergisi, 8(2), 219-231.
AMA Erdem S. YSA VE GA TEMELLİ YENİ BİR ALGORİTMA İLE DOĞRUSAL OLMAYAN OPTİMİZASYON. Dokuz Eylül Üniversitesi İşletme Fakültesi Dergisi. Haziran 2007;8(2):219-231.
Chicago Erdem, Sabri. “YSA VE GA TEMELLİ YENİ BİR ALGORİTMA İLE DOĞRUSAL OLMAYAN OPTİMİZASYON”. Dokuz Eylül Üniversitesi İşletme Fakültesi Dergisi 8, sy. 2 (Haziran 2007): 219-31.
EndNote Erdem S (01 Haziran 2007) YSA VE GA TEMELLİ YENİ BİR ALGORİTMA İLE DOĞRUSAL OLMAYAN OPTİMİZASYON. Dokuz Eylül Üniversitesi İşletme Fakültesi Dergisi 8 2 219–231.
IEEE S. Erdem, “YSA VE GA TEMELLİ YENİ BİR ALGORİTMA İLE DOĞRUSAL OLMAYAN OPTİMİZASYON”, Dokuz Eylül Üniversitesi İşletme Fakültesi Dergisi, c. 8, sy. 2, ss. 219–231, 2007.
ISNAD Erdem, Sabri. “YSA VE GA TEMELLİ YENİ BİR ALGORİTMA İLE DOĞRUSAL OLMAYAN OPTİMİZASYON”. Dokuz Eylül Üniversitesi İşletme Fakültesi Dergisi 8/2 (Haziran 2007), 219-231.
JAMA Erdem S. YSA VE GA TEMELLİ YENİ BİR ALGORİTMA İLE DOĞRUSAL OLMAYAN OPTİMİZASYON. Dokuz Eylül Üniversitesi İşletme Fakültesi Dergisi. 2007;8:219–231.
MLA Erdem, Sabri. “YSA VE GA TEMELLİ YENİ BİR ALGORİTMA İLE DOĞRUSAL OLMAYAN OPTİMİZASYON”. Dokuz Eylül Üniversitesi İşletme Fakültesi Dergisi, c. 8, sy. 2, 2007, ss. 219-31.
Vancouver Erdem S. YSA VE GA TEMELLİ YENİ BİR ALGORİTMA İLE DOĞRUSAL OLMAYAN OPTİMİZASYON. Dokuz Eylül Üniversitesi İşletme Fakültesi Dergisi. 2007;8(2):219-31.
Dokuz Eylül Üniversitesi İşletme Fakültesi Dergisi
TR-DİZİN, SOBIAD, Araştırmax tarafından taranmaktadır.

Dokuz Eylül Üniversitesi Yayınevi Web Sitesi

Dergi İletişim Bilgileri Sayfası