Araştırma Makalesi
BibTex RIS Kaynak Göster

Morphometric Evaluation of Pons Development in Pediatric Population According to Age and Gender by Magnetic Resonance Imaging

Yıl 2022, , 339 - 350, 29.08.2022
https://doi.org/10.38079/igusabder.1022860

Öz

Aim: Pons is an important posterior fossa structure that contains vital centers. It is essential to know the average morphometric measurement values of the pons in the early diagnosis of developmental and acquired diseases of this structure.
Method: Our study was conducted in a healthy pediatric population. There are four age groups: 0-2 years (infants), 3-6 years (young children), 7-11 years (children), and 12-17 years (adolescents), and 50 women and 50 men from each age group. Brain magnetic resonance imaging (MRI) examinations, clinical examinations, and follow-ups of these cases were evaluated as normal. The MRI examination was obtained from the Philips Achieva MR device with a 1.5 Tesla magnetic field strength.
Results: Pons area and pons craniocaudal (CC) length increased with age in both genders. On the other hand, the pons anterior-posterior (AP) diameter increased significantly until the 7-11 age group, and then this increased rate decreased and became a plateau. When the genders were compared, the pons area was significantly larger in males than females in all age groups except the 7-11 age group. Pons AP diameter was significantly greater in the 0-2 age group in the males than in females. Pons CC length was significantly greater in the male gender in all groups except the 3-6 age group.
Conclusion: This study is essential in the morphological development of the pons and the differences in this structure between the genders. The data obtained in this study may help the differential diagnosis of posterior fossa pathologies in routine clinical practice. 

Kaynakça

  • Achiron R, Kivilevitch Z, Lipitz S, Gamzu R, Almog B, Zalel Y. Development of the human fetal pons: in utero ultrasonographic study. Ultrasound in Obstetrics and Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2004;24(5):506-510. doi:10.1002/uog.1731.
  • Saladin KS. Anatomy & Physiology: The Unity of Form and Function. New York, NY, USA: McGraw-Hill; 2012.
  • Sciacca S, Lynch J, Davagnanam I, Barker R. Midbrain, Pons, and Medulla: Anatomy and Syndromes. RadioGraphics. 2019;39(4):1110-25. doi: 10.1148/rg.2019180126.
  • Snell RS. Clinical Neuroanatomy. 7th edition. USA: Lippincott Williams&Wilkins; 2010.
  • Fischbein NJ, Prados MD, Wara W, Russo C, Edwards MS, Barkovich AJ. Radiologic classification of brain stem tumors: correlation of magnetic resonance imaging appearance with clinical outcome. Pediatr Neurosurg. 1996; 24(1):9-23. doi: 10.1159/000121010.
  • Hatta T, Satow F, Hatta J, et al. Development of the pons in human fetuses. Congenit Anom (Kyoto). 2007;47(2):63-7. doi:10.1111/j.1741-4520.2007.00145.x.
  • Nozaki H, Goto N, Nara T. Development of the human pontine nuclei: A morphometric study. Dev Brain Res. 1992;65(1):13-20. doi:10.1016/0165-3806(92)90003-f.
  • Barkovich AJ, Millen KJ, Dobyns WB. A developmental and genetic classification for midbrain-hindbrain malformations. Brain. 2009;132(Pt12):3199-230. doi:10.1093/brain/awp247.
  • Cavalheiro S, Yagmurlu K, Da Costa MD, et al. Surgical approaches for brainstem tumors in pediatric patients. Childs Nerv Syst. 2015;31(10):1815-40. doi:10.1007/s00381-015-2799-y.
  • Baykan AH, Karabaş SA, Doğan Z, et al. Assessment of age-and sex-dependent changes of cerebellum volume in healthy individuals using magnetic resonance imaging. J Surg Med. 2019;3(7):481-4. doi:10.28982/josam.582135.
  • Zago S, Meraviglia MV. Costanzo Varolio (1543–1575). J Neurol. 2009;256(7):1195-6.
  • Polat SÖ, Öksüzler FY, Öksüzler M, Yücel AH. The morphometric measurement of the brain stem in Turkish healthy subjects according to age and sex. Folia Morphol. 2020;79(1):36-45. DOI: 10.5603/FM.a2019.0085.
  • Shah SA, Doraiswamy PM, Husain MM, Figiel GS, Boyko OB, McDonald WM, et al. Assessment of posterior fossa structures with midsagittal MRI: the effects of age. Neurobiol aging. 1991;12(4): 371-4. doi:10.1016/0197-4580(91)90025-f.
  • Glenn OA. MR imaging of the fetal brain. Pediatr Radiol. 2010;40(1):68. doi:10.1007/s00247-009-1459-3.
  • Cox M, Hendi A, Hou A, Friedman D. Imaging of important causes of brain stem enlargement: Beyond the low-grade glioma. Contemp Diagn Radiol. 2015;38(8):1-7.
  • Jou RJ, Minshew NJ, Melhem NM, Keshavan MS, Hardan AY. Brainstem volumetric alterations in children with autism. Psychol Med. 2009;39(8):1347. doi:10.1017/S0033291708004376.
  • Fujii Y, Aida N, Niwa T, Enokizono M, Nozawa K, Inoue T. A small pons as a characteristic finding in Down syndrome: A quantitative MRI study. Brain Dev. 2017;39(4):298-305. DOI: 10.1016/j.braindev.2016.10.016.
  • Baykan AH, Caliskan E. Quantitative analysis of normal cerebellar volume and sagittal pons dimensions on MRI in pediatric population. Medicine. 2019;8(3):592-6. doi: 10.5455/medscience.2019.08.9024.
  • Garbade SF, Boy N, Heringer J, Kölker S, Harting I. Age-related changes and reference values of Bicaudate Ratio and Sagittal Brainstem Diameters on MRI. Neuropediatrics. 2018;49:269-75. doi:10.1055/s-0038-1660475.
  • Raininko R, Autti T, Vanhanen SL, Ylikoski A, Erkinjuntti T, Santavuori P. The normal brain stem from infancy to old age. A morphometric MRI study. Neuroradiology. 1994;36:364-8. doi:10.1007/BF00612119.
  • Hayakawa K, Konishi Y, Matsuda T, et al. Development and aging of brain midline structures: Assessment with MR imaging. Radiology. 1989;172(1):171-7. doi:10.1148/radiology.172.1.2740500.

Pediatrik Popülasyonda Pons Gelişiminin Yaşa ve Cinsiyete Göre Manyetik Rezonans Görüntüleme ile Morfometrik Değerlendirilmesi

Yıl 2022, , 339 - 350, 29.08.2022
https://doi.org/10.38079/igusabder.1022860

Öz

Amaç: Pons, vital merkezleri içeren önemli bir posterior fossa yapısıdır. Bu yapının gelişimsel ve edinsel hastalıklarının erken tanısında ponsun ortalama morfometrik ölçüm değerlerinin bilinmesi önemlidir.
Yöntem: Çalışmamız sağlıklı bir pediatrik popülasyonda yapıldı. Dört yaş grubu vardır: 0-2 yaş (bebekler), 3-6 yaş (küçük çocuklar), 7-11 yaş (çocuklar) ve 12-17 yaş (ergenler) ve her yaş grubundan 50 kız ve 50 erkek. Bu olguların beyin manyetik rezonans görüntüleme (MRG) tetkikleri, klinik muayeneleri ve takipleri normal olarak değerlendirildi. MRG incelemesi Philips Achieva MR cihazından 1,5 Tesla manyetik alan gücünde elde edildi.
Bulgular: Pons alanı ve pons kraniyo-kaudal (KK) uzunluğu her iki cinsiyette de yaşla birlikte arttı. Öte yandan, pons anteriyor-posteriyor (AP) çapı 7-11 yaş grubuna kadar önemli ölçüde artmış ve daha sonra bu artış hızı azalarak plato haline gelmiştir. Cinsiyetler karşılaştırıldığında 7-11 yaş grubu hariç tüm yaş gruplarında pons alanı erkeklerde kadınlara göre anlamlı olarak daha büyüktü. Pons AP çapı erkeklerde 0-2 yaş grubunda kadınlara göre anlamlı olarak daha büyüktü. Pons KK uzunluğu, 3-6 yaş grubu dışındaki tüm gruplarda erkek cinsiyette anlamlı olarak daha yüksekti.
Sonuç: Bu çalışma, ponsun morfolojik gelişiminde ve bu yapının cinsiyetler arasındaki farklılıklarında esastır. Bu çalışmada elde edilen veriler, rutin klinik uygulamada posterior fossa patolojilerinin ayırıcı tanısına yardımcı olabilir.

Kaynakça

  • Achiron R, Kivilevitch Z, Lipitz S, Gamzu R, Almog B, Zalel Y. Development of the human fetal pons: in utero ultrasonographic study. Ultrasound in Obstetrics and Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2004;24(5):506-510. doi:10.1002/uog.1731.
  • Saladin KS. Anatomy & Physiology: The Unity of Form and Function. New York, NY, USA: McGraw-Hill; 2012.
  • Sciacca S, Lynch J, Davagnanam I, Barker R. Midbrain, Pons, and Medulla: Anatomy and Syndromes. RadioGraphics. 2019;39(4):1110-25. doi: 10.1148/rg.2019180126.
  • Snell RS. Clinical Neuroanatomy. 7th edition. USA: Lippincott Williams&Wilkins; 2010.
  • Fischbein NJ, Prados MD, Wara W, Russo C, Edwards MS, Barkovich AJ. Radiologic classification of brain stem tumors: correlation of magnetic resonance imaging appearance with clinical outcome. Pediatr Neurosurg. 1996; 24(1):9-23. doi: 10.1159/000121010.
  • Hatta T, Satow F, Hatta J, et al. Development of the pons in human fetuses. Congenit Anom (Kyoto). 2007;47(2):63-7. doi:10.1111/j.1741-4520.2007.00145.x.
  • Nozaki H, Goto N, Nara T. Development of the human pontine nuclei: A morphometric study. Dev Brain Res. 1992;65(1):13-20. doi:10.1016/0165-3806(92)90003-f.
  • Barkovich AJ, Millen KJ, Dobyns WB. A developmental and genetic classification for midbrain-hindbrain malformations. Brain. 2009;132(Pt12):3199-230. doi:10.1093/brain/awp247.
  • Cavalheiro S, Yagmurlu K, Da Costa MD, et al. Surgical approaches for brainstem tumors in pediatric patients. Childs Nerv Syst. 2015;31(10):1815-40. doi:10.1007/s00381-015-2799-y.
  • Baykan AH, Karabaş SA, Doğan Z, et al. Assessment of age-and sex-dependent changes of cerebellum volume in healthy individuals using magnetic resonance imaging. J Surg Med. 2019;3(7):481-4. doi:10.28982/josam.582135.
  • Zago S, Meraviglia MV. Costanzo Varolio (1543–1575). J Neurol. 2009;256(7):1195-6.
  • Polat SÖ, Öksüzler FY, Öksüzler M, Yücel AH. The morphometric measurement of the brain stem in Turkish healthy subjects according to age and sex. Folia Morphol. 2020;79(1):36-45. DOI: 10.5603/FM.a2019.0085.
  • Shah SA, Doraiswamy PM, Husain MM, Figiel GS, Boyko OB, McDonald WM, et al. Assessment of posterior fossa structures with midsagittal MRI: the effects of age. Neurobiol aging. 1991;12(4): 371-4. doi:10.1016/0197-4580(91)90025-f.
  • Glenn OA. MR imaging of the fetal brain. Pediatr Radiol. 2010;40(1):68. doi:10.1007/s00247-009-1459-3.
  • Cox M, Hendi A, Hou A, Friedman D. Imaging of important causes of brain stem enlargement: Beyond the low-grade glioma. Contemp Diagn Radiol. 2015;38(8):1-7.
  • Jou RJ, Minshew NJ, Melhem NM, Keshavan MS, Hardan AY. Brainstem volumetric alterations in children with autism. Psychol Med. 2009;39(8):1347. doi:10.1017/S0033291708004376.
  • Fujii Y, Aida N, Niwa T, Enokizono M, Nozawa K, Inoue T. A small pons as a characteristic finding in Down syndrome: A quantitative MRI study. Brain Dev. 2017;39(4):298-305. DOI: 10.1016/j.braindev.2016.10.016.
  • Baykan AH, Caliskan E. Quantitative analysis of normal cerebellar volume and sagittal pons dimensions on MRI in pediatric population. Medicine. 2019;8(3):592-6. doi: 10.5455/medscience.2019.08.9024.
  • Garbade SF, Boy N, Heringer J, Kölker S, Harting I. Age-related changes and reference values of Bicaudate Ratio and Sagittal Brainstem Diameters on MRI. Neuropediatrics. 2018;49:269-75. doi:10.1055/s-0038-1660475.
  • Raininko R, Autti T, Vanhanen SL, Ylikoski A, Erkinjuntti T, Santavuori P. The normal brain stem from infancy to old age. A morphometric MRI study. Neuroradiology. 1994;36:364-8. doi:10.1007/BF00612119.
  • Hayakawa K, Konishi Y, Matsuda T, et al. Development and aging of brain midline structures: Assessment with MR imaging. Radiology. 1989;172(1):171-7. doi:10.1148/radiology.172.1.2740500.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Tıp Bilimleri
Bölüm Makaleler
Yazarlar

Olga Bayar Kapıcı 0000-0003-0863-9127

Volkan Bayar 0000-0003-2739-5068

Ali Baykan 0000-0002-9281-652X

Yayımlanma Tarihi 29 Ağustos 2022
Kabul Tarihi 9 Ağustos 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

JAMA Bayar Kapıcı O, Bayar V, Baykan A. Morphometric Evaluation of Pons Development in Pediatric Population According to Age and Gender by Magnetic Resonance Imaging. IGUSABDER. 2022;:339–350.

 Alıntı-Gayriticari-Türetilemez 4.0 Uluslararası (CC BY-NC-ND 4.0)