Araştırma Makalesi
BibTex RIS Kaynak Göster

Cinsiyet ve Yaşa Göre Ön ve Arka Komissür Hatlarının Uzunluğunun Değerlendirilmesi

Yıl 2025, Sayı: 25, 94 - 101, 29.04.2025
https://doi.org/10.38079/igusabder.1567985

Öz

Amaç: Irk, yaş ve cinsiyet gibi faktörlere bağlı olarak kafatasının boyutu ve şekli değişir. Ön ve arka komissürler, stereotaktik ve fonksiyonel nöroşirürjik prosedürler, insan beyni haritalaması ve tıbbi görüntüleme teknikleri için temel referans noktaları görevi gören önemli beyin bölgeleridir. Çalışmada, Türk popülasyonunda derin beyin stimülasyonu (DBS) uygulanan hastalarda bu demografik faktörlerle ön-arka komissür (AC-PC) uzunluğu analiz edildi.
Yöntem: Çalışmaya 64 erkek ve 37 kadın olmak üzere toplam 101 kişi dahil edildi. Veriler, StealthStationTM S8 Planning programı kullanılarak gerçekleştirilen ön komissür (AC) ve arka komissür (PC) işaretlemeleriyle DBS protokolüne göre gerçekleştirilen manyetik rezonans görüntüleme yoluyla toplandı. Erkek ve kadın AC-PC ölçümlerini ayırt etmek için Alıcı Çalışma Karakteristiği (ROC) analizi yapıldı.
Bulgular: Tüm katılımcıların yaş ortalaması 60,32±11,31 yıl (aralığı: 30-85) ve ortalama AC-PC mesafesi 24,18±2,03 mm (aralığı: 20,01-28,7) idi. Erkeklerin AC-PC mesafeleri (24,83±1,986 mm) kadınlarınkinden (23,06±1,592 mm) istatistiksel olarak anlamlı derecede daha büyüktü. Katılımcıların yaşları ve AC-PC mesafeleri arasında zayıf bir pozitif korelasyon gözlendi (r=0,432, P<0,001). Tek değişkenli regresyon analizinin sonuçlarına göre, erkeklerde her ek yaş yılı AC-PC mesafesinde 0,083 mm'lik (95% CI: 0,045 – 0,121) bir artışla ilişkiliydi (R²=0,235, P<0,001).
Sonuç: Diğer çalışmalardan elde edilen verilerin karşılaştırılması, Türk kökenli bireylerde AC-PC mesafesinin Asya popülasyonuna neredeyse benzer olduğunu, ancak Kafkas popülasyonlarında gözlemlenenden ve hatta Hispanik popülasyonlardan bile daha kısa olduğunu göstermektedir. Bu bulgular, etnik kökenle ilişkili AC-PC mesafelerindeki çeşitliliği vurgulamaktadır.

Kaynakça

  • 1. Lee TO, Hwang HS, De Salles A, Mattozo C, Pedroso AG, Behnke E. Inter-racial, gender and aging influences in the length of anterior commissure-posterior commissure line. J Korean Neurosurg Soc. 2008;43(2):79-84. doi: 10.3340/jkns.2008.43.2.79.
  • 2. Gildenberg PL. Spiegel and Wycis - the early years. Stereotact Funct Neurosurg. 2001;77(1-4):11-6. doi: 10.1159/000064587.
  • 3. Lyons KE, Pahwa R. Deep brain stimulation in Parkinson's disease. Curr Neurol Neurosci Rep. 2004;4(4):290-5. doi: 10.1007/s11910-004-0054-0.
  • 4. Talairach J, Tournoux P, Rayport M. Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging. Germany: Thieme Medical Publ Inc; 1988.
  • 5. Schaltenbrand G, Wahren W. Atlas for Stereotaxy of the Human Brain. 2th ed. Germany: George Thieme Verlag; 1977.
  • 6. De Salles AA, Lufkin RB. Minimally invasive therapy of the brain. Instrumentation for interventional MRI of the brain. Germany: Thieme; 1997.
  • 7. Spiegelmann R, Gofman J. CT-target determination in postero-ventral pallidotomy: A universal method. Technical note. Acta Neurochir (Wien). 1996;138(6):732-5; discussion 736.
  • 8. Pollo C, Meuli R, Maeder P, Vingerhoets F, Ghika J, Villemure JG. Subthalamic nucleus deep brain stimulation for Parkinson's disease: Magnetic resonance imaging targeting using visible anatomical landmarks. Stereotact Funct Neurosurg. 2003;80(1-4):76-81.
  • 9. Rampini PM, Locatelli M, Alimehmeti R, et al. Multiple sequential image-fusion and direct MRI localisation of the subthalamic nucleus for deep brain stimulation. J Neurosurg Sci. Mar 2003;47(1):33-9.
  • 10. Pallavaram S, Yu H, Spooner J, et al. Intersurgeon variability in the selection of anterior and posterior commissures and its potential effects on target localization. Stereotact Funct Neurosurg. 2008;86(2):113-9. doi: 10.1159/000116215.
  • 11. D'Haese PF, Cetinkaya E, Konrad PE, Kao C, Dawant BM. Computer-aided placement of deep brain stimulators: From planning to intraoperative guidance. IEEE Trans Med Imaging. 2005;24(11):1469-78. doi: 10.1109/TMI.2005.856752.
  • 12. Dabadi S, Dhungel RR, Dhungel P, et al. Study of anterior commissure-posterior commissure distance among nepalese cohort. Asian J Neurosurg. 2020;15(4):966-969.
  • 13. Liu Y, Dawant BM. Automatic detection of the anterior and posterior commissures on MRI scans using regression forests. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:1505-8.
  • 14. Villemure JG, Marchand E, Peters T, Leroux G, Olivier A. Magnetic resonance imaging stereotaxy: Recognition and utilization of the commissures. Appl Neurophysiol. 1987;50(1-6):57-62. doi: 10.1159/000100685.
  • 15. Choi SH, Chi JG, Kim YB, Cho ZH. Anterior commissure--posterior commissure revisited. Korean J Radiol. 2013;14(4):653-61. doi: 10.3348/kjr.2013.14.4.653.
  • 16. Miller AK, Alston RL, Corsellis JA. Variation with age in the volumes of grey and white matter in the cerebral hemispheres of man: Measurements with an image analyser. Neuropathol Appl Neurobiol. 1980;6(2):119-32. doi:10.1111/j.1365-2990.1980.tb00283.x.
  • 17. Goyal MS, Vlassenko AG, Raichle ME. Reply to Biskup et al. and Tu et al.: Sex differences in metabolic brain aging. Proc Natl Acad Sci USA. 2019;116(22):10634-10635.
  • 18. Gur RC, Mozley PD, Resnick SM, et al. Gender differences in age effect on brain atrophy measured by magnetic resonance imaging. Proc Natl Acad Sci USA. 1991;88(7):2845-9.

Assessment of the Length of the Anterior and Posterior Commissure Lines According to Gender and Age

Yıl 2025, Sayı: 25, 94 - 101, 29.04.2025
https://doi.org/10.38079/igusabder.1567985

Öz

Aim: There are variations in the size and shape of the skull based on factors such as race, age, and gender. The anterior and posterior commissures are significant brain regions that serve as essential reference points for stereotactic and functional neurosurgical procedures, human brain mapping, and medical imaging techniques. Our study analyzed the length of the anterior-posterior commissure (AC-PC) with these demographic factors in patients who underwent deep brain stimulation (DBS) in the Turkish population.
Method: A total of 101 individuals, comprising 64 men and 37 women, were included in the study. Data were collected through magnetic resonance imaging performed according to the DBS protocol, with the anterior commissure (AC) and posterior commissure (PC) markings conducted using the StealthStationTM S8 Planning program. Receiver Operating Characteristic (ROC) analysis was performed to distinguish between male and female AC-PC measurements.
Results: The mean age of all participants was 60.32±11.31 years (range: 30-85), and the average AC-PC distance was 24.18±2.03 mm (range: 20.01-28.7). The AC-PC distances of males (24.83±1.986 mm) were statistically significantly greater than those of females (23.06±1.592 mm). A weak positive correlation was observed between the ages and AC-PC distances of the participants (r=0.432, P<0.001). According to the results of the univariate regression analysis, each additional year of age in males was associated with an increase of 0.083 mm (95% CI: 0.045 – 0.121) in AC-PC distance (R²=0.235, P<0.001).
Conclusion: A comparison of data obtained from other studies indicates that the AC-PC distance in individuals of Turkish descent is nearly similar to that of the Asian population, yet shorter than that observed in Caucasian populations and even shorter than in Hispanic populations. These findings highlight the variation in AC-PC distances associated with ethnic origin.

Kaynakça

  • 1. Lee TO, Hwang HS, De Salles A, Mattozo C, Pedroso AG, Behnke E. Inter-racial, gender and aging influences in the length of anterior commissure-posterior commissure line. J Korean Neurosurg Soc. 2008;43(2):79-84. doi: 10.3340/jkns.2008.43.2.79.
  • 2. Gildenberg PL. Spiegel and Wycis - the early years. Stereotact Funct Neurosurg. 2001;77(1-4):11-6. doi: 10.1159/000064587.
  • 3. Lyons KE, Pahwa R. Deep brain stimulation in Parkinson's disease. Curr Neurol Neurosci Rep. 2004;4(4):290-5. doi: 10.1007/s11910-004-0054-0.
  • 4. Talairach J, Tournoux P, Rayport M. Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging. Germany: Thieme Medical Publ Inc; 1988.
  • 5. Schaltenbrand G, Wahren W. Atlas for Stereotaxy of the Human Brain. 2th ed. Germany: George Thieme Verlag; 1977.
  • 6. De Salles AA, Lufkin RB. Minimally invasive therapy of the brain. Instrumentation for interventional MRI of the brain. Germany: Thieme; 1997.
  • 7. Spiegelmann R, Gofman J. CT-target determination in postero-ventral pallidotomy: A universal method. Technical note. Acta Neurochir (Wien). 1996;138(6):732-5; discussion 736.
  • 8. Pollo C, Meuli R, Maeder P, Vingerhoets F, Ghika J, Villemure JG. Subthalamic nucleus deep brain stimulation for Parkinson's disease: Magnetic resonance imaging targeting using visible anatomical landmarks. Stereotact Funct Neurosurg. 2003;80(1-4):76-81.
  • 9. Rampini PM, Locatelli M, Alimehmeti R, et al. Multiple sequential image-fusion and direct MRI localisation of the subthalamic nucleus for deep brain stimulation. J Neurosurg Sci. Mar 2003;47(1):33-9.
  • 10. Pallavaram S, Yu H, Spooner J, et al. Intersurgeon variability in the selection of anterior and posterior commissures and its potential effects on target localization. Stereotact Funct Neurosurg. 2008;86(2):113-9. doi: 10.1159/000116215.
  • 11. D'Haese PF, Cetinkaya E, Konrad PE, Kao C, Dawant BM. Computer-aided placement of deep brain stimulators: From planning to intraoperative guidance. IEEE Trans Med Imaging. 2005;24(11):1469-78. doi: 10.1109/TMI.2005.856752.
  • 12. Dabadi S, Dhungel RR, Dhungel P, et al. Study of anterior commissure-posterior commissure distance among nepalese cohort. Asian J Neurosurg. 2020;15(4):966-969.
  • 13. Liu Y, Dawant BM. Automatic detection of the anterior and posterior commissures on MRI scans using regression forests. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:1505-8.
  • 14. Villemure JG, Marchand E, Peters T, Leroux G, Olivier A. Magnetic resonance imaging stereotaxy: Recognition and utilization of the commissures. Appl Neurophysiol. 1987;50(1-6):57-62. doi: 10.1159/000100685.
  • 15. Choi SH, Chi JG, Kim YB, Cho ZH. Anterior commissure--posterior commissure revisited. Korean J Radiol. 2013;14(4):653-61. doi: 10.3348/kjr.2013.14.4.653.
  • 16. Miller AK, Alston RL, Corsellis JA. Variation with age in the volumes of grey and white matter in the cerebral hemispheres of man: Measurements with an image analyser. Neuropathol Appl Neurobiol. 1980;6(2):119-32. doi:10.1111/j.1365-2990.1980.tb00283.x.
  • 17. Goyal MS, Vlassenko AG, Raichle ME. Reply to Biskup et al. and Tu et al.: Sex differences in metabolic brain aging. Proc Natl Acad Sci USA. 2019;116(22):10634-10635.
  • 18. Gur RC, Mozley PD, Resnick SM, et al. Gender differences in age effect on brain atrophy measured by magnetic resonance imaging. Proc Natl Acad Sci USA. 1991;88(7):2845-9.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Radyoloji ve Organ Görüntüleme
Bölüm Araştırma Makalesi
Yazarlar

Enes Özlük 0000-0002-6300-5453

Ümit Akın Dere 0000-0002-6678-6224

Gönderilme Tarihi 17 Ekim 2024
Kabul Tarihi 24 Şubat 2025
Erken Görünüm Tarihi 29 Nisan 2025
Yayımlanma Tarihi 29 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 25

Kaynak Göster

JAMA Özlük E, Dere ÜA. Assessment of the Length of the Anterior and Posterior Commissure Lines According to Gender and Age. IGUSABDER. 2025;:94–101.

 Alıntı-Gayriticari-Türetilemez 4.0 Uluslararası (CC BY-NC-ND 4.0)