Araştırma Makalesi
BibTex RIS Kaynak Göster

How Does 3D Printing-Based Assistive Device Training Shapes Cognitive Flexibility and Professional Behavior in Occupational Therapy Students?

Yıl 2025, Sayı: 27, 991 - 1003, 31.12.2025
https://doi.org/10.38079/igusabder.1626712

Öz

Aim: This study investigated the effectiveness of experience-based learning in 3D-printing-based assistive device training to shape occupational therapy students' cognitive flexibility and professional behavior skills.
Method: Sixty undergraduate occupational therapy students were involved in this study and were randomly allocated to control or training group. The training group received six weeks of hands-on training in 3D-printing-based assistive devices. Informative brochures related to each week’s topics were provided to the control group for six weeks. Cognitive flexibility and professional behavior were measured with the Cognitive Flexibility Inventory and Professional Behavior Questionnaire before and after the training.
Results: A significant improvement in post-training cognitive flexibility scores was observed in both the control group (p=0.020) and the training group (p=0.003). However, a significant in-group change in professional behavior was found only in the training group (p=0.001). Post-training professional behavior scores were significantly higher in the 3D-G compared to the CG, with a medium effect size for the difference (p=0.006; Cohen’s d=0.745).
Conclusion: 3D printing-based assistive device training has fostered students’ professional behavior. Future studies are recommended to examine the short- and long-term effects of interdisciplinary and student-based training on cognitive flexibility and professional behavior.

Kaynakça

  • 1. Slegers K, Kouwenberg K, Loučova T, Daniels R. Makers in healthcare: The role of occupational therapists in the design of DIY assistive technology. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. 2020:1-11.
  • 2. Benham S, San S. Student technology acceptance of 3D printing in occupational therapy education. Am J Occup Ther. 2020;74(3):1-7.
  • 3. Sarışahin S, Yazıcıoğlu ZÇ. The use of orthoses made with 3D printer in upper extremity rehabilitation: A review. Uluborlu Mesleki Bilimler Dergisi. 2024;7(2):45-54.
  • 4. Mikołajewska E, Macko M, Ziarnecki Ł, Stańczak S, Kawalec P, Mikołajewski D. 3D printing technologies in rehabilitation engineering. J Health Sci. 2014;4(12):78-83.
  • 5. Davis K, Gurney L. Impact of 3D printing on occupational therapy student technology efficacy. IJTES. 2021;5(4):571-586.
  • 6. Dawood A, Marti BM, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br Dent J. 2015;219(11):521-529.
  • 7. Tasneem I, Ariz A, Bharti D, Haleem A, Javaid M, Bahl S. 3D printing technology and its significant applications in the context of healthcare education. J Ind Integr Manag. 2023;8(1):113-130.
  • 8. Yeşilyurt KÖ. 3 boyutlu yazıcı materyallerinin cerrahi ve hemşirelik alanında kullanımına bakış. İstanbul Gelişim Üniversitesi Sağlık Bilimleri Dergisi. 2023;20:663-676.
  • 9. Barter SL, Williams AJ, Rencken G, Ndaba N, Govender P. Occupational therapists' acceptance of 3D printing. S Afr J Occup Ther. 2023;53(2):3-17.
  • 10. Wagner JB, Scheinfeld L, Leeman B, Pardini K, Saragossi J, Flood K. Three professions come together for an interdisciplinary approach to 3D printing: Occupational therapy, biomedical engineering, and medical librarianship. JMLA. 2018;106(3):370.
  • 11. Yıldırım G, Yıldırım S, Çelik E. Yeni bir bakış-3 boyutlu yazıcılar ve öğretimsel kullanımı: Bir içerik analizi. Bayburt Eğitim Fakültesi Dergisi. 2018;13(25):163-184.
  • 12. Hu Y, Spiro RJ. Design for now, but with the future in mind: A “cognitive flexibility theory” perspective on online learning through the lens of MOOCs. Educ Technol Res Dev. 2021;69:373-378.
  • 13. Gurer MD. Examining technology acceptance of pre-service mathematics teachers in Turkey: A structural equation modeling approach. Educ Inf Technol. 2021;26(4):4709-29.
  • 14. Gülüm IV, Dağ İ. Tekrarlayıcı Düşünme Ölçeği ve Bilişsel Esneklik Envanterinin Türkçeye uyarlanması, geçerliliği ve güvenilirliği. Anatolian Journal of Psychiatry/Anadolu Psikiyatri Dergisi. 2012;13(3).
  • 15. Hunzeker M, Ozelie R. Cost-effective analysis of 3D printing applications in occupational therapy practice. Open J Occup Ther. 2021;9(1):1-12.
  • 16. Mason VC, Mathieson K. Occupational therapy employers’ perceptions of professionalism. Open J Occup Ther. 2018;6(1):9.
  • 17. DeIuliis ED, Saylor E. Bridging the gap: Three strategies to optimize professional relationships with Generation Y and Z. Open J Occup Ther. 2021;9(1):1-13.
  • 18. Uzun FN, Öksüz Ç. Hacettepe Üniversitesi Sağlık Bilimleri Fakültesi ergoterapi bölümü lisans programındaki derslerin öğrencilerin ve mezunların bakış açılarıyla incelenmesi. Ergoterapi ve Rehabilitasyon Dergisi. 2021;9(1):21-30.
  • 19. Değerli Yİ, Torpil B, Pekçetin E, Pekçetin S. The effectiveness of 3D printing technology course on attitudes of occupational therapy students-a controlled study. Disabil Rehabil: Assist Technol. 2024;1-9.
  • 20. Dennis JP, Vander Wal JS. The cognitive flexibility inventory: Instrument development and estimates of reliability and validity. Cogn Ther Res. 2010;34:241-253.
  • 21. Yuen HK, Azuero A, Lackey KW, Brown NS, Shrestha S. Construct validity test of evaluation tool for professional behaviors of entry-level occupational therapy students in the United States. J Educ Eval Health Prof. 2016;13.
  • 22. Kars S, Akyürek G, Bumin G. Mesleki davranış anketinin Türkçe geçerlilik ve güvenilirliği. Ergoterapi ve Rehabilitasyon Dergisi. 2020;8(3):191-198.
  • 23. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd Edition, Hillsdale (NJ): Lawrence Erlbaum Associates; 1988:7–19.
  • 24. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175-191.
  • 25. Aflatoony L, Lee SJ, Sanford J. Collective making: Co-designing 3D printed assistive technologies with occupational therapists, designers, and end-users. Assist Technol. 2023;35(2):153-162.
  • 26. Degerli YI, Dogu F, Oksuz C. Manufacturing an assistive device with 3D printing technology–a case report. Assist Technol. 2022;34(1):121-125.
  • 27. Bradberry LA, De Maio J. Learning by doing: The long-term impact of experiential learning programs on student success. J Political Sci Educ. 2019;15(1):94-111.
  • 28. Goldbach WP, Stella TC. Experiential learning to advance student readiness for Level II fieldwork. J Occup Ther Educ. 2017;1(1):8.
  • 29. Veneri D. The development of a computer-assisted learning module in physical therapy neurologic education: a mixed methods case. Internet J Allied Health Sci Pract. 2011;9(3):8.
  • 30. Coker P. Effects of an experiential learning program on the clinical reasoning and critical thinking skills of occupational therapy students. J Allied Health. 2010;39(4):280-286.
  • 31. Harris N, Bacon CEW. Developing cognitive skills through active learning: A systematic review of health care professions. Athl Train Educ J. 2019;14(2):135-148.
  • 32. Santos AVD, Silveira ZDC. Design for assistive technology oriented to design methodology: A systematic review on user-centered design and 3D printing approaches. J Braz Soc Mech Sci Eng. 2021;43(11):483.
  • 33. Kahlke RM, McConnell MM, Wisener KM, Eva KW. The disconnect between knowing and doing in health professions education and practice. Adv Health Sci Educ. 2020;25(1):227-240.
  • 34. Harada Y, Sawada Y, Suzurikawa J, Takeshima R, Kondo T. Short-term program on three-dimensional printed self-help devices for occupational therapy students: A pre-post intervention study. J Occup Ther Educ. 2022;6(3).

3B Yazıcı Tabanlı Yardımcı Cihaz Eğitimi Ergoterapi Öğrencilerinde Bilişsel Esnekliği ve Profesyonel Davranışı Nasıl Şekillendirir?

Yıl 2025, Sayı: 27, 991 - 1003, 31.12.2025
https://doi.org/10.38079/igusabder.1626712

Öz

Amaç: Bu çalışma, 3 boyutlu yazıcı tabanlı yardımcı cihaz eğitiminin deneyime dayalı öğrenme yöntemi ile ergoterapi öğrencilerinin bilişsel esneklik ve mesleki davranış becerilerini şekillendirmedeki etkinliğini araştırmayı amaçlamıştır.
Yöntem: Çalışmaya 60 lisans düzeyinde Ergoterapi öğrencisi katılmış ve rastgele şekilde kontrol veya eğitim grubuna atanmıştır. Eğitim grubu, altı hafta boyunca 3 boyutlu yazıcı tabanlı yardımcı cihaz eğitimi almıştır. Kontrol grubuna ise her hafta işlenen konularla ilgili bilgilendirici broşürler verilmiştir. Bilişsel esneklik ve mesleki davranış, eğitim öncesi ve sonrası Bilişsel Esneklik Envanteri ve Mesleki Davranış Anketi ile ölçülmüştür.
Bulgular: Hem kontrol grubunda (p=0,020) hem de eğitim grubunda (p=0,003) eğitim sonrası bilişsel esneklik puanlarında anlamlı bir artış olmuştur. Mesleki davranışta ise gruplar içindeki değişim sadece eğitim grubunda anlamlı bulunmuştur (p=0,001). Mesleki davranış, 3 boyutlu yazıcı eğitim grubunda, kontrol grubuna göre anlamlı derecede daha yüksek olup orta etki büyüklüğüne sahiptir (p=0,006; Cohen’s d =0,745).
Sonuç: 3 boyutlu yazıcı tabanlı yardımcı cihaz eğitimi alan öğrencilerin mesleki davranışlarına ilişkin tutumları gelişmiştir. Gelecekteki çalışmaların, disiplinler arası ve öğrenci tabanlı eğitimlerin bilişsel esneklik ve mesleki davranış üzerine kısa ve uzun vadeli etkilerini incelemesi önerilir.

Kaynakça

  • 1. Slegers K, Kouwenberg K, Loučova T, Daniels R. Makers in healthcare: The role of occupational therapists in the design of DIY assistive technology. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. 2020:1-11.
  • 2. Benham S, San S. Student technology acceptance of 3D printing in occupational therapy education. Am J Occup Ther. 2020;74(3):1-7.
  • 3. Sarışahin S, Yazıcıoğlu ZÇ. The use of orthoses made with 3D printer in upper extremity rehabilitation: A review. Uluborlu Mesleki Bilimler Dergisi. 2024;7(2):45-54.
  • 4. Mikołajewska E, Macko M, Ziarnecki Ł, Stańczak S, Kawalec P, Mikołajewski D. 3D printing technologies in rehabilitation engineering. J Health Sci. 2014;4(12):78-83.
  • 5. Davis K, Gurney L. Impact of 3D printing on occupational therapy student technology efficacy. IJTES. 2021;5(4):571-586.
  • 6. Dawood A, Marti BM, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br Dent J. 2015;219(11):521-529.
  • 7. Tasneem I, Ariz A, Bharti D, Haleem A, Javaid M, Bahl S. 3D printing technology and its significant applications in the context of healthcare education. J Ind Integr Manag. 2023;8(1):113-130.
  • 8. Yeşilyurt KÖ. 3 boyutlu yazıcı materyallerinin cerrahi ve hemşirelik alanında kullanımına bakış. İstanbul Gelişim Üniversitesi Sağlık Bilimleri Dergisi. 2023;20:663-676.
  • 9. Barter SL, Williams AJ, Rencken G, Ndaba N, Govender P. Occupational therapists' acceptance of 3D printing. S Afr J Occup Ther. 2023;53(2):3-17.
  • 10. Wagner JB, Scheinfeld L, Leeman B, Pardini K, Saragossi J, Flood K. Three professions come together for an interdisciplinary approach to 3D printing: Occupational therapy, biomedical engineering, and medical librarianship. JMLA. 2018;106(3):370.
  • 11. Yıldırım G, Yıldırım S, Çelik E. Yeni bir bakış-3 boyutlu yazıcılar ve öğretimsel kullanımı: Bir içerik analizi. Bayburt Eğitim Fakültesi Dergisi. 2018;13(25):163-184.
  • 12. Hu Y, Spiro RJ. Design for now, but with the future in mind: A “cognitive flexibility theory” perspective on online learning through the lens of MOOCs. Educ Technol Res Dev. 2021;69:373-378.
  • 13. Gurer MD. Examining technology acceptance of pre-service mathematics teachers in Turkey: A structural equation modeling approach. Educ Inf Technol. 2021;26(4):4709-29.
  • 14. Gülüm IV, Dağ İ. Tekrarlayıcı Düşünme Ölçeği ve Bilişsel Esneklik Envanterinin Türkçeye uyarlanması, geçerliliği ve güvenilirliği. Anatolian Journal of Psychiatry/Anadolu Psikiyatri Dergisi. 2012;13(3).
  • 15. Hunzeker M, Ozelie R. Cost-effective analysis of 3D printing applications in occupational therapy practice. Open J Occup Ther. 2021;9(1):1-12.
  • 16. Mason VC, Mathieson K. Occupational therapy employers’ perceptions of professionalism. Open J Occup Ther. 2018;6(1):9.
  • 17. DeIuliis ED, Saylor E. Bridging the gap: Three strategies to optimize professional relationships with Generation Y and Z. Open J Occup Ther. 2021;9(1):1-13.
  • 18. Uzun FN, Öksüz Ç. Hacettepe Üniversitesi Sağlık Bilimleri Fakültesi ergoterapi bölümü lisans programındaki derslerin öğrencilerin ve mezunların bakış açılarıyla incelenmesi. Ergoterapi ve Rehabilitasyon Dergisi. 2021;9(1):21-30.
  • 19. Değerli Yİ, Torpil B, Pekçetin E, Pekçetin S. The effectiveness of 3D printing technology course on attitudes of occupational therapy students-a controlled study. Disabil Rehabil: Assist Technol. 2024;1-9.
  • 20. Dennis JP, Vander Wal JS. The cognitive flexibility inventory: Instrument development and estimates of reliability and validity. Cogn Ther Res. 2010;34:241-253.
  • 21. Yuen HK, Azuero A, Lackey KW, Brown NS, Shrestha S. Construct validity test of evaluation tool for professional behaviors of entry-level occupational therapy students in the United States. J Educ Eval Health Prof. 2016;13.
  • 22. Kars S, Akyürek G, Bumin G. Mesleki davranış anketinin Türkçe geçerlilik ve güvenilirliği. Ergoterapi ve Rehabilitasyon Dergisi. 2020;8(3):191-198.
  • 23. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd Edition, Hillsdale (NJ): Lawrence Erlbaum Associates; 1988:7–19.
  • 24. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175-191.
  • 25. Aflatoony L, Lee SJ, Sanford J. Collective making: Co-designing 3D printed assistive technologies with occupational therapists, designers, and end-users. Assist Technol. 2023;35(2):153-162.
  • 26. Degerli YI, Dogu F, Oksuz C. Manufacturing an assistive device with 3D printing technology–a case report. Assist Technol. 2022;34(1):121-125.
  • 27. Bradberry LA, De Maio J. Learning by doing: The long-term impact of experiential learning programs on student success. J Political Sci Educ. 2019;15(1):94-111.
  • 28. Goldbach WP, Stella TC. Experiential learning to advance student readiness for Level II fieldwork. J Occup Ther Educ. 2017;1(1):8.
  • 29. Veneri D. The development of a computer-assisted learning module in physical therapy neurologic education: a mixed methods case. Internet J Allied Health Sci Pract. 2011;9(3):8.
  • 30. Coker P. Effects of an experiential learning program on the clinical reasoning and critical thinking skills of occupational therapy students. J Allied Health. 2010;39(4):280-286.
  • 31. Harris N, Bacon CEW. Developing cognitive skills through active learning: A systematic review of health care professions. Athl Train Educ J. 2019;14(2):135-148.
  • 32. Santos AVD, Silveira ZDC. Design for assistive technology oriented to design methodology: A systematic review on user-centered design and 3D printing approaches. J Braz Soc Mech Sci Eng. 2021;43(11):483.
  • 33. Kahlke RM, McConnell MM, Wisener KM, Eva KW. The disconnect between knowing and doing in health professions education and practice. Adv Health Sci Educ. 2020;25(1):227-240.
  • 34. Harada Y, Sawada Y, Suzurikawa J, Takeshima R, Kondo T. Short-term program on three-dimensional printed self-help devices for occupational therapy students: A pre-post intervention study. J Occup Ther Educ. 2022;6(3).
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İş Terapisi
Bölüm Araştırma Makalesi
Yazarlar

Şüheda Özkan 0000-0002-5904-5946

Ahmet Sümengen 0009-0003-7192-8826

Gönderilme Tarihi 25 Ocak 2025
Kabul Tarihi 12 Kasım 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 27

Kaynak Göster

JAMA Özkan Ş, Sümengen A. How Does 3D Printing-Based Assistive Device Training Shapes Cognitive Flexibility and Professional Behavior in Occupational Therapy Students? IGUSABDER. 2025;:991–1003.

 Alıntı-Gayriticari-Türetilemez 4.0 Uluslararası (CC BY-NC-ND 4.0)