Derleme
BibTex RIS Kaynak Göster

Rehabilitasyonunda Robot Destekli Yürüme Eğitimi: Lokomat Özelliklerine Multidisipliner Bir Bakış

Yıl 2025, Sayı: 27, 1145 - 1155, 31.12.2025
https://doi.org/10.38079/igusabder.1644772

Öz

İnme, dünya genelinde önemli bir ölüm ve sakatlık kaynağıdır. Artan yaşam süresi ile birlikte son 20 yılda inme riski %50 oranında artmış ve şu anda her dört kişiden biri inme geçirme riski taşımaktadır. İnme rehabilitasyonunun erken aşamalarında, bağımsızlığı artırmak ve hastaların hastaneden kısa sürede taburcu olmasını sağlamak için disiplinlerarası bir yaklaşım gereklidir. Bu yaklaşım, hekimler, fizyoterapistler, hemşireler, psikologlar ve diğer sağlık profesyonellerinden oluşur. Bu derleme, inme rehabilitasyonunda kullanılan Lokomat adlı robot destekli yürüyüş eğitimi cihazının seans odaklı parametrelerinin etkilerini incelemektedir. Yapılan çalışmalar, yüksek kılavuz kuvvet seviyelerinin (%100) sensorimotor korteks etkinliğini azalttığını, daha düşük kılavuz kuvvet seviyelerinin (%30-50) kas aktivasyonunu artırarak motor öğrenmeyi desteklediğini göstermektedir. Ayrıca, vücut ağırlığı desteği %30-50 arasında ayarlandığında en etkili sonuçlar elde edilmiştir. Yürüyüş hızının artırılması ise kas aktivasyonunu güçlendirmiştir.

Kaynakça

  • 1. Feigin VL, Brainin M, Norrving B, et al. World Stroke Organization (WSO): Global stroke fact sheet 2022. International Journal of Stroke. 2022;17(1):18-29.
  • 2. O’Dell MW. Stroke rehabilitation and motor recovery. Continuum: Lifelong Learning in Neurology. 2023;29(2):605-627. doi: 10.1212/CON.0000000000001218.
  • 3. Miller EL, Murray L, Richards L, et al. Comprehensive overview of nursing and ınterdisciplinary rehabilitation care of the stroke patient. Stroke. 2010;41(10):2402-2448.
  • 4. Aldosari AM, Aldosary BAM, Aldosari SMM, et al.The role of nurses in rehabilitation services: A holistic approach to enhancing recovery and promoting independence. Journal of International Crisis and Risk Communication Research. 2024:1114-1117.
  • 5. Winstein CJ, Stein J, Arena R, et al. Guidelines for adult stroke rehabilitation and recovery. Stroke. 2016;47(6). doi: 10.1161/STR.0000000000000098.
  • 6. Paolucci S, Bragoni M, Coiro P, et al. Quantification of the probability of reaching mobility independence at discharge from a rehabilitation hospital in nonwalking early ıschemic stroke patients: A multivariate study. Cerebrovascular Diseases. 2008;26(1):16-22. doi: 10.1159/000135648.
  • 7. Calabro RS, Sorrentino G, Cassio Anna, et al. Robotic-assisted gait rehabilitation following stroke: A systematic review of current guidelines and practical clinical recommendations. Eur J Phys Rehabil Med. 2021;57(3).
  • 8. Selves C, Stoquart G, Lejeune T. Gait rehabilitation after stroke: Review of the evidence of predictors, clinical outcomes and timing for interventions. Acta Neurol Belg. 2020;120(4):783-790. doi: 10.1007/s13760-020-01320-7.
  • 9. Morone G, Paolucci S, Cherubini A, et al. Robot-assisted gait training for stroke patients: Current state of the art and perspectives of robotics. Neuropsychiatr Dis Treat. 2017;13:1303-1311. doi: 10.2147/NDT.S114102.
  • 10. van Kammen K, Boonstra AM, van der Woude LH V, Reinders-Messelink HA, den Otter R. Differences in muscle activity and temporal step parameters between Lokomat guided walking and treadmill walking in post-stroke hemiparetic patients and healthy walkers. J Neuroeng Rehabil. 2017;14(1):32. doi: 10.1186/s12984-017-0244-z.
  • 11. Westlake KP, Patten C. Pilot study of Lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke. J Neuroeng Rehabil. 2009;6(1):18.
  • 12. Prideaux N, van den Berg M, Drummond C, Barr C. Augmented performance feedback during robotic gait therapy results in moderate ıntensity cardiovascular exercise in subacute stroke. Journal of Stroke and Cerebrovascular Diseases. 2020;29(6):104758.
  • 13. Manuli A, Maggio MG, Latella D, et al. Can robotic gait rehabilitation plus Virtual Reality affect cognitive and behavioural outcomes in patients with chronic stroke? A randomized controlled trial involving three different protocols. Journal of Stroke and Cerebrovascular Diseases. 2020;29(8):104994.
  • 14. Akinci M, Burak M, Kasal FZ, Özaslan EA, Huri M, Kurtaran ZA. The effects of combined virtual reality exercises and robot assisted gait training on cognitive functions, daily living activities, and quality of life in high functioning individuals with subacute stroke. Percept Mot Skills. 2024;131(3):756-769.
  • 15. Jezernik S, Colombo G, Keller T, Frueh H, Morari M. Robotic orthosis lokomat: A rehabilitation and research tool. Neuromodulation: Technology at the Neural Interface. 2003;6(2):108-115. doi: 10.1046/j.1525-1403.2003.03017.x.
  • 16. Mayr A, Kofler M, Quirbach E, Matzak H, Fröhlich K, Saltuari L. Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the lokomat gait orthosis. Neurorehabil Neural Repair. 2007;21(4):307-314.
  • 17. Duschau-Wicke A, von Zitzewitz J, Caprez A, Lunenburger L, Riener R. Path control: A method for patient-cooperative robot-aided gait rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2010;18(1):38-48.
  • 18. Knaepen K, Mierau A, Swinnen E, et al. Human-robot ınteraction: Does robotic guidance force affect gait-related brain dynamics during robot-assisted treadmill walking? PLoS One. 2015;10(10):e0140626. doi: 10.1371/journal.pone.0140626.
  • 19. Swinnen E, Baeyens JP, Knaepen K, et al. Robot-assisted walking with the Lokomat: The influence of different levels of guidance force on thorax and pelvis kinematics. Clinical Biomechanics. 2015;30(3):254-259. doi: 10.1016/j.clinbiomech.2015.01.006.
  • 20. Cherni Y, Hajizadeh M, Dal Maso F, Turpin NA. Effects of body weight support and guidance force settings on muscle synergy during Lokomat walking. Eur J Appl Physiol. 2021;121(11):2967-2980. doi: 10.1007/s00421-021-04762-w.
  • 21. Lee SY, Han EY, Kim BR, Chun MH, Lee YK. Can lowering the guidance force of robot-assisted gait training induce a sufficient metabolic demand in subacute dependent ambulatory patients with stroke? Arch Phys Med Rehabil. 2017;98(4):695-700.
  • 22. Moreno JC, Barroso F, Farina D, et al. Effects of robotic guidance on the coordination of locomotion. J Neuroeng Rehabil. 2013;10:1-15.
  • 23. Lin J, Hu G, Ran J, Chen L, Zhang X, Zhang Y. Effects of bodyweight support and guidance force on muscle activation during Locomat walking in people with stroke: A cross-sectional study. J Neuroeng Rehabil. 2020;17(1):5.
  • 24. Riener R, Lünenburger L, Maier IC, Colombo G, Dietz V. Locomotor training in subjects with sensori‐motor deficits: An overview of the robotic gait orthosis lokomat. J Healthc Eng. 2010;1(2):197-216. doi: 10.1260/2040-2295.1.2.197.
  • 25. Krewer C, Müller F, Husemann B, Heller S, Quintern J, Koenig E. The influence of different Lokomat walking conditions on the energy expenditure of hemiparetic patients and healthy subjects. Gait Posture. 2007;26(3):372-377.
  • 26. Egerton T, Danoudis M, Huxham F, Iansek R. Central gait control mechanisms and the stride length – cadence relationship. Gait Posture. 2011;34(2):178-182.
  • 27. Sundaramurthy A, Tong J, Subramani AV, et al. Effect of stride length on the running biomechanics of healthy women of different statures. BMC Musculoskelet Disord. 2023;24(1):604. doi: 10.1186/s12891-023-06733-y.
  • 28. Software Features. https://www.hocoma.com/solutions/lokomat/software/.
  • 29. Akıncı M, Burak M, Yaşar E, Kılıç RT. The effects of Robot-assisted gait training and virtual reality on balance and gait in stroke survivors: A randomized controlled trial. Gait Posture. 2023;103:215-222. doi: 10.1016/j.gaitpost.2023.05.013.
  • 30. Israel JF, Campbell DD, Kahn JH, Hornby TG. Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord ınjury. Phys Ther. 2006;86(11):1466-1478.
  • 31. Aurich-Schuler T, Grob F, van Hedel HJA, Labruyère R. Can Lokomat therapy with children and adolescents be improved? An adaptive clinical pilot trial comparing Guidance force, Path control, and FreeD. J Neuroeng Rehabil. 2017;14(1):76.
  • 32. Aurich-Schuler T, Gut A, Labruyère R. The FreeD module for the Lokomat facilitates a physiological movement pattern in healthy people – a proof of concept study. J Neuroeng Rehabil. 2019;16(1):26. doi: 10.1186/s12984-019-0496-x.
  • 33. Aurich T, van Dellen F, Labruyère R. The FreeD module’s lateral translation timing in the gait robot Lokomat: A manual adaptation is necessary. J Neuroeng Rehabil. 2023;20(1):109. doi: 10.1186/s12984-023-01227-3.

Robot-Assisted Gait Training in Stroke Rehabilitation: A Multidisciplinary Overview on Lokomat Features

Yıl 2025, Sayı: 27, 1145 - 1155, 31.12.2025
https://doi.org/10.38079/igusabder.1644772

Öz

Stroke is a significant cause of death and disability worldwide. With the increasing lifespan, the risk of stroke has risen by 50% in the last 20 years, and currently, one in four individuals is at risk of experiencing a stroke. In the early stages of stroke rehabilitation, an interdisciplinary approach is essential to increase independence and ensure patients are discharged from the hospital in a shorter time. This approach involves physicians, physiotherapists, nurses, psychologists, and other healthcare professionals. This review examines the effects of session-specific parameters of the robot-assisted gait training device, Lokomat, used in stroke rehabilitation. Studies have shown that high guidance force levels (100%) decrease sensorimotor cortex engagement, while lower guidance force levels (30-50%) enhance muscle activation and support motor learning. Additionally, adjusting body weight support between 30% and 50% has been found to yield the most effective results. Increasing walking speed has also been observed to enhance muscle activation.

Kaynakça

  • 1. Feigin VL, Brainin M, Norrving B, et al. World Stroke Organization (WSO): Global stroke fact sheet 2022. International Journal of Stroke. 2022;17(1):18-29.
  • 2. O’Dell MW. Stroke rehabilitation and motor recovery. Continuum: Lifelong Learning in Neurology. 2023;29(2):605-627. doi: 10.1212/CON.0000000000001218.
  • 3. Miller EL, Murray L, Richards L, et al. Comprehensive overview of nursing and ınterdisciplinary rehabilitation care of the stroke patient. Stroke. 2010;41(10):2402-2448.
  • 4. Aldosari AM, Aldosary BAM, Aldosari SMM, et al.The role of nurses in rehabilitation services: A holistic approach to enhancing recovery and promoting independence. Journal of International Crisis and Risk Communication Research. 2024:1114-1117.
  • 5. Winstein CJ, Stein J, Arena R, et al. Guidelines for adult stroke rehabilitation and recovery. Stroke. 2016;47(6). doi: 10.1161/STR.0000000000000098.
  • 6. Paolucci S, Bragoni M, Coiro P, et al. Quantification of the probability of reaching mobility independence at discharge from a rehabilitation hospital in nonwalking early ıschemic stroke patients: A multivariate study. Cerebrovascular Diseases. 2008;26(1):16-22. doi: 10.1159/000135648.
  • 7. Calabro RS, Sorrentino G, Cassio Anna, et al. Robotic-assisted gait rehabilitation following stroke: A systematic review of current guidelines and practical clinical recommendations. Eur J Phys Rehabil Med. 2021;57(3).
  • 8. Selves C, Stoquart G, Lejeune T. Gait rehabilitation after stroke: Review of the evidence of predictors, clinical outcomes and timing for interventions. Acta Neurol Belg. 2020;120(4):783-790. doi: 10.1007/s13760-020-01320-7.
  • 9. Morone G, Paolucci S, Cherubini A, et al. Robot-assisted gait training for stroke patients: Current state of the art and perspectives of robotics. Neuropsychiatr Dis Treat. 2017;13:1303-1311. doi: 10.2147/NDT.S114102.
  • 10. van Kammen K, Boonstra AM, van der Woude LH V, Reinders-Messelink HA, den Otter R. Differences in muscle activity and temporal step parameters between Lokomat guided walking and treadmill walking in post-stroke hemiparetic patients and healthy walkers. J Neuroeng Rehabil. 2017;14(1):32. doi: 10.1186/s12984-017-0244-z.
  • 11. Westlake KP, Patten C. Pilot study of Lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke. J Neuroeng Rehabil. 2009;6(1):18.
  • 12. Prideaux N, van den Berg M, Drummond C, Barr C. Augmented performance feedback during robotic gait therapy results in moderate ıntensity cardiovascular exercise in subacute stroke. Journal of Stroke and Cerebrovascular Diseases. 2020;29(6):104758.
  • 13. Manuli A, Maggio MG, Latella D, et al. Can robotic gait rehabilitation plus Virtual Reality affect cognitive and behavioural outcomes in patients with chronic stroke? A randomized controlled trial involving three different protocols. Journal of Stroke and Cerebrovascular Diseases. 2020;29(8):104994.
  • 14. Akinci M, Burak M, Kasal FZ, Özaslan EA, Huri M, Kurtaran ZA. The effects of combined virtual reality exercises and robot assisted gait training on cognitive functions, daily living activities, and quality of life in high functioning individuals with subacute stroke. Percept Mot Skills. 2024;131(3):756-769.
  • 15. Jezernik S, Colombo G, Keller T, Frueh H, Morari M. Robotic orthosis lokomat: A rehabilitation and research tool. Neuromodulation: Technology at the Neural Interface. 2003;6(2):108-115. doi: 10.1046/j.1525-1403.2003.03017.x.
  • 16. Mayr A, Kofler M, Quirbach E, Matzak H, Fröhlich K, Saltuari L. Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the lokomat gait orthosis. Neurorehabil Neural Repair. 2007;21(4):307-314.
  • 17. Duschau-Wicke A, von Zitzewitz J, Caprez A, Lunenburger L, Riener R. Path control: A method for patient-cooperative robot-aided gait rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2010;18(1):38-48.
  • 18. Knaepen K, Mierau A, Swinnen E, et al. Human-robot ınteraction: Does robotic guidance force affect gait-related brain dynamics during robot-assisted treadmill walking? PLoS One. 2015;10(10):e0140626. doi: 10.1371/journal.pone.0140626.
  • 19. Swinnen E, Baeyens JP, Knaepen K, et al. Robot-assisted walking with the Lokomat: The influence of different levels of guidance force on thorax and pelvis kinematics. Clinical Biomechanics. 2015;30(3):254-259. doi: 10.1016/j.clinbiomech.2015.01.006.
  • 20. Cherni Y, Hajizadeh M, Dal Maso F, Turpin NA. Effects of body weight support and guidance force settings on muscle synergy during Lokomat walking. Eur J Appl Physiol. 2021;121(11):2967-2980. doi: 10.1007/s00421-021-04762-w.
  • 21. Lee SY, Han EY, Kim BR, Chun MH, Lee YK. Can lowering the guidance force of robot-assisted gait training induce a sufficient metabolic demand in subacute dependent ambulatory patients with stroke? Arch Phys Med Rehabil. 2017;98(4):695-700.
  • 22. Moreno JC, Barroso F, Farina D, et al. Effects of robotic guidance on the coordination of locomotion. J Neuroeng Rehabil. 2013;10:1-15.
  • 23. Lin J, Hu G, Ran J, Chen L, Zhang X, Zhang Y. Effects of bodyweight support and guidance force on muscle activation during Locomat walking in people with stroke: A cross-sectional study. J Neuroeng Rehabil. 2020;17(1):5.
  • 24. Riener R, Lünenburger L, Maier IC, Colombo G, Dietz V. Locomotor training in subjects with sensori‐motor deficits: An overview of the robotic gait orthosis lokomat. J Healthc Eng. 2010;1(2):197-216. doi: 10.1260/2040-2295.1.2.197.
  • 25. Krewer C, Müller F, Husemann B, Heller S, Quintern J, Koenig E. The influence of different Lokomat walking conditions on the energy expenditure of hemiparetic patients and healthy subjects. Gait Posture. 2007;26(3):372-377.
  • 26. Egerton T, Danoudis M, Huxham F, Iansek R. Central gait control mechanisms and the stride length – cadence relationship. Gait Posture. 2011;34(2):178-182.
  • 27. Sundaramurthy A, Tong J, Subramani AV, et al. Effect of stride length on the running biomechanics of healthy women of different statures. BMC Musculoskelet Disord. 2023;24(1):604. doi: 10.1186/s12891-023-06733-y.
  • 28. Software Features. https://www.hocoma.com/solutions/lokomat/software/.
  • 29. Akıncı M, Burak M, Yaşar E, Kılıç RT. The effects of Robot-assisted gait training and virtual reality on balance and gait in stroke survivors: A randomized controlled trial. Gait Posture. 2023;103:215-222. doi: 10.1016/j.gaitpost.2023.05.013.
  • 30. Israel JF, Campbell DD, Kahn JH, Hornby TG. Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord ınjury. Phys Ther. 2006;86(11):1466-1478.
  • 31. Aurich-Schuler T, Grob F, van Hedel HJA, Labruyère R. Can Lokomat therapy with children and adolescents be improved? An adaptive clinical pilot trial comparing Guidance force, Path control, and FreeD. J Neuroeng Rehabil. 2017;14(1):76.
  • 32. Aurich-Schuler T, Gut A, Labruyère R. The FreeD module for the Lokomat facilitates a physiological movement pattern in healthy people – a proof of concept study. J Neuroeng Rehabil. 2019;16(1):26. doi: 10.1186/s12984-019-0496-x.
  • 33. Aurich T, van Dellen F, Labruyère R. The FreeD module’s lateral translation timing in the gait robot Lokomat: A manual adaptation is necessary. J Neuroeng Rehabil. 2023;20(1):109. doi: 10.1186/s12984-023-01227-3.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fizyoterapi
Bölüm Derleme
Yazarlar

Murat Akıncı 0000-0001-6951-0760

Merve Akıncı 0000-0003-3019-8444

Mustafa Burak 0000-0002-2372-0102

Sinem Erturan Burak 0000-0002-3135-5248

Öznur Uzun 0000-0002-3888-1064

Gönderilme Tarihi 22 Şubat 2025
Kabul Tarihi 12 Kasım 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 27

Kaynak Göster

JAMA Akıncı M, Akıncı M, Burak M, Erturan Burak S, Uzun Ö. Robot-Assisted Gait Training in Stroke Rehabilitation: A Multidisciplinary Overview on Lokomat Features. IGUSABDER. 2025;:1145–1155.

 Alıntı-Gayriticari-Türetilemez 4.0 Uluslararası (CC BY-NC-ND 4.0)