Araştırma Makalesi
BibTex RIS Kaynak Göster

Plantar Fasya Mekaniği Üzerinde Alet Destekli Germe Tekniğinin Etkilerinin Değerlendirilmesi: Randomize Kontrollü Pilot Çalışma

Yıl 2025, Sayı: 27, 961 - 975, 31.12.2025
https://doi.org/10.38079/igusabder.1703089

Öz

Amaç: Ayak-ayak bileği patolojilerinin rehabilitasyonunda yaygın olarak kullanılan yöntemlerden biri germe egzersizleridir. Bu çalışmanın amacı, tasarlanan yeni bir cihaz desteği ile uygulanan farklı germe egzersizlerinin sağlıklı bireylerde plantar fasya sertliği üzerine etkinliğinin incelenmesidir.
Yöntem: Ondokuz sağlıklı katılımcı ile çift kör, randomize kontrollü bir çalışma yürütüldü. Katılımcılar plantar fasyaya özgü germe (PFSS) ve Aşil tendonu germe (ATS) olmak üzere iki gruba ayrıldı. Tüm katılımcılar, özel olarak tasarlanmış bir alet kullanarak dominant bacaklarında (PFSS veya ATS) germe egzersizlerini yaparken, dominant olmayan bacakları aletsiz şekilde gerildi. Plantar fasya sertliği, müdahale öncesi ve sonrası bir myotonometre ile ölçüldü. Her germe seansı, 10 saniye süreyle 10 tekrardan oluşuyordu. İstatistiksel analizde gruplar arası karşılaştırmalarda Mann-Whitney U testi, gruplar içindeki müdahale öncesi ve sonrası farkları değerlendirmek için Wilcoxon işaretli sıralama testi kullanıldı.
Bulgular: Cihaz destekli germe, hem PFSS (p=0,008) hem de ATS (p=0,005) gruplarında cihaz desteksiz (geleneksel) germe tekniklerine kıyasla plantar fasya sertliğinde anlamlı bir artışa yol açtı (p<0,05). Cihaz destekli veya cihaz desteksiz yapılan PFSS ve ATS arasında istatistiksel olarak anlamlı bir fark gözlenmedi (p>0,05).
Sonuç: Bu ön çalışma, yeni tasarlanmış cihazın plantar fasyaya yönelik germe müdahalelerinin etkinliğini artırma potansiyeline sahip olduğunu göstermektedir. Cihaz destekli germe tekniklerinin rehabilitasyon planlarına dahil edilmesi, gelecekteki klinik uygulamaları potansiyel olarak destekleyebilir.

Kaynakça

  • 1. López-López D, Pérez-Ríos M, Ruano-Ravina A, et al. Impact of quality of life related to foot problems: A case-control study. Sci Rep. 2021;11(1):14515.
  • 2. Gulle H, Morrissey D, Tayfur A, et al. The association of demographic, psychological, social and activity factors with foot health in people with plantar heel pain. J Foot Ankle Res. 2024;17(4):e70022. doi: 10.1002/jfa2.70022.
  • 3. Hill CL, Gill TK, Menz HB, Taylor AW. Prevalence and correlates of foot pain in a population-based study: The North West Adelaide health study. J Foot Ankle Res. 2008;1(1):2.
  • 4. Sobhani S, Dekker R, Postema K, Dijkstra PU. Epidemiology of ankle and foot overuse injuries in sports: A systematic review. Scand J Med Sci Sports. 2013;23(6):669-686.
  • 5. Lopes AD, Hespanhol Júnior LC, Yeung SS, Costa LO. What are the main running-related musculoskeletal injuries? A systematic review. Sports Med. 2012;42(10):891-905.
  • 6. Garrett TR, Neibert PJ. The effectiveness of a gastrocnemius-soleus stretching program as a therapeutic treatment of plantar fasciitis. J Sport Rehabil. 2013;22(4):308-312.
  • 7. Stecco C, Pirri C, Fede C, Yucesoy CA, De Caro R, Stecco A. Fascial or muscle stretching? A narrative review. Applied Sci. 2021;11(1):307. doi: 10.3390/app11010307.
  • 8. Berrueta L, Muskaj I, Olenich S, et al. Stretching impacts inflammation resolution in connective tissue. J Cell Physiol. 2016;231(7):1621-1627. doi: 10.1002/jcp.25263.
  • 9. Sugino Y, Yoshimura I, Hagio T, Ishimatsu T, Nagatomo M, Yamamoto T. Effect of plantar fascia-specific stretching and Achilles tendon stretching on shear wave elasticity of the plantar fascia in healthy subjects. Foot Ankle Surg. 2023;29(3):208-212.
  • 10. Cheng HY, Lin CL, Wang HW, Chou SW. Finite element analysis of plantar fascia under stretch-the relative contribution of windlass mechanism and Achilles tendon force. J Biomech. 2008;41(9):1937-1944. doi: 10.1016/j.jbiomech.2008.03.028.
  • 11. Thabane L, Ma J, Chu R, et al. A tutorial on pilot studies: The what, why and how. BMC Med Res Methodol. 2010;10:1. doi: 10.1186/1471-2288-10-1.
  • 12. Peipsi A, Kerpe R, Jäger H, Soeder S, Gordon C, Schleip R. Myoton Pro: A novel tool for the assessment of mechanical properties of fascial tissues. J Bodyw Mov Ther. 2012;16(4):527. doi: 10.1016/j.jbmt.2012.01.015.
  • 13. Muckelt PE, Warner MB, Cheliotis-James T, et al. Protocol and reference values for minimal detectable change of MyotonPRO and ultrasound imaging measurements of muscle and subcutaneous tissue. Sci Rep. 2022;12(1):13654.
  • 14. Saldıran TÇ, Atıcı E, Rezaei DA, et al. The acute effects of different ıntensity whole-body vibration exposure on muscle tone and strength of the lower legs, and hamstring flexibility: A pilot study. J Sport Rehabil. 2020;30(2):235-241.
  • 15. Çakici R, Saldiran TÇ, Kara İ, Açik H. Plantar fascia stiffness in patients with type 2 diabetes mellitus: Stiffness effect on fall risk and gait speed. Foot (Edinb). 2023;56:102020.
  • 16. Wu CH, Chen WS, Wang TG. Plantar fascia softening in plantar fasciitis with normal B-mode sonography. Skeletal Radiol. 2015;44(11):1603-1607.
  • 17. Schneider S, Peipsi A, Stokes M, Knicker A, Abeln V. Feasibility of monitoring muscle health in microgravity environments using Myoton technology. Med Biol Eng Comput. 2015;53(1):57-66. doi: 10.1007/s11517-014-1211-5.
  • 18. Cohen J. Statistical Power Analysis For The Behavioral Sciences. Psychology Press;1988.
  • 19. Baur D, Schwabl C, Kremser C, et al. Shear wave elastography of the plantar fascia: Comparison between patients with plantar fasciitis and healthy control subjects. J Clin Med. 2021;10(11):2351.
  • 20. Gatz M, Bejder L, Quack V, et al. Shear Wave Elastography (SWE) for the evaluation of patients with plantar fasciitis. Acad Radiol. 2020;27(3):363-370.
  • 21. Shiotani H, Yamashita R, Mizokuchi T, Naito M, Kawakami Y. Site- and sex-differences in morphological and mechanical properties of the plantar fascia: A supersonic shear imaging study. J Biomech. 2019;85:198-203. doi: 10.1016/j.jbiomech.2019.01.014.
  • 22. Kato E, Kanehisa H, Fukunaga T, Kawakami Y. Changes in ankle joint stiffness due to stretching: The role of tendon elongation of the gastrocnemius muscle. Eur J Sport Sci. 2010;10(2):111-119. doi: 10.1080/17461390903307834.
  • 23. Cè E, Longo S, Rampichini S, et al. Stretch-induced changes in tension generation process and stiffness are not accompanied by alterations in muscle architecture of the middle and distal portions of the two gastrocnemii. Journal of Electromyography and Kinesiology. 2015;25(3):469-78.
  • 24. Burgess KE, Graham-Smith P, Pearson SJ. Effect of acute tensile loading on gender-specific tendon structural and mechanical properties. J Orthop Res. 2009;27(4):510-516.
  • 25. Chiu TCR, Ngo HC, Lau LW, et al. An investigation of the immediate effect of static stretching on the morphology and stiffness of Achilles tendon in dominant and non-dominant legs. PLoS One. 2016;11(4):e0154443.
  • 26. Morse CI, Degens H, Seynnes OR, Maganaris CN, Jones DA. The acute effect of stretching on the passive stiffness of the human gastrocnemius muscle tendon unit. J Physiol. 2008;586(1):97-106. doi: 10.1113/jphysiol.2007.140434.
  • 27. Behm DG, Blazevich AJ, Kay AD, McHugh M. Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: A systematic review. Appl Physiol Nutr Metab. 2016;41(1):1-11.
  • 28. Nakamura M, Ikezoe T, Tokugawa T, Ichihashi N. Acute effects of stretching on passive properties of human gastrocnemius muscle-tendon unit: Analysis of differences between hold-relax and static stretching. J Sport Rehabil. 2015;24(3):286-292.
  • 29. Tantipoon P, Praditpod N, Pakleppa M, Li C, Huang Z. Characterization of flexor digitorum superficialis muscle stiffness using ultrasound shear wave elastography and myotonPRO: A cross-sectional study investigating the correlation between different approaches. Applied Sciences (Switzerland). 2023;13(11):6384.
  • 30. Zhou JP, Yu JF, Feng YN, et al. Modulation in the elastic properties of gastrocnemius muscle heads in individuals with plantar fasciitis and its relationship with pain. Sci Rep. 2020;10(1):2770. doi: 10.1038/s41598-020-59715-8.
  • 31. Lui TH. Endoscopic release of master knot of henry. Arthrosc Tech. 2015;4(6):e847-e850.
  • 32. Huang J, Qin K, Tang C, et al. Assessment of passive stiffness of medial and lateral heads of gastrocnemius muscle, achilles tendon, and plantar fascia at different ankle and knee positions using the myotonPRO. Med Sci Monit. 2018;24:7570-7576.
  • 33. Stecco C, MacChi V, Porzionato A, et al. The ankle retinacula: Morphological evidence of the proprioceptive role of the fascial system. Cells Tissues Organs. 2010;192(3):200-210.
  • 34. Benjamin M, Toumi H, Ralphs JR, Bydder G, Best TM, Milz S. Where tendons and ligaments meet bone: Attachment sites ('entheses') in relation to exercise and/or mechanical load. J Anat. 2006;208(4):471-490. doi: 10.1111/j.1469-7580.2006.00540.x.
  • 35. Wu CH, Chang KV, Mio S, Chen WS, Wang TG. Sonoelastography of the plantar fascia. Radiology. 2011;259(2):502-507. doi: 10.1148/radiol.11101665.
  • 36. Taş S. Effect of gender on mechanical properties of the plantar fascia and heel fat ad. Foot Ankle Spec. 2018;11(5):403-409. doi: 10.1177/1938640017735891.

Evaluating the Effects of an Instrument-Assisted Stretching Technique on Plantar Fascia Mechanics: A Randomized Controlled Pilot Study

Yıl 2025, Sayı: 27, 961 - 975, 31.12.2025
https://doi.org/10.38079/igusabder.1703089

Öz

Aim: Stretching exercises are a widely employed method in the rehabilitation of foot-ankle pathologies. The purpose of this study was to examine the effectiveness of various stretching exercises, implemented with the aid of a newly designed device, on plantar fascia stiffness in healthy individuals.
Method: A double-blind randomized controlled pilot trial was conducted with nineteen healthy participants. Participants were divided into two groups: plantar fascia-specific stretching (PFSS) and Achilles tendon stretching (ATS). All participants performed the stretching exercises (PFSS or ATS) on their dominant leg using a specially designed instrument, while the non-dominant leg was stretched without it. Plantar fascia stiffness was measured with a myotonometer before and after the intervention. Each stretching session included 10 repetitions, held for 10 seconds. The Mann–Whitney U test was used for between-group comparisons, while the Wilcoxon signed-rank test was used to analyze within-group pre- and post-stretch differences.
Results: Instrument-assisted stretching resulted in a significant increase in plantar fascia stiffness compared to traditional (non-instrument) stretching techniques in both PFSS (p=0.008) and ATS groups (p=0.005). No statistically significant differences were observed between PFSS and ATS with or without the instrument (p>0.05).
Conclusion: This pilot study suggests that the novel instrument has the potential to enhance the effectiveness of stretching interventions for the plantar fascia. Incorporating instrument-assisted stretching techniques into rehabilitation plans may support future clinical applications.

Etik Beyan

Ethical approval was obtained from the Istanbul Okan University Ethics Committee under decision number 179, dated 05.06.2024.

Kaynakça

  • 1. López-López D, Pérez-Ríos M, Ruano-Ravina A, et al. Impact of quality of life related to foot problems: A case-control study. Sci Rep. 2021;11(1):14515.
  • 2. Gulle H, Morrissey D, Tayfur A, et al. The association of demographic, psychological, social and activity factors with foot health in people with plantar heel pain. J Foot Ankle Res. 2024;17(4):e70022. doi: 10.1002/jfa2.70022.
  • 3. Hill CL, Gill TK, Menz HB, Taylor AW. Prevalence and correlates of foot pain in a population-based study: The North West Adelaide health study. J Foot Ankle Res. 2008;1(1):2.
  • 4. Sobhani S, Dekker R, Postema K, Dijkstra PU. Epidemiology of ankle and foot overuse injuries in sports: A systematic review. Scand J Med Sci Sports. 2013;23(6):669-686.
  • 5. Lopes AD, Hespanhol Júnior LC, Yeung SS, Costa LO. What are the main running-related musculoskeletal injuries? A systematic review. Sports Med. 2012;42(10):891-905.
  • 6. Garrett TR, Neibert PJ. The effectiveness of a gastrocnemius-soleus stretching program as a therapeutic treatment of plantar fasciitis. J Sport Rehabil. 2013;22(4):308-312.
  • 7. Stecco C, Pirri C, Fede C, Yucesoy CA, De Caro R, Stecco A. Fascial or muscle stretching? A narrative review. Applied Sci. 2021;11(1):307. doi: 10.3390/app11010307.
  • 8. Berrueta L, Muskaj I, Olenich S, et al. Stretching impacts inflammation resolution in connective tissue. J Cell Physiol. 2016;231(7):1621-1627. doi: 10.1002/jcp.25263.
  • 9. Sugino Y, Yoshimura I, Hagio T, Ishimatsu T, Nagatomo M, Yamamoto T. Effect of plantar fascia-specific stretching and Achilles tendon stretching on shear wave elasticity of the plantar fascia in healthy subjects. Foot Ankle Surg. 2023;29(3):208-212.
  • 10. Cheng HY, Lin CL, Wang HW, Chou SW. Finite element analysis of plantar fascia under stretch-the relative contribution of windlass mechanism and Achilles tendon force. J Biomech. 2008;41(9):1937-1944. doi: 10.1016/j.jbiomech.2008.03.028.
  • 11. Thabane L, Ma J, Chu R, et al. A tutorial on pilot studies: The what, why and how. BMC Med Res Methodol. 2010;10:1. doi: 10.1186/1471-2288-10-1.
  • 12. Peipsi A, Kerpe R, Jäger H, Soeder S, Gordon C, Schleip R. Myoton Pro: A novel tool for the assessment of mechanical properties of fascial tissues. J Bodyw Mov Ther. 2012;16(4):527. doi: 10.1016/j.jbmt.2012.01.015.
  • 13. Muckelt PE, Warner MB, Cheliotis-James T, et al. Protocol and reference values for minimal detectable change of MyotonPRO and ultrasound imaging measurements of muscle and subcutaneous tissue. Sci Rep. 2022;12(1):13654.
  • 14. Saldıran TÇ, Atıcı E, Rezaei DA, et al. The acute effects of different ıntensity whole-body vibration exposure on muscle tone and strength of the lower legs, and hamstring flexibility: A pilot study. J Sport Rehabil. 2020;30(2):235-241.
  • 15. Çakici R, Saldiran TÇ, Kara İ, Açik H. Plantar fascia stiffness in patients with type 2 diabetes mellitus: Stiffness effect on fall risk and gait speed. Foot (Edinb). 2023;56:102020.
  • 16. Wu CH, Chen WS, Wang TG. Plantar fascia softening in plantar fasciitis with normal B-mode sonography. Skeletal Radiol. 2015;44(11):1603-1607.
  • 17. Schneider S, Peipsi A, Stokes M, Knicker A, Abeln V. Feasibility of monitoring muscle health in microgravity environments using Myoton technology. Med Biol Eng Comput. 2015;53(1):57-66. doi: 10.1007/s11517-014-1211-5.
  • 18. Cohen J. Statistical Power Analysis For The Behavioral Sciences. Psychology Press;1988.
  • 19. Baur D, Schwabl C, Kremser C, et al. Shear wave elastography of the plantar fascia: Comparison between patients with plantar fasciitis and healthy control subjects. J Clin Med. 2021;10(11):2351.
  • 20. Gatz M, Bejder L, Quack V, et al. Shear Wave Elastography (SWE) for the evaluation of patients with plantar fasciitis. Acad Radiol. 2020;27(3):363-370.
  • 21. Shiotani H, Yamashita R, Mizokuchi T, Naito M, Kawakami Y. Site- and sex-differences in morphological and mechanical properties of the plantar fascia: A supersonic shear imaging study. J Biomech. 2019;85:198-203. doi: 10.1016/j.jbiomech.2019.01.014.
  • 22. Kato E, Kanehisa H, Fukunaga T, Kawakami Y. Changes in ankle joint stiffness due to stretching: The role of tendon elongation of the gastrocnemius muscle. Eur J Sport Sci. 2010;10(2):111-119. doi: 10.1080/17461390903307834.
  • 23. Cè E, Longo S, Rampichini S, et al. Stretch-induced changes in tension generation process and stiffness are not accompanied by alterations in muscle architecture of the middle and distal portions of the two gastrocnemii. Journal of Electromyography and Kinesiology. 2015;25(3):469-78.
  • 24. Burgess KE, Graham-Smith P, Pearson SJ. Effect of acute tensile loading on gender-specific tendon structural and mechanical properties. J Orthop Res. 2009;27(4):510-516.
  • 25. Chiu TCR, Ngo HC, Lau LW, et al. An investigation of the immediate effect of static stretching on the morphology and stiffness of Achilles tendon in dominant and non-dominant legs. PLoS One. 2016;11(4):e0154443.
  • 26. Morse CI, Degens H, Seynnes OR, Maganaris CN, Jones DA. The acute effect of stretching on the passive stiffness of the human gastrocnemius muscle tendon unit. J Physiol. 2008;586(1):97-106. doi: 10.1113/jphysiol.2007.140434.
  • 27. Behm DG, Blazevich AJ, Kay AD, McHugh M. Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: A systematic review. Appl Physiol Nutr Metab. 2016;41(1):1-11.
  • 28. Nakamura M, Ikezoe T, Tokugawa T, Ichihashi N. Acute effects of stretching on passive properties of human gastrocnemius muscle-tendon unit: Analysis of differences between hold-relax and static stretching. J Sport Rehabil. 2015;24(3):286-292.
  • 29. Tantipoon P, Praditpod N, Pakleppa M, Li C, Huang Z. Characterization of flexor digitorum superficialis muscle stiffness using ultrasound shear wave elastography and myotonPRO: A cross-sectional study investigating the correlation between different approaches. Applied Sciences (Switzerland). 2023;13(11):6384.
  • 30. Zhou JP, Yu JF, Feng YN, et al. Modulation in the elastic properties of gastrocnemius muscle heads in individuals with plantar fasciitis and its relationship with pain. Sci Rep. 2020;10(1):2770. doi: 10.1038/s41598-020-59715-8.
  • 31. Lui TH. Endoscopic release of master knot of henry. Arthrosc Tech. 2015;4(6):e847-e850.
  • 32. Huang J, Qin K, Tang C, et al. Assessment of passive stiffness of medial and lateral heads of gastrocnemius muscle, achilles tendon, and plantar fascia at different ankle and knee positions using the myotonPRO. Med Sci Monit. 2018;24:7570-7576.
  • 33. Stecco C, MacChi V, Porzionato A, et al. The ankle retinacula: Morphological evidence of the proprioceptive role of the fascial system. Cells Tissues Organs. 2010;192(3):200-210.
  • 34. Benjamin M, Toumi H, Ralphs JR, Bydder G, Best TM, Milz S. Where tendons and ligaments meet bone: Attachment sites ('entheses') in relation to exercise and/or mechanical load. J Anat. 2006;208(4):471-490. doi: 10.1111/j.1469-7580.2006.00540.x.
  • 35. Wu CH, Chang KV, Mio S, Chen WS, Wang TG. Sonoelastography of the plantar fascia. Radiology. 2011;259(2):502-507. doi: 10.1148/radiol.11101665.
  • 36. Taş S. Effect of gender on mechanical properties of the plantar fascia and heel fat ad. Foot Ankle Spec. 2018;11(5):403-409. doi: 10.1177/1938640017735891.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fizyoterapi
Bölüm Araştırma Makalesi
Yazarlar

Özgür Sürenkök 0000-0003-1558-8989

Berna Çağla Balkışlı 0000-0002-2559-9756

Gamze Aydın 0000-0002-4952-2825

Emine Atıcı 0000-0002-6547-4798

Gönderilme Tarihi 21 Mayıs 2025
Kabul Tarihi 12 Kasım 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 27

Kaynak Göster

JAMA Sürenkök Ö, Balkışlı BÇ, Aydın G, Atıcı E. Evaluating the Effects of an Instrument-Assisted Stretching Technique on Plantar Fascia Mechanics: A Randomized Controlled Pilot Study. IGUSABDER. 2025;:961–975.

 Alıntı-Gayriticari-Türetilemez 4.0 Uluslararası (CC BY-NC-ND 4.0)