Comparison of Therapist-Supervised and Home Exercise Calisthenics Exercises in Post-Covid Syndrome: A Single Blind, Randomized Controlled Trial
Yıl 2025,
Sayı: 26, 451 - 463, 31.08.2025
Alper Perçin
,
Sena Bilazer
,
Havva Ezgi Albayrak
,
Cansu Özdemir
,
Cahidenur Koçak
Öz
Aim: Post-Covid syndrome (PCS) is a condition that becomes chronic after the acute phase of Covid-19 and affects systems such as respiratory, cardiovascular, nervous, and musculoskeletal, and negatively affects patients’ quality of life (QoL). The aim of this study was to investigate the effect of calisthenics exercises on QoL in patients with PCS.
Method: A total of 176 patients (male: 82, female: 94) with PCS were included and randomized to therapist-supervised and home exercise groups in this study. The calisthenics exercise program was carried out for eight weeks in both groups. QoL was assessed by the European Quality of Life 5-Dimensional 3-Level (EQ-5D-3L) questionnaire at baseline and after eight weeks.
Results: Significant improvements were obtained in all parameters of the EQ-5D-3L scale, including mobility, self-care, usual activities, pain/discomfort, anxiety/depression and general health score (p<0.05) in both therapist-supervised and home exercise groups. When therapist-supervised and home exercise groups were compared in terms of EQ-5D-3L, no significant difference was found between these groups (p>0.05).
Conclusion: Calisthenics exercises cause a significant increase in the QoL in patients with Post-Covid syndrome when administered both as a therapist-supervised and home exercise program.
Kaynakça
-
1. Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601-615. doi: 10.1038/s41591-021-01283-z.
-
2. Goërtz YMJ, Van Herck M, Delbressine JM, et al. Persistent symptoms 3 months after a SARS-CoV-2 infection: the post-COVID-19 syndrome? ERJ Open Res. 2020;6(4):00542-2020. doi: 10.1183/23120541.00542-2020.
-
3. Khoreva MA. Postcovid syndrome - the new reality. Neurosci Behav Physiol. 2022;52(5):619-624. doi: 10.1007/s11055-022-01286-4.
-
4. Akbarialiabad H, Taghrir MH, Abdollahi A, et al. Long COVID, a comprehensive systematic scoping review. Infection. 2021;49(6):1163-1186. doi: 10.1007/s15010-021-01666-x.
-
5. Scholkmann F, May CA. COVID-19, post-acute COVID-19 syndrome (PACS, "long COVID") and post-COVID-19 vaccination syndrome (PCVS, "post-COVIDvac-syndrome"): Similarities and differences. Pathol Res Pract. 2023;246:154497. doi: 10.1016/j.prp.2023.154497.
-
6. Halpin SJ, McIvor C, Whyatt G, et al. Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: A cross-sectional evaluation. J Med Virol. 2021;93(2):1013-1022. doi: 10.1002/jmv.26368.
-
7. Carvalho-Schneider C, Laurent E, Lemaignen A, et al. Follow-up of adults with noncritical COVID-19 two months after symptom onset. Clin Microbiol Infect. 2021;27(2):258-263. doi: 10.1016/j.cmi.2020.09.052.
-
8. Beyer S, Haufe S, Meike D, et al. Post-COVID-19 syndrome: Physical capacity, fatigue and quality of life. PLoS One. 2023;18(10):e0292928. doi: 10.1371/journal.pone.0292928.
-
9. Jacobs LG, Gourna Paleoudis E, Lesky-Di Bari D, et al. Persistence of symptoms and quality of life at 35 days after hospitalization for COVID-19 infection. PLoS One. 2020;15(12):e0243882. doi: 10.1371/journal.pone.0243882.
-
10. Ozer Kaya D, Duzgun I, Baltaci G, et al. Effects of calisthenics and Pilates exercises on coordination and proprioception in adult women: a randomized controlled trial. J Sport Rehabil. 2012;21(3):235-43. doi: 10.1123/jsr.21.3.235.
-
11. Carter SE, Gladwell VF. Effect of breaking up sedentary time with callisthenics on endothelial function. J Sports Sci. 2017;35(15):1508-1514. doi: 10.1080/02640414.2016.1223331.
-
12. Bai B, Xu M, Zhou H, et al. Effects of aerobic training on cardiopulmonary fitness in patients with long COVID-19: a randomized controlled trial. Trials. 2024;25(1):649. doi: 10.1186/s13063-024-08473-3.
-
13. Trzmiel T, Marchewka R, Pieczyńska A, et al. The effect of using a rehabilitation robot for patients with post-coronavirus disease (COVID-19) fatigue syndrome. Sensors (Basel). 2023;23(19):8120. doi: 10.3390/s23198120.
-
14. Elyazed TIA, Alsharawy LA, Salem SE, et al. Effect of home-based pulmonary rehabilitation on exercise capacity in post COVID-19 patients: a randomized controlled trail. J Neuroeng Rehabil. 2024;21(1):40. doi: 10.1186/s12984-024-01340-x.
-
15. Palacios-Ceña D, Bautista-Villaécija O, Güeita-Rodríguez J, et al. Supervised telerehabilitation and home-based respiratory muscle training for post-COVID-19 condition symptoms: a nested qualitative study exploring the perspectives of participants in a randomized controlled trial. Phys Ther. 2024;104(5):pzae043. doi: 10.1093/ptj/pzae043.
-
16. Buchholz I, Marten O, Janssen MF. Feasibility and validity of the EQ-5D-3L in the elderly Europeans: a secondary data analysis using SHARE(d) data. Qual Life Res. 2022;31(11):3267-3282. doi: 10.1007/s11136-022-03158-3.
-
17. Rencz F, Lakatos PL, Gulácsi L, et al. Validity of the EQ-5D-5L and EQ-5D-3L in patients with Crohn's disease. Qual Life Res. 2019;28(1):141-152.
-
18. Kahyaoğlu Süt H, Unsar S. Is EQ-5D a valid quality of life instrument in patients with acute coronary syndrome? Anadolu Kardiyol Derg. 2011;11(2):156-62.
-
19. Thompson PD, Arena R, Riebe D, et al. American College of Sports Medicine. ACSM's new preparticipation health screening recommendations from ACSM's guidelines for exercise testing and prescription, ninth edition. Curr Sports Med Rep. 2013;12(4):215-7.
-
20. McGowan CJ, Pyne DB, Thompson KG, et al. Warm-up strategies for sport and exercise: mechanisms and applications. Sports Med. 2015;45(11):1523-46.
-
21. Van Hooren B, Peake JM. Do we need a cool-down after exercise? a narrative review of the psychophysiological effects and the effects on performance, injuries and the long-term adaptive response. Sports Medicine. 2018;48(7):1575–1595.
-
22. Shariat A, Cleland JA, Danaee M, et al. Borg CR-10 scale as a new approach to monitoring office exercise training. Work. 2018;60(4):549-554. doi: 10.3233/WOR-182762.
-
23. Zamunér AR, Moreno MA, Camargo TM, et al. Assessment of subjective perceived exertion at the anaerobic threshold with the Borg CR-10 Scale. J Sports Sci Med. 2011;10(1):130-6.
-
24. Barbagelata L, Masson W, Iglesias D, et al. Cardiopulmonary exercise testing in patients with post-COVID-19 syndrome. Medicina Clinica (English ed.). 2022;159(1):6–11.
-
25. Aparisi Á, Ybarra-Falcón C, García-Gómez M, et al. Exercise ventilatory inefficiency in post-COVID-19 syndrome: insights from a prospective evaluation. J Clin Med. 2021;10(12):2591. doi: 10.3390/jcm10122591.
-
26. Tryfonos A, Pourhamidi K, Jörnåker G, et al. functional limitations and exercise intolerance in patients with post-COVID condition: a randomized crossover clinical trial. JAMA Netw Open. 2024;7(4):e244386. doi: 10.1001/jamanetworkopen.2024.4386.
-
27. Espinoza-Bravo C, Arnal-Gómez A, Martínez-Arnau FM, et al. Effectiveness of functional or aerobic exercise combined with breathing techniques in telerehabilitation for patients with long COVID: a randomized controlled trial. Phys Ther. 2023;103(11):pzad118.
-
28. McGregor G, Sandhu H, Bruce J, et al. Clinical effectiveness of an online supervised group physical and mental health rehabilitation programme for adults with post-covid-19 condition (REGAIN study): multicentre randomised controlled trial. BMJ. 2024;384:e076506. doi: 10.1136/bmj-2023-076506. Erratum in: BMJ. 2024;385:q988. doi: 10.1136/bmj.q988.
-
29. Romanet C, Wormser J, Fels A, et al. Effectiveness of exercise training on the dyspnoea of individuals with long COVID: A randomised controlled multicentre trial. Ann Phys Rehabil Med. 2023;66(5):101765. doi: 10.1016/j.rehab.2023.101765.
-
30. Jimeno-Almazán A, Franco-López F, Buendía-Romero Á, et al. Rehabilitation for post-COVID-19 condition through a supervised exercise intervention: A randomized controlled trial. Scand J Med Sci Sports. 2022;32(12):1791-1801. doi: 10.1111/sms.14240.
-
31. Compagno S, Palermi S, Pescatore V, et al. Physical and psychological reconditioning in long COVID syndrome: Results of an out-of-hospital exercise and psychological - based rehabilitation program. Int J Cardiol Heart Vasc. 2022;41:101080.
-
32. Maltezou HC, Pavli A, Tsakris A. Post-COVID syndrome: an insight on its pathogenesis. Vaccines (Basel). 2021;9(5):497. doi: 10.3390/vaccines9050497.
-
33. Maamar M, Artime A, Pariente E, et al. Post-COVID-19 syndrome, low-grade inflammation and inflammatory markers: a cross-sectional study. Curr Med Res Opin. 2022;38(6):901-909. doi: 10.1080/03007995.2022.2042991.
-
34. Kadoglou NP, Perrea D, Iliadis F, et al. Exercise reduces resistin and inflammatory cytokines in patients with type 2 diabetes. Diabetes Care. 2007;30(3):719-21.
-
35. Niebauer J, Clark A L, Webb-Peploe K M, et al. Exercise training in chronic heart failure: effects on pro-inflammatory markers. European Journal of Heart Failure. 2005;7(2):189–193. doi: 10.1016/j.ejheart.2004.07.012
-
36. Greulich T, Kehr K, Nell C, et al. A randomized clinical trial to assess the influence of a three months training program (gym-based individualized vs. calisthenics-based non-invidualized) in COPD-patients. Respir Res. 2014;15(1):36.
-
37. Tigli A, Yakut Y. Effect of calisthenic exercise program on inflammatory markers, quality of life and exercise capacity after renal transplantation: a randomized controlled study. J Exercise Therapy and Rehabilitation. 2020;7(1):1-10.
-
38. Probst V S, Kovelis D, Hernandes N A, et al. Effects of 2 exercise training programms on physical activity in daily life in patients with COPD. Respiratory care. 2011;56(11):1799–1807. doi: 10.4187/respcare.01110
-
39. Aydın T, Akif Sarıyıldız M, Guler M, et al. Evaluation of the effectiveness of home based or hospital based calisthenic exercises in patients with multiple sclerosis. Eur Rev Med Pharmacol Sci. 2014;18(8):1189-98.
Post-Covid Sendromunda Terapist Gözetiminde ve Evde Yapılan Kalistenik Egzersizlerinin Karşılaştırılması: Tek Kör, Randomize Kontrollü Bir Çalışma
Yıl 2025,
Sayı: 26, 451 - 463, 31.08.2025
Alper Perçin
,
Sena Bilazer
,
Havva Ezgi Albayrak
,
Cansu Özdemir
,
Cahidenur Koçak
Öz
Amaç: Post-Kovid sendromu (PKS), Covid-19'un akut fazından sonra kronikleşen, solunum, kardiyovasküler, sinir ve kas-iskelet sistemlerini etkileyen ve hastaların yaşam kalitesini olumsuz yönde etkileyen bir durumdur. Bu çalışmanın amacı, PKS'li hastalarda kalistenik egzersizlerin yaşam kalitesi üzerindeki etkisini araştırmaktır.
Yöntem: Bu çalışmaya toplam 176 PKS’li hasta (erkek: 82, kadın: 94) dahil edilmiş ve terapist gözetiminde ve evde egzersiz gruplarına randomize edilmiştir. Her iki grupta da sekiz hafta boyunca kalistenik egzersiz programı uygulandı. Yaşam kalitesi, başlangıçta ve sekiz hafta sonra Avrupa Yaşam Kalitesi 5 Boyutlu 3 Seviye (EQ-5D-3L) anketi ile değerlendirilmiştir.
Bulgular: EQ-5D-3L ölçeğinin mobilite, öz bakım, olağan aktiviteler, ağrı/rahatsızlık, anksiyete/depresyon ve genel sağlık skorunu içeren tüm parametrelerinde hem terapist gözetiminde hem de evde egzersiz gruplarında anlamlı iyileşmeler elde edildi (p<0.05). Terapist gözetimindeki ve ev egzersiz grupları EQ-5D-3L açısından karşılaştırıldığında, bu gruplar arasında anlamlı bir fark bulunmamıştır (p>0.05).
Sonuç: Kalistenik egzersizler hem terapist gözetiminde hem de evde egzersiz programı olarak uygulandığında Post-Covid sendromlu hastalarda yaşam kalitesinde anlamlı bir artışa neden olmaktadır.
Kaynakça
-
1. Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601-615. doi: 10.1038/s41591-021-01283-z.
-
2. Goërtz YMJ, Van Herck M, Delbressine JM, et al. Persistent symptoms 3 months after a SARS-CoV-2 infection: the post-COVID-19 syndrome? ERJ Open Res. 2020;6(4):00542-2020. doi: 10.1183/23120541.00542-2020.
-
3. Khoreva MA. Postcovid syndrome - the new reality. Neurosci Behav Physiol. 2022;52(5):619-624. doi: 10.1007/s11055-022-01286-4.
-
4. Akbarialiabad H, Taghrir MH, Abdollahi A, et al. Long COVID, a comprehensive systematic scoping review. Infection. 2021;49(6):1163-1186. doi: 10.1007/s15010-021-01666-x.
-
5. Scholkmann F, May CA. COVID-19, post-acute COVID-19 syndrome (PACS, "long COVID") and post-COVID-19 vaccination syndrome (PCVS, "post-COVIDvac-syndrome"): Similarities and differences. Pathol Res Pract. 2023;246:154497. doi: 10.1016/j.prp.2023.154497.
-
6. Halpin SJ, McIvor C, Whyatt G, et al. Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: A cross-sectional evaluation. J Med Virol. 2021;93(2):1013-1022. doi: 10.1002/jmv.26368.
-
7. Carvalho-Schneider C, Laurent E, Lemaignen A, et al. Follow-up of adults with noncritical COVID-19 two months after symptom onset. Clin Microbiol Infect. 2021;27(2):258-263. doi: 10.1016/j.cmi.2020.09.052.
-
8. Beyer S, Haufe S, Meike D, et al. Post-COVID-19 syndrome: Physical capacity, fatigue and quality of life. PLoS One. 2023;18(10):e0292928. doi: 10.1371/journal.pone.0292928.
-
9. Jacobs LG, Gourna Paleoudis E, Lesky-Di Bari D, et al. Persistence of symptoms and quality of life at 35 days after hospitalization for COVID-19 infection. PLoS One. 2020;15(12):e0243882. doi: 10.1371/journal.pone.0243882.
-
10. Ozer Kaya D, Duzgun I, Baltaci G, et al. Effects of calisthenics and Pilates exercises on coordination and proprioception in adult women: a randomized controlled trial. J Sport Rehabil. 2012;21(3):235-43. doi: 10.1123/jsr.21.3.235.
-
11. Carter SE, Gladwell VF. Effect of breaking up sedentary time with callisthenics on endothelial function. J Sports Sci. 2017;35(15):1508-1514. doi: 10.1080/02640414.2016.1223331.
-
12. Bai B, Xu M, Zhou H, et al. Effects of aerobic training on cardiopulmonary fitness in patients with long COVID-19: a randomized controlled trial. Trials. 2024;25(1):649. doi: 10.1186/s13063-024-08473-3.
-
13. Trzmiel T, Marchewka R, Pieczyńska A, et al. The effect of using a rehabilitation robot for patients with post-coronavirus disease (COVID-19) fatigue syndrome. Sensors (Basel). 2023;23(19):8120. doi: 10.3390/s23198120.
-
14. Elyazed TIA, Alsharawy LA, Salem SE, et al. Effect of home-based pulmonary rehabilitation on exercise capacity in post COVID-19 patients: a randomized controlled trail. J Neuroeng Rehabil. 2024;21(1):40. doi: 10.1186/s12984-024-01340-x.
-
15. Palacios-Ceña D, Bautista-Villaécija O, Güeita-Rodríguez J, et al. Supervised telerehabilitation and home-based respiratory muscle training for post-COVID-19 condition symptoms: a nested qualitative study exploring the perspectives of participants in a randomized controlled trial. Phys Ther. 2024;104(5):pzae043. doi: 10.1093/ptj/pzae043.
-
16. Buchholz I, Marten O, Janssen MF. Feasibility and validity of the EQ-5D-3L in the elderly Europeans: a secondary data analysis using SHARE(d) data. Qual Life Res. 2022;31(11):3267-3282. doi: 10.1007/s11136-022-03158-3.
-
17. Rencz F, Lakatos PL, Gulácsi L, et al. Validity of the EQ-5D-5L and EQ-5D-3L in patients with Crohn's disease. Qual Life Res. 2019;28(1):141-152.
-
18. Kahyaoğlu Süt H, Unsar S. Is EQ-5D a valid quality of life instrument in patients with acute coronary syndrome? Anadolu Kardiyol Derg. 2011;11(2):156-62.
-
19. Thompson PD, Arena R, Riebe D, et al. American College of Sports Medicine. ACSM's new preparticipation health screening recommendations from ACSM's guidelines for exercise testing and prescription, ninth edition. Curr Sports Med Rep. 2013;12(4):215-7.
-
20. McGowan CJ, Pyne DB, Thompson KG, et al. Warm-up strategies for sport and exercise: mechanisms and applications. Sports Med. 2015;45(11):1523-46.
-
21. Van Hooren B, Peake JM. Do we need a cool-down after exercise? a narrative review of the psychophysiological effects and the effects on performance, injuries and the long-term adaptive response. Sports Medicine. 2018;48(7):1575–1595.
-
22. Shariat A, Cleland JA, Danaee M, et al. Borg CR-10 scale as a new approach to monitoring office exercise training. Work. 2018;60(4):549-554. doi: 10.3233/WOR-182762.
-
23. Zamunér AR, Moreno MA, Camargo TM, et al. Assessment of subjective perceived exertion at the anaerobic threshold with the Borg CR-10 Scale. J Sports Sci Med. 2011;10(1):130-6.
-
24. Barbagelata L, Masson W, Iglesias D, et al. Cardiopulmonary exercise testing in patients with post-COVID-19 syndrome. Medicina Clinica (English ed.). 2022;159(1):6–11.
-
25. Aparisi Á, Ybarra-Falcón C, García-Gómez M, et al. Exercise ventilatory inefficiency in post-COVID-19 syndrome: insights from a prospective evaluation. J Clin Med. 2021;10(12):2591. doi: 10.3390/jcm10122591.
-
26. Tryfonos A, Pourhamidi K, Jörnåker G, et al. functional limitations and exercise intolerance in patients with post-COVID condition: a randomized crossover clinical trial. JAMA Netw Open. 2024;7(4):e244386. doi: 10.1001/jamanetworkopen.2024.4386.
-
27. Espinoza-Bravo C, Arnal-Gómez A, Martínez-Arnau FM, et al. Effectiveness of functional or aerobic exercise combined with breathing techniques in telerehabilitation for patients with long COVID: a randomized controlled trial. Phys Ther. 2023;103(11):pzad118.
-
28. McGregor G, Sandhu H, Bruce J, et al. Clinical effectiveness of an online supervised group physical and mental health rehabilitation programme for adults with post-covid-19 condition (REGAIN study): multicentre randomised controlled trial. BMJ. 2024;384:e076506. doi: 10.1136/bmj-2023-076506. Erratum in: BMJ. 2024;385:q988. doi: 10.1136/bmj.q988.
-
29. Romanet C, Wormser J, Fels A, et al. Effectiveness of exercise training on the dyspnoea of individuals with long COVID: A randomised controlled multicentre trial. Ann Phys Rehabil Med. 2023;66(5):101765. doi: 10.1016/j.rehab.2023.101765.
-
30. Jimeno-Almazán A, Franco-López F, Buendía-Romero Á, et al. Rehabilitation for post-COVID-19 condition through a supervised exercise intervention: A randomized controlled trial. Scand J Med Sci Sports. 2022;32(12):1791-1801. doi: 10.1111/sms.14240.
-
31. Compagno S, Palermi S, Pescatore V, et al. Physical and psychological reconditioning in long COVID syndrome: Results of an out-of-hospital exercise and psychological - based rehabilitation program. Int J Cardiol Heart Vasc. 2022;41:101080.
-
32. Maltezou HC, Pavli A, Tsakris A. Post-COVID syndrome: an insight on its pathogenesis. Vaccines (Basel). 2021;9(5):497. doi: 10.3390/vaccines9050497.
-
33. Maamar M, Artime A, Pariente E, et al. Post-COVID-19 syndrome, low-grade inflammation and inflammatory markers: a cross-sectional study. Curr Med Res Opin. 2022;38(6):901-909. doi: 10.1080/03007995.2022.2042991.
-
34. Kadoglou NP, Perrea D, Iliadis F, et al. Exercise reduces resistin and inflammatory cytokines in patients with type 2 diabetes. Diabetes Care. 2007;30(3):719-21.
-
35. Niebauer J, Clark A L, Webb-Peploe K M, et al. Exercise training in chronic heart failure: effects on pro-inflammatory markers. European Journal of Heart Failure. 2005;7(2):189–193. doi: 10.1016/j.ejheart.2004.07.012
-
36. Greulich T, Kehr K, Nell C, et al. A randomized clinical trial to assess the influence of a three months training program (gym-based individualized vs. calisthenics-based non-invidualized) in COPD-patients. Respir Res. 2014;15(1):36.
-
37. Tigli A, Yakut Y. Effect of calisthenic exercise program on inflammatory markers, quality of life and exercise capacity after renal transplantation: a randomized controlled study. J Exercise Therapy and Rehabilitation. 2020;7(1):1-10.
-
38. Probst V S, Kovelis D, Hernandes N A, et al. Effects of 2 exercise training programms on physical activity in daily life in patients with COPD. Respiratory care. 2011;56(11):1799–1807. doi: 10.4187/respcare.01110
-
39. Aydın T, Akif Sarıyıldız M, Guler M, et al. Evaluation of the effectiveness of home based or hospital based calisthenic exercises in patients with multiple sclerosis. Eur Rev Med Pharmacol Sci. 2014;18(8):1189-98.