Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıl 2025, Cilt: 9 Sayı: 3, 707 - 720, 28.12.2025
https://doi.org/10.46519/ij3dptdi.1782019

Öz

Kaynakça

  • 1. Li, H., Lo, J.T.Y., “A review on the use of top-view surveillance videos for pedestrian detection, tracking and behavior recognition across public spaces”, Accident Analysis and Prevention, Vol. 215, Page 107986, 2025.
  • 2. Kim, T.-L., Jang, B.J., Yeon, J.Y., Kim, T.-H., Park, T.-H., “Camera-LiDAR Jaywalking Detection in Traffic Surveillance System”, IEEE/SICE International Symposium on System Integration, Pages 1004–1009, 2025.
  • 3. Dissanayake, U., Weerasekara, D., Sumanasekara, H., Ishara, D., Wijesiri, P., Moonamaldeniya, M., “IntelliCross: Adaptive Pedestrian Crossing System”, International Conference on Advanced Research in Computing (ICARC), Pages 1–6, 2025.
  • 4. Pawlak, A., Pawelec, A., Kossakowski, P.G., “Evaluation of the efficiency of solutions used at active pedestrian crossings”, Electronics, Vol. 14, Issue 3, 2025.
  • 5. Razzok, M., Badri, A., El Mourabit, I., Ruichek, Y., Sahel, A., “Pedestrian detection system based on deep learning”, International Journal of Advances in Applied Sciences, Vol. 11, Page 194, 2022.
  • 6. Tian, Y., Luo, P., Wang, X., Tang, X., “Deep learning strong parts for pedestrian detection”, IEEE International Conference on Computer Vision (ICCV), 2015.
  • 7. Tomè, D., Monti, F., Baroffio, L., Bondi, L., Tagliasacchi, M., Tubaro, S., “Deep convolutional neural networks for pedestrian detection”, Signal Processing: Image Communication, Vol. 47, Pages 482–489, 2016.
  • 8. Xu, H., Huang, S., Yang, Y., Chen, X., Hu, S., “Deep learning-based pedestrian detection using RGB images and sparse LiDAR point clouds”, IEEE Transactions on Industrial Informatics, Vol. 20, Issue 5, Pages 7149–7161, 2024.
  • 9. Chen, X., Wei, P., Ke, W., Ye, Q., Jiao, J., “Pedestrian detection with deep convolutional neural network”, Computer Vision – ACCV 2014 Workshops, Pages 354–365, 2015.
  • 10. Dollar, P., Wojek, C., Schiele, B., Perona, P., “Pedestrian detection: A benchmark”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Pages 304–311, 2009.
  • 11. Jocher, G., Chaurasia, A., Qiu, J., “Ultralytics YOLOv8”, GitHub, 2023.
  • 12. Wang, C.-Y., Liao, H.-Y.M., “YOLOv9: Learning what you want to learn using programmable gradient information”, arXiv preprint arXiv:2402.13616, 2024. 13. Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z. & Han, J., “YOLOv10: Real-time end-to-end object detection”, arXiv preprint arXiv:2405.14458, 2024.
  • 14. Khanam, R. & Hussain, M., “YOLOv11: An overview of the key architectural enhancements”, arXiv preprint arXiv:2410.17725, 2024.
  • 15. Tian, Y., Ye, Q., Doermann, D., “YOLOv12: Attention-centric real-time object detectors”, arXiv preprint arXiv:2502.12524, 2025.
  • 16. Hidayatullah, P., Syakrani, N., Sholahuddin, M. R., Gelar, T., Tubagus, R., “YOLOv8 to YOLO11: A Comprehensive Architecture In-depth Comparative Review”, arXiv preprint arXiv:2501.13400, 2025.
  • 17. Vikruthi, S., Singasani, T.R., Kumar, V.T.R.P.K.M., Nagendrudu, P.V.V.S.D., Raghavendra, C., Sahith, R., “Detection of emergency vehicles in traffic and assign traffic free path using deep learning”, International Conference on Sentiment Analysis and Deep Learning (ICSADL), Pages 1252–1261, 2025.
  • 18. Yali, A., Felzenszwalb, P., Girshick, R., “Object detection”, Computer Vision: A Reference Guide, Pages 875–883, 2021.
  • 19. Zou, Z., Chen, K., Shi, Z., Guo, Y., Ye, J., “Object detection in 20 years: A survey”, Proceedings of the IEEE, Vol. 111, Issue 3, Pages 257–276, 2023.
  • 20. Kaur, R., Singh, S., “A comprehensive review of object detection with deep learning”, Digital Signal Processing, Vol. 132, Page 103812, 2023.
  • 21. Flores-Calero, M., Astudillo, C.A., Guevara, D., Maza, J., Lita, B.S., Defaz, B., Ante, J.S., Zabala-Blanco, D., Armingol Moreno, J.M., “Traffic sign detection and recognition using YOLO object detection algorithm: A systematic review”, Mathematics, Vol. 12, Issue 2, 2024.
  • 22. Tan, M., Pang, R., Le, Q.V., “EfficientDet: Scalable and efficient object detection”, arXiv preprint arXiv:1911.09070, 2020.
  • 23. Jocher, G., “Ultralytics YOLOv5”, Zenodo, 2020.
  • 24. Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M., “YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors”, arXiv preprint arXiv:2207.02696, 2022.
  • 25. Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M., “YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors”, arXiv, 2022.
  • 26. Dalianis, H., “Evaluation metrics and evaluation”, Clinical Text Mining: Secondary Use of Electronic Patient Records, Pages 45–53, 2018.
  • 27. Yue, H., “Investigating streetscape environmental characteristics associated with road traffic crashes using street view imagery and computer vision”, Accident Analysis and Prevention, Vol. 210, Page 107851, 2025.
  • 28. Öztaş, Ç. E., “Sürücü destek sistemleri için termal kamera görüntülerinde derin öğrenme tabanlı yaya tespiti”, Yüksek Lisans Tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ, Türkiye, 2024.

ADVANCED PEDESTRIAN DETECTION AND INTELLIGENT TRAFFIC MANAGEMENT VIA DEEP LEARNING

Yıl 2025, Cilt: 9 Sayı: 3, 707 - 720, 28.12.2025
https://doi.org/10.46519/ij3dptdi.1782019

Öz

In this study, we developed a deep learning-based pedestrian detection system to prevent pedestrian collisions. These collisions account for a significant portion of urban traffic accidents. We collected and annotated a custom dataset of 620 high-resolution pedestrian images using the MakeSense labeling tool. Using this dataset, we trained YOLOv8, YOLOv11, and YOLOv12 models and evaluated them based on precision, recall, mAP, and F1-score. The training processes were conducted in the Google Colab environment using Python, supported by GPU acceleration. Among the models, YOLOv11-S achieved the highest performance with an F1-score of 94.9%. We then integrated the trained model into a PyQt5-based desktop simulation interface, enabling real-time pedestrian detection and automated traffic light control. The results demonstrate that deep learning-based pedestrian detection systems can operate effectively in real-time scenarios and provide a sustainable, scalable solution for smart city infrastructures.

Kaynakça

  • 1. Li, H., Lo, J.T.Y., “A review on the use of top-view surveillance videos for pedestrian detection, tracking and behavior recognition across public spaces”, Accident Analysis and Prevention, Vol. 215, Page 107986, 2025.
  • 2. Kim, T.-L., Jang, B.J., Yeon, J.Y., Kim, T.-H., Park, T.-H., “Camera-LiDAR Jaywalking Detection in Traffic Surveillance System”, IEEE/SICE International Symposium on System Integration, Pages 1004–1009, 2025.
  • 3. Dissanayake, U., Weerasekara, D., Sumanasekara, H., Ishara, D., Wijesiri, P., Moonamaldeniya, M., “IntelliCross: Adaptive Pedestrian Crossing System”, International Conference on Advanced Research in Computing (ICARC), Pages 1–6, 2025.
  • 4. Pawlak, A., Pawelec, A., Kossakowski, P.G., “Evaluation of the efficiency of solutions used at active pedestrian crossings”, Electronics, Vol. 14, Issue 3, 2025.
  • 5. Razzok, M., Badri, A., El Mourabit, I., Ruichek, Y., Sahel, A., “Pedestrian detection system based on deep learning”, International Journal of Advances in Applied Sciences, Vol. 11, Page 194, 2022.
  • 6. Tian, Y., Luo, P., Wang, X., Tang, X., “Deep learning strong parts for pedestrian detection”, IEEE International Conference on Computer Vision (ICCV), 2015.
  • 7. Tomè, D., Monti, F., Baroffio, L., Bondi, L., Tagliasacchi, M., Tubaro, S., “Deep convolutional neural networks for pedestrian detection”, Signal Processing: Image Communication, Vol. 47, Pages 482–489, 2016.
  • 8. Xu, H., Huang, S., Yang, Y., Chen, X., Hu, S., “Deep learning-based pedestrian detection using RGB images and sparse LiDAR point clouds”, IEEE Transactions on Industrial Informatics, Vol. 20, Issue 5, Pages 7149–7161, 2024.
  • 9. Chen, X., Wei, P., Ke, W., Ye, Q., Jiao, J., “Pedestrian detection with deep convolutional neural network”, Computer Vision – ACCV 2014 Workshops, Pages 354–365, 2015.
  • 10. Dollar, P., Wojek, C., Schiele, B., Perona, P., “Pedestrian detection: A benchmark”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Pages 304–311, 2009.
  • 11. Jocher, G., Chaurasia, A., Qiu, J., “Ultralytics YOLOv8”, GitHub, 2023.
  • 12. Wang, C.-Y., Liao, H.-Y.M., “YOLOv9: Learning what you want to learn using programmable gradient information”, arXiv preprint arXiv:2402.13616, 2024. 13. Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z. & Han, J., “YOLOv10: Real-time end-to-end object detection”, arXiv preprint arXiv:2405.14458, 2024.
  • 14. Khanam, R. & Hussain, M., “YOLOv11: An overview of the key architectural enhancements”, arXiv preprint arXiv:2410.17725, 2024.
  • 15. Tian, Y., Ye, Q., Doermann, D., “YOLOv12: Attention-centric real-time object detectors”, arXiv preprint arXiv:2502.12524, 2025.
  • 16. Hidayatullah, P., Syakrani, N., Sholahuddin, M. R., Gelar, T., Tubagus, R., “YOLOv8 to YOLO11: A Comprehensive Architecture In-depth Comparative Review”, arXiv preprint arXiv:2501.13400, 2025.
  • 17. Vikruthi, S., Singasani, T.R., Kumar, V.T.R.P.K.M., Nagendrudu, P.V.V.S.D., Raghavendra, C., Sahith, R., “Detection of emergency vehicles in traffic and assign traffic free path using deep learning”, International Conference on Sentiment Analysis and Deep Learning (ICSADL), Pages 1252–1261, 2025.
  • 18. Yali, A., Felzenszwalb, P., Girshick, R., “Object detection”, Computer Vision: A Reference Guide, Pages 875–883, 2021.
  • 19. Zou, Z., Chen, K., Shi, Z., Guo, Y., Ye, J., “Object detection in 20 years: A survey”, Proceedings of the IEEE, Vol. 111, Issue 3, Pages 257–276, 2023.
  • 20. Kaur, R., Singh, S., “A comprehensive review of object detection with deep learning”, Digital Signal Processing, Vol. 132, Page 103812, 2023.
  • 21. Flores-Calero, M., Astudillo, C.A., Guevara, D., Maza, J., Lita, B.S., Defaz, B., Ante, J.S., Zabala-Blanco, D., Armingol Moreno, J.M., “Traffic sign detection and recognition using YOLO object detection algorithm: A systematic review”, Mathematics, Vol. 12, Issue 2, 2024.
  • 22. Tan, M., Pang, R., Le, Q.V., “EfficientDet: Scalable and efficient object detection”, arXiv preprint arXiv:1911.09070, 2020.
  • 23. Jocher, G., “Ultralytics YOLOv5”, Zenodo, 2020.
  • 24. Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M., “YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors”, arXiv preprint arXiv:2207.02696, 2022.
  • 25. Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M., “YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors”, arXiv, 2022.
  • 26. Dalianis, H., “Evaluation metrics and evaluation”, Clinical Text Mining: Secondary Use of Electronic Patient Records, Pages 45–53, 2018.
  • 27. Yue, H., “Investigating streetscape environmental characteristics associated with road traffic crashes using street view imagery and computer vision”, Accident Analysis and Prevention, Vol. 210, Page 107851, 2025.
  • 28. Öztaş, Ç. E., “Sürücü destek sistemleri için termal kamera görüntülerinde derin öğrenme tabanlı yaya tespiti”, Yüksek Lisans Tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ, Türkiye, 2024.

ADVANCED PEDESTRIAN DETECTION AND INTELLIGENT TRAFFIC MANAGEMENT VIA DEEP LEARNING

Yıl 2025, Cilt: 9 Sayı: 3, 707 - 720, 28.12.2025
https://doi.org/10.46519/ij3dptdi.1782019

Öz

In this study, we developed a deep learning-based pedestrian detection system to prevent pedestrian collisions. These collisions account for a significant portion of urban traffic accidents. We collected and annotated a custom dataset of 620 high-resolution pedestrian images using the MakeSense labeling tool. Using this dataset, we trained YOLOv8, YOLOv11, and YOLOv12 models and evaluated them based on precision, recall, mAP, and F1-score. The training processes were conducted in the Google Colab environment using Python, supported by GPU acceleration. Among the models, YOLOv11-S achieved the highest performance with an F1-score of 94.9%. We then integrated the trained model into a PyQt5-based desktop simulation interface, enabling real-time pedestrian detection and automated traffic light control. The results demonstrate that deep learning-based pedestrian detection systems can operate effectively in real-time scenarios and provide a sustainable, scalable solution for smart city infrastructures.

Kaynakça

  • 1. Li, H., Lo, J.T.Y., “A review on the use of top-view surveillance videos for pedestrian detection, tracking and behavior recognition across public spaces”, Accident Analysis and Prevention, Vol. 215, Page 107986, 2025.
  • 2. Kim, T.-L., Jang, B.J., Yeon, J.Y., Kim, T.-H., Park, T.-H., “Camera-LiDAR Jaywalking Detection in Traffic Surveillance System”, IEEE/SICE International Symposium on System Integration, Pages 1004–1009, 2025.
  • 3. Dissanayake, U., Weerasekara, D., Sumanasekara, H., Ishara, D., Wijesiri, P., Moonamaldeniya, M., “IntelliCross: Adaptive Pedestrian Crossing System”, International Conference on Advanced Research in Computing (ICARC), Pages 1–6, 2025.
  • 4. Pawlak, A., Pawelec, A., Kossakowski, P.G., “Evaluation of the efficiency of solutions used at active pedestrian crossings”, Electronics, Vol. 14, Issue 3, 2025.
  • 5. Razzok, M., Badri, A., El Mourabit, I., Ruichek, Y., Sahel, A., “Pedestrian detection system based on deep learning”, International Journal of Advances in Applied Sciences, Vol. 11, Page 194, 2022.
  • 6. Tian, Y., Luo, P., Wang, X., Tang, X., “Deep learning strong parts for pedestrian detection”, IEEE International Conference on Computer Vision (ICCV), 2015.
  • 7. Tomè, D., Monti, F., Baroffio, L., Bondi, L., Tagliasacchi, M., Tubaro, S., “Deep convolutional neural networks for pedestrian detection”, Signal Processing: Image Communication, Vol. 47, Pages 482–489, 2016.
  • 8. Xu, H., Huang, S., Yang, Y., Chen, X., Hu, S., “Deep learning-based pedestrian detection using RGB images and sparse LiDAR point clouds”, IEEE Transactions on Industrial Informatics, Vol. 20, Issue 5, Pages 7149–7161, 2024.
  • 9. Chen, X., Wei, P., Ke, W., Ye, Q., Jiao, J., “Pedestrian detection with deep convolutional neural network”, Computer Vision – ACCV 2014 Workshops, Pages 354–365, 2015.
  • 10. Dollar, P., Wojek, C., Schiele, B., Perona, P., “Pedestrian detection: A benchmark”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Pages 304–311, 2009.
  • 11. Jocher, G., Chaurasia, A., Qiu, J., “Ultralytics YOLOv8”, GitHub, 2023.
  • 12. Wang, C.-Y., Liao, H.-Y.M., “YOLOv9: Learning what you want to learn using programmable gradient information”, arXiv preprint arXiv:2402.13616, 2024. 13. Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z. & Han, J., “YOLOv10: Real-time end-to-end object detection”, arXiv preprint arXiv:2405.14458, 2024.
  • 14. Khanam, R. & Hussain, M., “YOLOv11: An overview of the key architectural enhancements”, arXiv preprint arXiv:2410.17725, 2024.
  • 15. Tian, Y., Ye, Q., Doermann, D., “YOLOv12: Attention-centric real-time object detectors”, arXiv preprint arXiv:2502.12524, 2025.
  • 16. Hidayatullah, P., Syakrani, N., Sholahuddin, M. R., Gelar, T., Tubagus, R., “YOLOv8 to YOLO11: A Comprehensive Architecture In-depth Comparative Review”, arXiv preprint arXiv:2501.13400, 2025.
  • 17. Vikruthi, S., Singasani, T.R., Kumar, V.T.R.P.K.M., Nagendrudu, P.V.V.S.D., Raghavendra, C., Sahith, R., “Detection of emergency vehicles in traffic and assign traffic free path using deep learning”, International Conference on Sentiment Analysis and Deep Learning (ICSADL), Pages 1252–1261, 2025.
  • 18. Yali, A., Felzenszwalb, P., Girshick, R., “Object detection”, Computer Vision: A Reference Guide, Pages 875–883, 2021.
  • 19. Zou, Z., Chen, K., Shi, Z., Guo, Y., Ye, J., “Object detection in 20 years: A survey”, Proceedings of the IEEE, Vol. 111, Issue 3, Pages 257–276, 2023.
  • 20. Kaur, R., Singh, S., “A comprehensive review of object detection with deep learning”, Digital Signal Processing, Vol. 132, Page 103812, 2023.
  • 21. Flores-Calero, M., Astudillo, C.A., Guevara, D., Maza, J., Lita, B.S., Defaz, B., Ante, J.S., Zabala-Blanco, D., Armingol Moreno, J.M., “Traffic sign detection and recognition using YOLO object detection algorithm: A systematic review”, Mathematics, Vol. 12, Issue 2, 2024.
  • 22. Tan, M., Pang, R., Le, Q.V., “EfficientDet: Scalable and efficient object detection”, arXiv preprint arXiv:1911.09070, 2020.
  • 23. Jocher, G., “Ultralytics YOLOv5”, Zenodo, 2020.
  • 24. Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M., “YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors”, arXiv preprint arXiv:2207.02696, 2022.
  • 25. Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M., “YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors”, arXiv, 2022.
  • 26. Dalianis, H., “Evaluation metrics and evaluation”, Clinical Text Mining: Secondary Use of Electronic Patient Records, Pages 45–53, 2018.
  • 27. Yue, H., “Investigating streetscape environmental characteristics associated with road traffic crashes using street view imagery and computer vision”, Accident Analysis and Prevention, Vol. 210, Page 107851, 2025.
  • 28. Öztaş, Ç. E., “Sürücü destek sistemleri için termal kamera görüntülerinde derin öğrenme tabanlı yaya tespiti”, Yüksek Lisans Tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ, Türkiye, 2024.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yazılım Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Rehnüma Küçükilhan Turunç 0009-0009-3930-6502

Ahmet Haşim Yurttakal 0000-0001-5170-6466

Gönderilme Tarihi 11 Eylül 2025
Kabul Tarihi 15 Aralık 2025
Yayımlanma Tarihi 28 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 3

Kaynak Göster

APA Küçükilhan Turunç, R., & Yurttakal, A. H. (2025). ADVANCED PEDESTRIAN DETECTION AND INTELLIGENT TRAFFIC MANAGEMENT VIA DEEP LEARNING. International Journal of 3D Printing Technologies and Digital Industry, 9(3), 707-720. https://doi.org/10.46519/ij3dptdi.1782019
AMA Küçükilhan Turunç R, Yurttakal AH. ADVANCED PEDESTRIAN DETECTION AND INTELLIGENT TRAFFIC MANAGEMENT VIA DEEP LEARNING. IJ3DPTDI. Aralık 2025;9(3):707-720. doi:10.46519/ij3dptdi.1782019
Chicago Küçükilhan Turunç, Rehnüma, ve Ahmet Haşim Yurttakal. “ADVANCED PEDESTRIAN DETECTION AND INTELLIGENT TRAFFIC MANAGEMENT VIA DEEP LEARNING”. International Journal of 3D Printing Technologies and Digital Industry 9, sy. 3 (Aralık 2025): 707-20. https://doi.org/10.46519/ij3dptdi.1782019.
EndNote Küçükilhan Turunç R, Yurttakal AH (01 Aralık 2025) ADVANCED PEDESTRIAN DETECTION AND INTELLIGENT TRAFFIC MANAGEMENT VIA DEEP LEARNING. International Journal of 3D Printing Technologies and Digital Industry 9 3 707–720.
IEEE R. Küçükilhan Turunç ve A. H. Yurttakal, “ADVANCED PEDESTRIAN DETECTION AND INTELLIGENT TRAFFIC MANAGEMENT VIA DEEP LEARNING”, IJ3DPTDI, c. 9, sy. 3, ss. 707–720, 2025, doi: 10.46519/ij3dptdi.1782019.
ISNAD Küçükilhan Turunç, Rehnüma - Yurttakal, Ahmet Haşim. “ADVANCED PEDESTRIAN DETECTION AND INTELLIGENT TRAFFIC MANAGEMENT VIA DEEP LEARNING”. International Journal of 3D Printing Technologies and Digital Industry 9/3 (Aralık2025), 707-720. https://doi.org/10.46519/ij3dptdi.1782019.
JAMA Küçükilhan Turunç R, Yurttakal AH. ADVANCED PEDESTRIAN DETECTION AND INTELLIGENT TRAFFIC MANAGEMENT VIA DEEP LEARNING. IJ3DPTDI. 2025;9:707–720.
MLA Küçükilhan Turunç, Rehnüma ve Ahmet Haşim Yurttakal. “ADVANCED PEDESTRIAN DETECTION AND INTELLIGENT TRAFFIC MANAGEMENT VIA DEEP LEARNING”. International Journal of 3D Printing Technologies and Digital Industry, c. 9, sy. 3, 2025, ss. 707-20, doi:10.46519/ij3dptdi.1782019.
Vancouver Küçükilhan Turunç R, Yurttakal AH. ADVANCED PEDESTRIAN DETECTION AND INTELLIGENT TRAFFIC MANAGEMENT VIA DEEP LEARNING. IJ3DPTDI. 2025;9(3):707-20.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.