Araştırma Makalesi
BibTex RIS Kaynak Göster

MAKAS-MAFSAL MEKANİZMA TEKNİĞİ KULLANILARAK İKİ SERBESTLİK DERECELİ KABLOLU RADYAL MAKAS SİSTEMİ TASARIMI VE EKLEMELİ İMALAT YÖNTEMİ İLE ÜRETİMİ

Yıl 2020, , 253 - 263, 31.12.2020
https://doi.org/10.46519/ij3dptdi.832922

Öz

İki veya daha yüksek serbestlik dereceli makas-mafsal mekanizmaları başta endüstriyel robotlar olmak üzere birçok makinada aktif olarak kullanılmaktadır. Günümüzde teknolojik gelişmelerde estetik ve verimlilik için yeni tasarımlar denenmektedir. Makas-mafsal mekanizmalarında kuvvet iletimi çoğunlukla piston, kablo ve yay sistemleriyle gerçekleştirilmektedir. Bu çalışmada, radyal hareket kabiliyetine sahip katlanabilir makas mekanizma tasarımı gerçekleştirilmiştir. Kablo ile içbükey veya dış bükey şekillere dönüştürülebilen iki serbestlik dereceli açılı makas mekanizmasının üretilmesi hedeflenmiştir. Geliştirilen mekanizma tasarımının topolojik optimizasyonu Autodesk Fusion 360 tasarım programı kullanılarak yapılmıştır. Tasarlanan modelin üretimi eklemeli üretim yöntemi ile 3B yazıcı kullanılarak elde edilmiştir. Üretilen nihai parçalar cıvatalar yardımıyla entegre edilerek makas mekanizması elde edilmiştir. İmalattan sonra mekanizmada ortaya çıkan mekanik sistem kaynaklı sorunlar tasarım üzerinde iyileştirmeler yapılarak çözülmüştür. Üretilen iki farklı prototip üzerinde karşılaştırmalar yapılmıştır. Ayrıca, elde edilen sistemin analitik çözümü deneysel sonuçlarla karşılaştırılmıştır.

Teşekkür

Çalışmada desteklerinden dolayı Sayın Sebahattin Çakı (CF Control)’ya teşekkürlerimizi bildiririz.

Kaynakça

  • S. Gheshmi and M. Shahinpoor, Robotic surgery: smart materials, robotic structures, and artificial muscles. Pan Stanford Publishing, 2015.
  • S. Dilibal, H. Sahin, Y. Çelik, Experimental and numerical analysis on the bending response of the geometrically gradient soft robotics actuator. Archives of Mechanics, 70(5), pp. 391-404, 2018.
  • S. Dilibal, Nikel-titanyum şekil bellekli alaşım üretimi ve şekil bellek eğitimi, Doktora tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Istanbul, 2005.
  • S. Dilibal, H. Sahin, E. Dursun, E.D. Engeberg, Nickel–titanium shape memory alloy-actuated thermal overload relay system design. Electrical Engineering, 99(3), 2017.
  • S. Dilibal, Stabilized actuation of a novel NiTi shape memory alloy actuated flexible structure under thermal loading. Materiali in Tehnologije, 52(5), pp. 599-605, 2018.
  • S. Dilibal, The effect of long-term heat treatment on the thermomechanical behavior of NiTi shape memory alloys in defense and aerospace applications. Defense Science Journal, 15(2), pp. 1-23, 2016.
  • G. Peduk, S. Dilibal, O. Harrysson, S. Ozbek, H. West, Characterization of Ni–Ti alloy powders for use in additive manufacturing. Russian Journal of Non-Ferrous Metals, 59(4), pp.433-439, 2018.
  • C. Ozbaran, S. Dilibal, Parallel jaw robotic gripper design and production with additive manufacturing method by using horizontal and vertical rack and pinion gear mechanism, Int. J. of 3D Printing Tech. Dig. Ind., 4(2), pp. 139-151, 2020.
  • T. Kokawa, T. Hokkaido, cable scissors arch–marionettic structure, IASS International Colloquium, pp. 107–114, 1997.
  • F. Maden, K. Korkmaz, and Y. Akgn, A review of planar scissor structural mechanisms: geometric principles and design methots, Architectural Science Rev., vol. 54, no. 3, pp. 246–257, 2011.
  • M. Matheou, M. C. Phocas, E. G. Christoforou, and A. Mller, On the kinetics of reconfigurable hybrid structures, J. of Building Eng., vol. 17, pp. 32–42, 2018.
  • F.A. dos Santo, A. Rodrigue, A. Micheletti, Design and experimental testing of an adaptive shape-morphing tensegrity structure, with frequency self-tuning capabilities, using shape-memory alloys, Smart Materials and Structures, 7, 2015.
  • R. E. Skelton and M. C. de Oliveira, Tensegrity systems, Springer, 2009.
  • S. Gur, C. Karagoz, G. Kiper, K. Korkmaz, Synthesis of Scalable Planar Scissor Linkages with Anti-Parallelogram Loops, Proceedings of the 7th European Conference on Mechanism Science, pp. 3, 2019.
  • J. Begey, M. Vedrines, P. Renaud, Design of Tensegrity-based Manipulators: comparison of two approaches to respect a remote center of motion constraint, IEEE Robotıcs and Automatıon Letters, pp. 2-7, 2020.
  • D.L. Bakker, D. Matsuura, Y. Takeda, J.L. Herder, Design of an Environmentally Interactive Continuum Manipulator, The 14th IFToMM World Congress, Taipei, Taiwan, pp. 5-6, 2015.
  • M. Arsenault and C. M. Gosselin, Kinematic and static analysis of a planar modular 2-DoF tensegrity mechanism, IEEE Int. Conf. on Robotic and Automation, pp. 4193–4198, 2006.
  • W. Yu, X. Wang, E. Ferraris, J. Zhang, Melt crystallization of PLA/Talc in fused filament fabrication, Materials and Design, 3, 2019.

DESIGN AND ADDITIVE MANUFACTURING OF TWO-DEGREE OF FREEDOM WIRED RADIAL SCISSOR SYSTEM USING SCISSOR-JOINT MECHANISM

Yıl 2020, , 253 - 263, 31.12.2020
https://doi.org/10.46519/ij3dptdi.832922

Öz

Scissor-joint mechanisms with two or higher degrees of freedom are actively used in many machines, especially industrial robots. Novel designs are being tried for aesthetics and efficiency in technological developments. In scissor-joint mechanisms, force transmission is mostly carried out by piston, cable and spring systems. In this study, foldable scissor mechanism design with radial motion was built. It is aimed to produce scissor mechanisms with two degrees of freedom that can be converted into concave or convex shapes via cables. The topological optimization of the mechanism design was done using the Autodesk Fusion 360 design program. The production of the designed model was achieved using the additive manufacturing technology. The final scissor mechanism was obtained by integrating the produced parts. Mechanical system related problems arising in the mechanism after manufacturing were solved by making revisions on the design. Comparisons were made on two different prototypes produced. Additionally, the analytical solution of the obtained system is compared with the experimental results.

Kaynakça

  • S. Gheshmi and M. Shahinpoor, Robotic surgery: smart materials, robotic structures, and artificial muscles. Pan Stanford Publishing, 2015.
  • S. Dilibal, H. Sahin, Y. Çelik, Experimental and numerical analysis on the bending response of the geometrically gradient soft robotics actuator. Archives of Mechanics, 70(5), pp. 391-404, 2018.
  • S. Dilibal, Nikel-titanyum şekil bellekli alaşım üretimi ve şekil bellek eğitimi, Doktora tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Istanbul, 2005.
  • S. Dilibal, H. Sahin, E. Dursun, E.D. Engeberg, Nickel–titanium shape memory alloy-actuated thermal overload relay system design. Electrical Engineering, 99(3), 2017.
  • S. Dilibal, Stabilized actuation of a novel NiTi shape memory alloy actuated flexible structure under thermal loading. Materiali in Tehnologije, 52(5), pp. 599-605, 2018.
  • S. Dilibal, The effect of long-term heat treatment on the thermomechanical behavior of NiTi shape memory alloys in defense and aerospace applications. Defense Science Journal, 15(2), pp. 1-23, 2016.
  • G. Peduk, S. Dilibal, O. Harrysson, S. Ozbek, H. West, Characterization of Ni–Ti alloy powders for use in additive manufacturing. Russian Journal of Non-Ferrous Metals, 59(4), pp.433-439, 2018.
  • C. Ozbaran, S. Dilibal, Parallel jaw robotic gripper design and production with additive manufacturing method by using horizontal and vertical rack and pinion gear mechanism, Int. J. of 3D Printing Tech. Dig. Ind., 4(2), pp. 139-151, 2020.
  • T. Kokawa, T. Hokkaido, cable scissors arch–marionettic structure, IASS International Colloquium, pp. 107–114, 1997.
  • F. Maden, K. Korkmaz, and Y. Akgn, A review of planar scissor structural mechanisms: geometric principles and design methots, Architectural Science Rev., vol. 54, no. 3, pp. 246–257, 2011.
  • M. Matheou, M. C. Phocas, E. G. Christoforou, and A. Mller, On the kinetics of reconfigurable hybrid structures, J. of Building Eng., vol. 17, pp. 32–42, 2018.
  • F.A. dos Santo, A. Rodrigue, A. Micheletti, Design and experimental testing of an adaptive shape-morphing tensegrity structure, with frequency self-tuning capabilities, using shape-memory alloys, Smart Materials and Structures, 7, 2015.
  • R. E. Skelton and M. C. de Oliveira, Tensegrity systems, Springer, 2009.
  • S. Gur, C. Karagoz, G. Kiper, K. Korkmaz, Synthesis of Scalable Planar Scissor Linkages with Anti-Parallelogram Loops, Proceedings of the 7th European Conference on Mechanism Science, pp. 3, 2019.
  • J. Begey, M. Vedrines, P. Renaud, Design of Tensegrity-based Manipulators: comparison of two approaches to respect a remote center of motion constraint, IEEE Robotıcs and Automatıon Letters, pp. 2-7, 2020.
  • D.L. Bakker, D. Matsuura, Y. Takeda, J.L. Herder, Design of an Environmentally Interactive Continuum Manipulator, The 14th IFToMM World Congress, Taipei, Taiwan, pp. 5-6, 2015.
  • M. Arsenault and C. M. Gosselin, Kinematic and static analysis of a planar modular 2-DoF tensegrity mechanism, IEEE Int. Conf. on Robotic and Automation, pp. 4193–4198, 2006.
  • W. Yu, X. Wang, E. Ferraris, J. Zhang, Melt crystallization of PLA/Talc in fused filament fabrication, Materials and Design, 3, 2019.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Ali Rıza Sapmaz 0000-0003-2264-0415

Savaş Dilibal 0000-0003-4777-7995

Yayımlanma Tarihi 31 Aralık 2020
Gönderilme Tarihi 28 Kasım 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Sapmaz, A. R., & Dilibal, S. (2020). MAKAS-MAFSAL MEKANİZMA TEKNİĞİ KULLANILARAK İKİ SERBESTLİK DERECELİ KABLOLU RADYAL MAKAS SİSTEMİ TASARIMI VE EKLEMELİ İMALAT YÖNTEMİ İLE ÜRETİMİ. International Journal of 3D Printing Technologies and Digital Industry, 4(3), 253-263. https://doi.org/10.46519/ij3dptdi.832922
AMA Sapmaz AR, Dilibal S. MAKAS-MAFSAL MEKANİZMA TEKNİĞİ KULLANILARAK İKİ SERBESTLİK DERECELİ KABLOLU RADYAL MAKAS SİSTEMİ TASARIMI VE EKLEMELİ İMALAT YÖNTEMİ İLE ÜRETİMİ. IJ3DPTDI. Aralık 2020;4(3):253-263. doi:10.46519/ij3dptdi.832922
Chicago Sapmaz, Ali Rıza, ve Savaş Dilibal. “MAKAS-MAFSAL MEKANİZMA TEKNİĞİ KULLANILARAK İKİ SERBESTLİK DERECELİ KABLOLU RADYAL MAKAS SİSTEMİ TASARIMI VE EKLEMELİ İMALAT YÖNTEMİ İLE ÜRETİMİ”. International Journal of 3D Printing Technologies and Digital Industry 4, sy. 3 (Aralık 2020): 253-63. https://doi.org/10.46519/ij3dptdi.832922.
EndNote Sapmaz AR, Dilibal S (01 Aralık 2020) MAKAS-MAFSAL MEKANİZMA TEKNİĞİ KULLANILARAK İKİ SERBESTLİK DERECELİ KABLOLU RADYAL MAKAS SİSTEMİ TASARIMI VE EKLEMELİ İMALAT YÖNTEMİ İLE ÜRETİMİ. International Journal of 3D Printing Technologies and Digital Industry 4 3 253–263.
IEEE A. R. Sapmaz ve S. Dilibal, “MAKAS-MAFSAL MEKANİZMA TEKNİĞİ KULLANILARAK İKİ SERBESTLİK DERECELİ KABLOLU RADYAL MAKAS SİSTEMİ TASARIMI VE EKLEMELİ İMALAT YÖNTEMİ İLE ÜRETİMİ”, IJ3DPTDI, c. 4, sy. 3, ss. 253–263, 2020, doi: 10.46519/ij3dptdi.832922.
ISNAD Sapmaz, Ali Rıza - Dilibal, Savaş. “MAKAS-MAFSAL MEKANİZMA TEKNİĞİ KULLANILARAK İKİ SERBESTLİK DERECELİ KABLOLU RADYAL MAKAS SİSTEMİ TASARIMI VE EKLEMELİ İMALAT YÖNTEMİ İLE ÜRETİMİ”. International Journal of 3D Printing Technologies and Digital Industry 4/3 (Aralık 2020), 253-263. https://doi.org/10.46519/ij3dptdi.832922.
JAMA Sapmaz AR, Dilibal S. MAKAS-MAFSAL MEKANİZMA TEKNİĞİ KULLANILARAK İKİ SERBESTLİK DERECELİ KABLOLU RADYAL MAKAS SİSTEMİ TASARIMI VE EKLEMELİ İMALAT YÖNTEMİ İLE ÜRETİMİ. IJ3DPTDI. 2020;4:253–263.
MLA Sapmaz, Ali Rıza ve Savaş Dilibal. “MAKAS-MAFSAL MEKANİZMA TEKNİĞİ KULLANILARAK İKİ SERBESTLİK DERECELİ KABLOLU RADYAL MAKAS SİSTEMİ TASARIMI VE EKLEMELİ İMALAT YÖNTEMİ İLE ÜRETİMİ”. International Journal of 3D Printing Technologies and Digital Industry, c. 4, sy. 3, 2020, ss. 253-6, doi:10.46519/ij3dptdi.832922.
Vancouver Sapmaz AR, Dilibal S. MAKAS-MAFSAL MEKANİZMA TEKNİĞİ KULLANILARAK İKİ SERBESTLİK DERECELİ KABLOLU RADYAL MAKAS SİSTEMİ TASARIMI VE EKLEMELİ İMALAT YÖNTEMİ İLE ÜRETİMİ. IJ3DPTDI. 2020;4(3):253-6.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.