Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, , 361 - 371, 30.12.2021
https://doi.org/10.46519/ij3dptdi.949677

Öz

Destekleyen Kurum

Necmettin Erbakan Üniversitesi Bilimsel Araştırma Projeleri Kordinatörlüğü

Proje Numarası

191319013

Kaynakça

  • 1. H. Jodati, B. Yılmaz, ve Z. Evis, “A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features”, Ceram. Int., (January) 2020.
  • 2. M. Afshar, A. Pourkamali Anaraki, ve H. Montazerian, “Compressive characteristics of radially graded porosity scaffolds architectured with minimal surfaces”, Mater. Sci. Eng. C, 92(June), s 254–267, 2018.
  • 3. Z. Chen, Z. Li, J. Li, C.C. Liu, C. Lao, Y. Fu, C.C. Liu, Y. Li, P. Wang, ve Y. He, “3D printing of ceramics: A review”, J. Eur. Ceram. Soc., 39(4), s 661–687, 2019.
  • 4. H.A. Zaharin, A.M.A. Rani, F.I. Azam, T.L. Ginta, N. Sallih, A. Ahmad, N.A. Yunus, ve T.Z.A. Zulkifli, “Effect of unit cell type and pore size on porosity and mechanical behavior of additively manufactured Ti6Al4V scaffolds”, Materials (Basel), 11(12), 2018.
  • 5. T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, ve D. Hui, “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges”, Compos. Part B Eng., 143, s 172–196, 2018.
  • 6. T. Maconachie, M. Leary, B. Lozanovski, X. Zhang, M. Qian, O. Faruque, ve M. Brandt, “SLM lattice structures: Properties, performance, applications and challenges”, Mater. Des., 183, s 108137, 2019.
  • 7. A. du Plessis, C. Broeckhoven, I. Yadroitsava, I. Yadroitsev, C.H. Hands, R. Kunju, ve D. Bhate, “Beautiful and Functional: A Review of Biomimetic Design in Additive Manufacturing”, Addit. Manuf., 27, s 408–427, 2019.
  • 8. D. Ali ve S. Sen, “Finite element analysis of mechanical behavior, permeability and fluid induced wall shear stress of high porosity scaffolds with gyroid and lattice-based architectures”, J. Mech. Behav. Biomed. Mater., 75(July), s 262–270, 2017.
  • 9. L. Liu, P. Kamm, F. García-Moreno, J. Banhart, ve D. Pasini, “Elastic and failure response of imperfect three-dimensional metallic lattices: the role of geometric defects induced by Selective Laser Melting”, J. Mech. Phys. Solids, Elsevier Ltd, 107, s 160–184, 2017.
  • 10. A. Zargarian, M. Esfahanian, J. Kadkhodapour, S. Ziaei-Rad, ve D. Zamani, “On the fatigue behavior of additive manufactured lattice structures”, Theor. Appl. Fract. Mech., Elsevier B.V., 100, s 225–232, 2019.
  • 11. C. Yan, L. Hao, A. Hussein, ve D. Raymont, “Evaluations of cellular lattice structures manufactured using selective laser melting”, Int. J. Mach. Tools Manuf., 62, s 32–38, 2012.
  • 12. R. Gümrük, R.A.W. Mines, ve S. Karadeniz, “Static mechanical behaviours of stainless steel micro-lattice structures under different loading conditions”, Mater. Sci. Eng. A, 586, s 392–406, 2013.
  • 13. A. Yánez, A. Herrera, O. Martel, D. Monopoli, ve H. Afonso, “Compressive behaviour of gyroid lattice structures for human cancellous bone implant applications”, Mater. Sci. Eng. C, 68, s 445–448, 2016.
  • 14. D. Kang, S. Park, Y. Son, S. Yeon, S.H. Kim, ve I. Kim, “Multi-lattice inner structures for high-strength and light-weight in metal selective laser melting process”, Mater. Des., 175, s 107786, 2019.
  • 15. T. Tancogne-Dejean, M. Diamantopoulou, M.B. Gorji, C. Bonatti, ve D. Mohr, “3D Plate-Lattices: An Emerging Class of Low-Density Metamaterial Exhibiting Optimal Isotropic Stiffness”, Adv. Mater., 30(45), s 1–6, 2018.
  • 16. L. Yang, C. Yan, C. Han, P. Chen, S. Yang, ve Y. Shi, “Mechanical response of a triply periodic minimal surface cellular structures manufactured by selective laser melting”, Int. J. Mech. Sci., s 149–157, 2017.
  • 17. O. Al-Ketan, R. Rowshan, ve R.K. Abu Al-Rub, “Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials”, Addit. Manuf., 19, s 167–183, 2018.
  • 18. Aydın M., Yıldırım F., Çantı E., “Farkli Yazdirma Parametrelerinde Pla Filamentin Işlem Performansinin Incelenmesi”, 4th International Congress on 3D Printing (Additive Manufacturing) Technologies and Digital Industry, Pages 102-115, Antalya, 2019.
  • 19. Dokuz M.E., “3 Boyutlu DLP Yöntemiyle HA Katkılı Kompozit Üretimi ve Karakterizasyonu”, M.Sc. thesis, [Ha Doped Composite Production By 3 Dimensional DLP Method and Characterization] [Thesis in Turkish], Konya Necmettin Erbakan Üniversitesi, Konya, 2020.

COMPRESSIVE STRENGTH OF DLP 3D PRINTED VARIOUS MICRO LATTICES FOR BONE TISSUE ENGINEERING

Yıl 2021, , 361 - 371, 30.12.2021
https://doi.org/10.46519/ij3dptdi.949677

Öz

This study aims to design and manufacture different lattices and evaluate their success in terms of compression strength. Structures with a high surface area to volume (SA:V) ratio and microporosity are designed to mimic cancellous bone tissue. The volume-centered cubic and face-centered cubic lattice structures are higher in terms of the SA:V ratio among the designed specimens. Specimens in the cylindrical form used with four different lattices were successfully produced by 3D (Digital Light Processing) DLP printing. A preliminary evaluation of the lattices was made by searching for the lowest stress and displacement values under compression load with finite element analysis. The lowest von-Mises stress value was 6.37 MPa in the simple cubic lattice structure. The compression test was carried out under quasi-static conditions with equal preloading. The loads at onset damage were compared. The highest fracture average load was in face-centered cubic lattice structures with 10.14 kN. Among the specimens with low standard deviation in the compression test, the simple cubic and gyroid lattice structures’ fracture force is higher.

Proje Numarası

191319013

Kaynakça

  • 1. H. Jodati, B. Yılmaz, ve Z. Evis, “A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features”, Ceram. Int., (January) 2020.
  • 2. M. Afshar, A. Pourkamali Anaraki, ve H. Montazerian, “Compressive characteristics of radially graded porosity scaffolds architectured with minimal surfaces”, Mater. Sci. Eng. C, 92(June), s 254–267, 2018.
  • 3. Z. Chen, Z. Li, J. Li, C.C. Liu, C. Lao, Y. Fu, C.C. Liu, Y. Li, P. Wang, ve Y. He, “3D printing of ceramics: A review”, J. Eur. Ceram. Soc., 39(4), s 661–687, 2019.
  • 4. H.A. Zaharin, A.M.A. Rani, F.I. Azam, T.L. Ginta, N. Sallih, A. Ahmad, N.A. Yunus, ve T.Z.A. Zulkifli, “Effect of unit cell type and pore size on porosity and mechanical behavior of additively manufactured Ti6Al4V scaffolds”, Materials (Basel), 11(12), 2018.
  • 5. T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, ve D. Hui, “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges”, Compos. Part B Eng., 143, s 172–196, 2018.
  • 6. T. Maconachie, M. Leary, B. Lozanovski, X. Zhang, M. Qian, O. Faruque, ve M. Brandt, “SLM lattice structures: Properties, performance, applications and challenges”, Mater. Des., 183, s 108137, 2019.
  • 7. A. du Plessis, C. Broeckhoven, I. Yadroitsava, I. Yadroitsev, C.H. Hands, R. Kunju, ve D. Bhate, “Beautiful and Functional: A Review of Biomimetic Design in Additive Manufacturing”, Addit. Manuf., 27, s 408–427, 2019.
  • 8. D. Ali ve S. Sen, “Finite element analysis of mechanical behavior, permeability and fluid induced wall shear stress of high porosity scaffolds with gyroid and lattice-based architectures”, J. Mech. Behav. Biomed. Mater., 75(July), s 262–270, 2017.
  • 9. L. Liu, P. Kamm, F. García-Moreno, J. Banhart, ve D. Pasini, “Elastic and failure response of imperfect three-dimensional metallic lattices: the role of geometric defects induced by Selective Laser Melting”, J. Mech. Phys. Solids, Elsevier Ltd, 107, s 160–184, 2017.
  • 10. A. Zargarian, M. Esfahanian, J. Kadkhodapour, S. Ziaei-Rad, ve D. Zamani, “On the fatigue behavior of additive manufactured lattice structures”, Theor. Appl. Fract. Mech., Elsevier B.V., 100, s 225–232, 2019.
  • 11. C. Yan, L. Hao, A. Hussein, ve D. Raymont, “Evaluations of cellular lattice structures manufactured using selective laser melting”, Int. J. Mach. Tools Manuf., 62, s 32–38, 2012.
  • 12. R. Gümrük, R.A.W. Mines, ve S. Karadeniz, “Static mechanical behaviours of stainless steel micro-lattice structures under different loading conditions”, Mater. Sci. Eng. A, 586, s 392–406, 2013.
  • 13. A. Yánez, A. Herrera, O. Martel, D. Monopoli, ve H. Afonso, “Compressive behaviour of gyroid lattice structures for human cancellous bone implant applications”, Mater. Sci. Eng. C, 68, s 445–448, 2016.
  • 14. D. Kang, S. Park, Y. Son, S. Yeon, S.H. Kim, ve I. Kim, “Multi-lattice inner structures for high-strength and light-weight in metal selective laser melting process”, Mater. Des., 175, s 107786, 2019.
  • 15. T. Tancogne-Dejean, M. Diamantopoulou, M.B. Gorji, C. Bonatti, ve D. Mohr, “3D Plate-Lattices: An Emerging Class of Low-Density Metamaterial Exhibiting Optimal Isotropic Stiffness”, Adv. Mater., 30(45), s 1–6, 2018.
  • 16. L. Yang, C. Yan, C. Han, P. Chen, S. Yang, ve Y. Shi, “Mechanical response of a triply periodic minimal surface cellular structures manufactured by selective laser melting”, Int. J. Mech. Sci., s 149–157, 2017.
  • 17. O. Al-Ketan, R. Rowshan, ve R.K. Abu Al-Rub, “Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials”, Addit. Manuf., 19, s 167–183, 2018.
  • 18. Aydın M., Yıldırım F., Çantı E., “Farkli Yazdirma Parametrelerinde Pla Filamentin Işlem Performansinin Incelenmesi”, 4th International Congress on 3D Printing (Additive Manufacturing) Technologies and Digital Industry, Pages 102-115, Antalya, 2019.
  • 19. Dokuz M.E., “3 Boyutlu DLP Yöntemiyle HA Katkılı Kompozit Üretimi ve Karakterizasyonu”, M.Sc. thesis, [Ha Doped Composite Production By 3 Dimensional DLP Method and Characterization] [Thesis in Turkish], Konya Necmettin Erbakan Üniversitesi, Konya, 2020.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Muhammed Enes Dokuz 0000-0002-7515-3744

Mustafa Aydın 0000-0002-9150-4081

Mesut Uyaner 0000-0003-2743-2340

Proje Numarası 191319013
Yayımlanma Tarihi 30 Aralık 2021
Gönderilme Tarihi 9 Haziran 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Dokuz, M. E., Aydın, M., & Uyaner, M. (2021). COMPRESSIVE STRENGTH OF DLP 3D PRINTED VARIOUS MICRO LATTICES FOR BONE TISSUE ENGINEERING. International Journal of 3D Printing Technologies and Digital Industry, 5(3), 361-371. https://doi.org/10.46519/ij3dptdi.949677
AMA Dokuz ME, Aydın M, Uyaner M. COMPRESSIVE STRENGTH OF DLP 3D PRINTED VARIOUS MICRO LATTICES FOR BONE TISSUE ENGINEERING. IJ3DPTDI. Aralık 2021;5(3):361-371. doi:10.46519/ij3dptdi.949677
Chicago Dokuz, Muhammed Enes, Mustafa Aydın, ve Mesut Uyaner. “COMPRESSIVE STRENGTH OF DLP 3D PRINTED VARIOUS MICRO LATTICES FOR BONE TISSUE ENGINEERING”. International Journal of 3D Printing Technologies and Digital Industry 5, sy. 3 (Aralık 2021): 361-71. https://doi.org/10.46519/ij3dptdi.949677.
EndNote Dokuz ME, Aydın M, Uyaner M (01 Aralık 2021) COMPRESSIVE STRENGTH OF DLP 3D PRINTED VARIOUS MICRO LATTICES FOR BONE TISSUE ENGINEERING. International Journal of 3D Printing Technologies and Digital Industry 5 3 361–371.
IEEE M. E. Dokuz, M. Aydın, ve M. Uyaner, “COMPRESSIVE STRENGTH OF DLP 3D PRINTED VARIOUS MICRO LATTICES FOR BONE TISSUE ENGINEERING”, IJ3DPTDI, c. 5, sy. 3, ss. 361–371, 2021, doi: 10.46519/ij3dptdi.949677.
ISNAD Dokuz, Muhammed Enes vd. “COMPRESSIVE STRENGTH OF DLP 3D PRINTED VARIOUS MICRO LATTICES FOR BONE TISSUE ENGINEERING”. International Journal of 3D Printing Technologies and Digital Industry 5/3 (Aralık 2021), 361-371. https://doi.org/10.46519/ij3dptdi.949677.
JAMA Dokuz ME, Aydın M, Uyaner M. COMPRESSIVE STRENGTH OF DLP 3D PRINTED VARIOUS MICRO LATTICES FOR BONE TISSUE ENGINEERING. IJ3DPTDI. 2021;5:361–371.
MLA Dokuz, Muhammed Enes vd. “COMPRESSIVE STRENGTH OF DLP 3D PRINTED VARIOUS MICRO LATTICES FOR BONE TISSUE ENGINEERING”. International Journal of 3D Printing Technologies and Digital Industry, c. 5, sy. 3, 2021, ss. 361-7, doi:10.46519/ij3dptdi.949677.
Vancouver Dokuz ME, Aydın M, Uyaner M. COMPRESSIVE STRENGTH OF DLP 3D PRINTED VARIOUS MICRO LATTICES FOR BONE TISSUE ENGINEERING. IJ3DPTDI. 2021;5(3):361-7.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.