Araştırma Makalesi
BibTex RIS Kaynak Göster

ÇATLAK DERİNLİĞİNİN VE FİBER AÇISININ KARBON FİBER TAKVİYELİ POLİMER KOMPOZİT KİRİŞİN TİTREŞİM DAVRANIŞINA ETKİSİNİN SONLU ELEMANLAR ANALİZİ YÖNTEMİ İLE BELİRLENMESİ

Yıl 2021, Cilt: 5 Sayı: 2, 120 - 129, 31.08.2021
https://doi.org/10.46519/ij3dptdi.931530

Öz

Bu çalışmada, % 50 karbon fiber takviyeli polimer (KFTP) kompozit bir kirişte çatlak bulunup bulunmaması, bulunması durumunda ise 1, 2, 3, 4 ve 5 mm derinliğindeki çatlağın ilgili kirişin titreşim davranışlarını nasıl etkilediği Ansys APDL programı kullanılarak sonlu elemanlar analizi yöntemiyle incelenmiştir. Farklı çatlak derinliğine sahip ve çatlaksız KFTP kompozit kirişler Ansys APDL programında modellenmiş olup, malzeme özellikleri olarak da kompozit malzemelerin karışım kuralı eşitlikleri ile belirlenen malzeme özellikleri sonlu eleman analizlerinde atanmıştır. Ayrıca, 200 mm uzunluğunda, 20 mm genişliğinde ve aynı fiber açılarına sahip her biri 0,5 mm kalınlıkta 6 katmandan oluşan toplam kalınlığı 3 mm olan KFTP kompozit kirişler sol kenarından ankastre mesnetlenmiş, sağ kenarı ise serbest uç olarak bırakılmıştır. Ek olarak, 6 katmandan oluşan KFTP kompozit kirişin fiber açıları da 0⁰, 15⁰, 30⁰, 45⁰, 60⁰, 75⁰ ve 90⁰ olacak şekilde değiştirilerek, fiber açısının çatlaklı ve çatlaksız kirişin doğal frekansına olan etkileri de irdelenmiştir. Elde edilen sonuçlara göre, fiber açısının ve çatlak derinliğinin KFTP kompozit kirişlerin doğal frekans değerlerini genel olarak % 10 ile % 20 aralığında değiştirebildiği, doğal frekansların değişiminde çatlak derinliğine nazaran fiber açısının daha etkili olduğu görülmüştür.

Kaynakça

  • 1. Chawla, K.K., “Composite Materials: Science and Engineering”, Third Edition, Springer, 2012.
  • 2. Faizan, M. and Gangwar, S. “Tensile behaviour of carbon fiber reinforced polymer composite using ANSYS 21”. Materialstoday: Proceedings, In Press. 2021.
  • 3. Li, A.J., Zhang, J.J., Zhang, F.Z., Li, L., Zhu, S.P., Yang, Y.H., “Effects of fiber and matrix properties on the compression strength of carbon fiber reinforced polymer composites”, New Carbon Materials, Vol. 35, Issue 6, Pages 752-761, 2020.
  • 4. Perner, M., Algermissen, S., Keimer, R., Monner, H.P.,“Avoiding defects in manufacturing processes: A review for automated CFRP production”, Robotics and Computer-Integrated Manufacturing, Vol. 38, Pages 82-92, 2016.
  • 5. Visal, S., and Deokar, S.U., “A review paper on properties of carbon fiber”, Reinforced Polymers, Vol. 2, Issue 12, Pages 238-243, 2016.
  • 6. Firmo, J.P., Correia, J.R., França, P., “Fire behaviour of reinforced concrete beams strengthened with CFRP lamintes: protection systems with insulation of the anchorage zons”, Compos. Part B Eng., Vol. 43, Issue 3, Pages 1545-1556, 2012.
  • 7. Masilamani, R., Dhandapani, N.V., Kumar, K.V., Mani, K.T., “A review on usage of carbon fiber reinforced plastics in automobiles”, Int. J. Pure Appl. Math., Vol. 117, Issue 20, Pages 537-544, 2017.
  • 8. Capozucca. R., “Vibration of CFRP cantilever beam with damage”. Composite Structures, Vol. 116, Pages 211-222, 2014.
  • 9. Yavuz, İ., Minaz, M. R., and Kuncan, M., “1,1 kw'lık indüksiyon motorun oluk sayısının verime ve torka etkisinin sonlu elemanlar yöntemiyle analizi”. IETS'18 International Engineering and Technology Symposium, Batman, Turkey 3-5 Mayıs 2018, pp. 555-560, 2018.
  • 10. Ergene, B. and Bolat, Ç., “Determination of thermal stress and elongation on different ceramic coated Ti-6Al-4V alloy at elevated temperatures by finite element method”, Sigma Journal of Engineering and Natural Sciences, Vol. 38, Issue 4, Pages 2013-2026, 2020.
  • 11. Li, A.J., Zhang J.J., Zhang F.Z., Li, L., Zhu, S.P., Yang, Y.H., “Effects of fiber and matrix properties on the compression strength of carbon fiber reinforced polymer composites”, New Carbon Materials, Vol. 35, Issue 6, Pages 752-761, 2020.
  • 12. Tita, V., Carvalho, J.D., Lirani, J.,“Theoretical and Experimental Dynamic Analysis of Fiber Reinforced Composite Beams”, J. of the Braz. Soc. of Mech. Sci. & Eng., Vol. 25, Issue 3, Pages 306-310, 2003.
  • 13. Atlıhan, G. and Ergene, B., “Vibration Analysis of Layered Composite Beam with Variable Section in Terms of Delamination and Orientation Angle in Analytical and Numerical Methods”, Acta Physica Polonica A,Vol. 134, Issue 1, Pages 13-17, 2018.
  • 14. Norman, M.A.M., Zainuddin, M.A., Mahmud, J., “The effect of various fiber orientations and boundary conditions on natural frequencies of laminated composite beam”, International Journal of Engineering & Technology, Vol. 7, Issue 3-11, Pages 67-71, 2018.
  • 15. Ghodke, P.Y., Tupe, D.H., Gandhe, G.R., “Modal Analysis Of Cracked Continuous Beam Using ANSYS”, International Research Journal of Engineering and Technology, Vol. 4, Issue 2, Pages 86-93, 2017.
  • 16. Al-Waily, M.,“Theoretical and Numerical Vibration Study of Continuous Beam with Crack Size and Location Effect”, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 2, Issue 9, Pages 4166-4177, 2013.
  • 17. Jena, P.C., Parhi, D.R., Pohit, G., “Dynamic study of composite cracked beam by changing the angle of bidirectional fibres”, Iranian Journal of Science and Technology, Transactions A: Science, Vol. 40, Pages 27-37, 2016.
  • 18. Daş, T.M.. and Yılmaz, A., “Çatlaklı dairesel eğri kompozit kirişlerin titreşim analizleri”, Journal of the Faculty of Engineering and Architecture of Gazi University,Vol. 33, Issue 3, Pages 783-791, 2018.
  • 19. Yalçın, B. and Ergene, B., “Farklı malzemelere sahip hibrid kompozitlerde çatlağın mekanik davranışlara etkisinin analizi”, Pamukkale University Journal of Engineering Sciences, Vol. 24, Issue 4, Pages 616-625, 2018.
  • 20. Kaw, A.K., “Mechanics of Composite Materials”, 2nd ed. USA, Taylor and Francis, 2006.
  • 21. Myklestad, N.O., “Fundamentals of Vibration Analysis”, 1th ed. New York, USA, Dover Publications, 2018.
  • 22. Dutta, R., Ganguli R., Mani, V., “Swarm intelligence algorithms for integrated optimization of piezoelectric actuator and sensor placement and feedback gains”, Smart Materials and Structures,Vol. 20, Issue 10, 105018, 2011.
  • 23. Yalçın, B., Ergene, B., Karakılınç, U., “Modal and stress analysis of cellular structures produced with additive manufacturing by finite element analysis (fea)”, Academic Perspective Procedia, Vol. 1, Issue 1, Pages 263-272, 2018.
  • 24. Wang, B., Zhao, F., Zhao, Z., Xu, K., “Influence factors on natural frequencies of composite materials”, Front. Mech. Eng., Vol. 15, Issue 4, Pages 571-584, 2020.
  • 25. Shadadaf, A.K., “Vibration analysis of composite beam with crack”, Master Thesis, Departments of Civil Engineering, National Institute of Technology Rourkela, 2013.
  • 26. Dokhe, S., Pimpale, S., “Effect of crack on modal frequency of cantilever beam”, International Journal of Research in Aeronautical and Mechanical Engineering, Vol. 3, Issue 8, Pages 24-38, 2015.
  • 27. Çevik, M., “Effect of Fiber Orientation on Out-of-Plane and In-Plane Natural Frequencies of Angle-Ply Laminated Composite Arches”, Journal of Reinforced Plastics and Composites, Vol. 28, Issue 1, 59-71, 2008.
  • 28. Maraş, S., Yaman, M., Şansveren, M.F., Reyhan, S.K., “Free vibration analysis of fiber metal laminated straight beam”,Open Chem., Vol. 16, Pages 944-948, 2018.
  • 29. Norman, M.A.M., Zainuddin, M.A., Mahmud, J., “The effect of various fiber orientations and boundary conditions on natural frequencies of laminated composite beam”, International Journal of Engineering & Technology, Vol. 7, Issue 3.11, Pages 67-71, 2018.

DETERMINING THE EFFECT OF CRACK DEPTH AND FIBER ANGLE ON VIBRATIONAL BEHAVIOR OF CARBON FIBER REINFORCED POLYMER COMPOSITE BEAM WITH FINITE ELEMENT ANALYSIS METHOD

Yıl 2021, Cilt: 5 Sayı: 2, 120 - 129, 31.08.2021
https://doi.org/10.46519/ij3dptdi.931530

Öz

Today, composite materials are preferred in many different areas such as aerospace, automotive, defense, and marine, due to the high strength and lightness provided by fiber and matrix materials, respectively. It is known that cracks that occur in structures made of composite materials affect the mechanical and vibration properties of the structure. In this study, whether there is a crack in a 50% carbon fiber reinforced polymer (CFRP) composite beam, and if it does, how the 1, 2, 3, 4 and, 5 mm deep crack affects the vibration behavior of the beam was investigated using the Ansys APDL finite element analysis program. CFRP composite beams with different crack depths and without cracks were modeled in the Ansys APDL program. Besides, the material properties of the composite materials determined by the mixing rule equations were assigned in finite element analyzes. CFRP composite beams with 200 mm length, 20 mm width total thickness of 3 mm which consisting of 6 layers with 0,5 mm thickness and same fiber angle was fixed from left end and the right end of the beam kept free. In addition, the fiber angles of the 6-layer CFRP composite beam were changed to 0⁰, 15⁰, 30⁰, 45⁰, 60⁰, 75⁰, and 90⁰, and the effects of the fiber angle on the natural frequency of the cracked and untracked beam were also examined. According to the results obtained, it has been observed that the fiber angle and crack depth can change the natural frequency values of CFRP composite beams generally between 10% and 20%, and the fiber angle is more effective in the change of natural frequencies compared to the crack depth. 

Kaynakça

  • 1. Chawla, K.K., “Composite Materials: Science and Engineering”, Third Edition, Springer, 2012.
  • 2. Faizan, M. and Gangwar, S. “Tensile behaviour of carbon fiber reinforced polymer composite using ANSYS 21”. Materialstoday: Proceedings, In Press. 2021.
  • 3. Li, A.J., Zhang, J.J., Zhang, F.Z., Li, L., Zhu, S.P., Yang, Y.H., “Effects of fiber and matrix properties on the compression strength of carbon fiber reinforced polymer composites”, New Carbon Materials, Vol. 35, Issue 6, Pages 752-761, 2020.
  • 4. Perner, M., Algermissen, S., Keimer, R., Monner, H.P.,“Avoiding defects in manufacturing processes: A review for automated CFRP production”, Robotics and Computer-Integrated Manufacturing, Vol. 38, Pages 82-92, 2016.
  • 5. Visal, S., and Deokar, S.U., “A review paper on properties of carbon fiber”, Reinforced Polymers, Vol. 2, Issue 12, Pages 238-243, 2016.
  • 6. Firmo, J.P., Correia, J.R., França, P., “Fire behaviour of reinforced concrete beams strengthened with CFRP lamintes: protection systems with insulation of the anchorage zons”, Compos. Part B Eng., Vol. 43, Issue 3, Pages 1545-1556, 2012.
  • 7. Masilamani, R., Dhandapani, N.V., Kumar, K.V., Mani, K.T., “A review on usage of carbon fiber reinforced plastics in automobiles”, Int. J. Pure Appl. Math., Vol. 117, Issue 20, Pages 537-544, 2017.
  • 8. Capozucca. R., “Vibration of CFRP cantilever beam with damage”. Composite Structures, Vol. 116, Pages 211-222, 2014.
  • 9. Yavuz, İ., Minaz, M. R., and Kuncan, M., “1,1 kw'lık indüksiyon motorun oluk sayısının verime ve torka etkisinin sonlu elemanlar yöntemiyle analizi”. IETS'18 International Engineering and Technology Symposium, Batman, Turkey 3-5 Mayıs 2018, pp. 555-560, 2018.
  • 10. Ergene, B. and Bolat, Ç., “Determination of thermal stress and elongation on different ceramic coated Ti-6Al-4V alloy at elevated temperatures by finite element method”, Sigma Journal of Engineering and Natural Sciences, Vol. 38, Issue 4, Pages 2013-2026, 2020.
  • 11. Li, A.J., Zhang J.J., Zhang F.Z., Li, L., Zhu, S.P., Yang, Y.H., “Effects of fiber and matrix properties on the compression strength of carbon fiber reinforced polymer composites”, New Carbon Materials, Vol. 35, Issue 6, Pages 752-761, 2020.
  • 12. Tita, V., Carvalho, J.D., Lirani, J.,“Theoretical and Experimental Dynamic Analysis of Fiber Reinforced Composite Beams”, J. of the Braz. Soc. of Mech. Sci. & Eng., Vol. 25, Issue 3, Pages 306-310, 2003.
  • 13. Atlıhan, G. and Ergene, B., “Vibration Analysis of Layered Composite Beam with Variable Section in Terms of Delamination and Orientation Angle in Analytical and Numerical Methods”, Acta Physica Polonica A,Vol. 134, Issue 1, Pages 13-17, 2018.
  • 14. Norman, M.A.M., Zainuddin, M.A., Mahmud, J., “The effect of various fiber orientations and boundary conditions on natural frequencies of laminated composite beam”, International Journal of Engineering & Technology, Vol. 7, Issue 3-11, Pages 67-71, 2018.
  • 15. Ghodke, P.Y., Tupe, D.H., Gandhe, G.R., “Modal Analysis Of Cracked Continuous Beam Using ANSYS”, International Research Journal of Engineering and Technology, Vol. 4, Issue 2, Pages 86-93, 2017.
  • 16. Al-Waily, M.,“Theoretical and Numerical Vibration Study of Continuous Beam with Crack Size and Location Effect”, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 2, Issue 9, Pages 4166-4177, 2013.
  • 17. Jena, P.C., Parhi, D.R., Pohit, G., “Dynamic study of composite cracked beam by changing the angle of bidirectional fibres”, Iranian Journal of Science and Technology, Transactions A: Science, Vol. 40, Pages 27-37, 2016.
  • 18. Daş, T.M.. and Yılmaz, A., “Çatlaklı dairesel eğri kompozit kirişlerin titreşim analizleri”, Journal of the Faculty of Engineering and Architecture of Gazi University,Vol. 33, Issue 3, Pages 783-791, 2018.
  • 19. Yalçın, B. and Ergene, B., “Farklı malzemelere sahip hibrid kompozitlerde çatlağın mekanik davranışlara etkisinin analizi”, Pamukkale University Journal of Engineering Sciences, Vol. 24, Issue 4, Pages 616-625, 2018.
  • 20. Kaw, A.K., “Mechanics of Composite Materials”, 2nd ed. USA, Taylor and Francis, 2006.
  • 21. Myklestad, N.O., “Fundamentals of Vibration Analysis”, 1th ed. New York, USA, Dover Publications, 2018.
  • 22. Dutta, R., Ganguli R., Mani, V., “Swarm intelligence algorithms for integrated optimization of piezoelectric actuator and sensor placement and feedback gains”, Smart Materials and Structures,Vol. 20, Issue 10, 105018, 2011.
  • 23. Yalçın, B., Ergene, B., Karakılınç, U., “Modal and stress analysis of cellular structures produced with additive manufacturing by finite element analysis (fea)”, Academic Perspective Procedia, Vol. 1, Issue 1, Pages 263-272, 2018.
  • 24. Wang, B., Zhao, F., Zhao, Z., Xu, K., “Influence factors on natural frequencies of composite materials”, Front. Mech. Eng., Vol. 15, Issue 4, Pages 571-584, 2020.
  • 25. Shadadaf, A.K., “Vibration analysis of composite beam with crack”, Master Thesis, Departments of Civil Engineering, National Institute of Technology Rourkela, 2013.
  • 26. Dokhe, S., Pimpale, S., “Effect of crack on modal frequency of cantilever beam”, International Journal of Research in Aeronautical and Mechanical Engineering, Vol. 3, Issue 8, Pages 24-38, 2015.
  • 27. Çevik, M., “Effect of Fiber Orientation on Out-of-Plane and In-Plane Natural Frequencies of Angle-Ply Laminated Composite Arches”, Journal of Reinforced Plastics and Composites, Vol. 28, Issue 1, 59-71, 2008.
  • 28. Maraş, S., Yaman, M., Şansveren, M.F., Reyhan, S.K., “Free vibration analysis of fiber metal laminated straight beam”,Open Chem., Vol. 16, Pages 944-948, 2018.
  • 29. Norman, M.A.M., Zainuddin, M.A., Mahmud, J., “The effect of various fiber orientations and boundary conditions on natural frequencies of laminated composite beam”, International Journal of Engineering & Technology, Vol. 7, Issue 3.11, Pages 67-71, 2018.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Berkay Ergene 0000-0001-6145-1970

Yayımlanma Tarihi 31 Ağustos 2021
Gönderilme Tarihi 2 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 5 Sayı: 2

Kaynak Göster

APA Ergene, B. (2021). ÇATLAK DERİNLİĞİNİN VE FİBER AÇISININ KARBON FİBER TAKVİYELİ POLİMER KOMPOZİT KİRİŞİN TİTREŞİM DAVRANIŞINA ETKİSİNİN SONLU ELEMANLAR ANALİZİ YÖNTEMİ İLE BELİRLENMESİ. International Journal of 3D Printing Technologies and Digital Industry, 5(2), 120-129. https://doi.org/10.46519/ij3dptdi.931530
AMA Ergene B. ÇATLAK DERİNLİĞİNİN VE FİBER AÇISININ KARBON FİBER TAKVİYELİ POLİMER KOMPOZİT KİRİŞİN TİTREŞİM DAVRANIŞINA ETKİSİNİN SONLU ELEMANLAR ANALİZİ YÖNTEMİ İLE BELİRLENMESİ. IJ3DPTDI. Ağustos 2021;5(2):120-129. doi:10.46519/ij3dptdi.931530
Chicago Ergene, Berkay. “ÇATLAK DERİNLİĞİNİN VE FİBER AÇISININ KARBON FİBER TAKVİYELİ POLİMER KOMPOZİT KİRİŞİN TİTREŞİM DAVRANIŞINA ETKİSİNİN SONLU ELEMANLAR ANALİZİ YÖNTEMİ İLE BELİRLENMESİ”. International Journal of 3D Printing Technologies and Digital Industry 5, sy. 2 (Ağustos 2021): 120-29. https://doi.org/10.46519/ij3dptdi.931530.
EndNote Ergene B (01 Ağustos 2021) ÇATLAK DERİNLİĞİNİN VE FİBER AÇISININ KARBON FİBER TAKVİYELİ POLİMER KOMPOZİT KİRİŞİN TİTREŞİM DAVRANIŞINA ETKİSİNİN SONLU ELEMANLAR ANALİZİ YÖNTEMİ İLE BELİRLENMESİ. International Journal of 3D Printing Technologies and Digital Industry 5 2 120–129.
IEEE B. Ergene, “ÇATLAK DERİNLİĞİNİN VE FİBER AÇISININ KARBON FİBER TAKVİYELİ POLİMER KOMPOZİT KİRİŞİN TİTREŞİM DAVRANIŞINA ETKİSİNİN SONLU ELEMANLAR ANALİZİ YÖNTEMİ İLE BELİRLENMESİ”, IJ3DPTDI, c. 5, sy. 2, ss. 120–129, 2021, doi: 10.46519/ij3dptdi.931530.
ISNAD Ergene, Berkay. “ÇATLAK DERİNLİĞİNİN VE FİBER AÇISININ KARBON FİBER TAKVİYELİ POLİMER KOMPOZİT KİRİŞİN TİTREŞİM DAVRANIŞINA ETKİSİNİN SONLU ELEMANLAR ANALİZİ YÖNTEMİ İLE BELİRLENMESİ”. International Journal of 3D Printing Technologies and Digital Industry 5/2 (Ağustos 2021), 120-129. https://doi.org/10.46519/ij3dptdi.931530.
JAMA Ergene B. ÇATLAK DERİNLİĞİNİN VE FİBER AÇISININ KARBON FİBER TAKVİYELİ POLİMER KOMPOZİT KİRİŞİN TİTREŞİM DAVRANIŞINA ETKİSİNİN SONLU ELEMANLAR ANALİZİ YÖNTEMİ İLE BELİRLENMESİ. IJ3DPTDI. 2021;5:120–129.
MLA Ergene, Berkay. “ÇATLAK DERİNLİĞİNİN VE FİBER AÇISININ KARBON FİBER TAKVİYELİ POLİMER KOMPOZİT KİRİŞİN TİTREŞİM DAVRANIŞINA ETKİSİNİN SONLU ELEMANLAR ANALİZİ YÖNTEMİ İLE BELİRLENMESİ”. International Journal of 3D Printing Technologies and Digital Industry, c. 5, sy. 2, 2021, ss. 120-9, doi:10.46519/ij3dptdi.931530.
Vancouver Ergene B. ÇATLAK DERİNLİĞİNİN VE FİBER AÇISININ KARBON FİBER TAKVİYELİ POLİMER KOMPOZİT KİRİŞİN TİTREŞİM DAVRANIŞINA ETKİSİNİN SONLU ELEMANLAR ANALİZİ YÖNTEMİ İLE BELİRLENMESİ. IJ3DPTDI. 2021;5(2):120-9.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.