Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 5 Sayı: 2, 220 - 226, 31.08.2021
https://doi.org/10.46519/ij3dptdi.942006

Öz

Kaynakça

  • 1. Sachs, E., Cima, M., & Cornie, J., “Three-dimensional printing: rapid tooling and prototypes directly from a CAD model”, CIRP Annals, Vol. 39, Issue 1, Pages 201-204, 1990.
  • 2. Kruth, J. P., Leu, M. C., & Nakagawa, T., “Progress in additive manufacturing and rapid prototyping.”, Cirp Annals, Vol. 4, Issue 2, Pages 525-540, 1998.
  • 3. T. Wohlers, T. Gornet, “History of Additive Manufacturing”, Wohlers Report, 2016.
  • 4. Standard, A. S. T. M., “Standard terminology for additive manufacturing technologies.” ASTM International F2792-12a, 2012.
  • 5. Fiedor, P., & Ortyl, J., “A new approach to micromachining: High-precision and innovative additive manufacturing solutions based on photopolymerization technology”, Materials, Vol. 13, Issue 13, 2951, 2020.
  • 6. Envisiontech 3D Printing Materials, “Jewelry”, https://envisiontec.com/3d-printing-materials/jewelry/, May 21, 2021.
  • 7. Formlabs 3D Printing Materials, “Jewelry”, https://formlabs.com/blog/3d-printed-jewelry/, May 24, 2021.
  • 8. 3dprint.com, “Automotive application” https://tinyurl.com/hyam4nhk , May 24, 2021.
  • 9. 3dprintingindustry.com, “Automotive application”, https://tinyurl.com/3975xz3s , May 24, 2021.
  • 10. RPS 3D Printers, “Automotive application” https://tinyurl.com/4kbkj4dy , May 24, 2021.
  • 11. RPS 3D Printers, “Automotive application”, https://tinyurl.com/37tm8ndt , May 24, 2021.
  • 12. decisionsindentistry.com, “Dental Applications” https://tinyurl.com/552mr2ce ,May 24, 2021.
  • 13. amfg.ai, “Shoe modeling application”, https://tinyurl.com/3sc4jvey , May 24, 2021.
  • 14. RPS 3D Printers, “Shoe modeling application” https://tinyurl.com/587jcjar , May 24, 2021.
  • 15. Li, X., Yu, R., He, Y., Zhang, Y., Yang, X., Zhao, X., & Huang, W., “Self-healing polyurethane elastomers based on a disulfide bond by digital light processing 3D printing”, ACS Macro Letters, Vol. 8, Issue 11, Pages 1511-1516, 2019.
  • 16. Wallin, T. J., J. H. Pikul, S. Bodkhe, B. N. Peele, B. C. Mac Murray, D. Therriault, B. W. McEnerney, R. P. Dillon, E. P. Giannelis, and R. F. Shepherd, “Click chemistry stereolithography for soft robots that self-heal”, Journal of Materials Chemistry B, Vol.5, Issue 31, Pages 6249-6255, 2017.
  • 17. Choong, Y. Y. C., Maleksaeedi, S., Eng, H., Wei, J., & Su, P. C. (2017). 4D printing of high-performance shape memory polymer using stereolithography. Materials & Design, 126, 219-225, 2017.
  • 18. Zhao, Tingting, Ran Yu, Xinpan Li, Bing Cheng, Ying Zhang, Xin Yang, Xiaojuan Zhao, Yulei Zhao, Wei Huang. "4D printing of shape memory polyurethane via stereolithography." European Polymer Journal, Vol. 101, Pages 120-126, 2018.
  • 19. Voet, V. S., Strating, T., Schnelting, G. H., Dijkstra, P., Tietema, M., Xu, J., Folkersma, R., “Biobased acrylate photocurable resin formulation for stereolithography 3D printing” ACS Omega, Vol. 3, Issue 2, Pages 1403-1408, 2018.
  • 20. Sutton, J. T., Rajan, K., Harper, D. P., & Chmely, S. C., “Lignin-containing photoactive resins for 3D printing by stereolithography” ACS applied materials & interfaces, Vol. 10, Issue 42, Pages 36456-36463, 2018.
  • 21. Guit, J., Tavares, M. B., Hul, J., Ye, C., Loos, K., Jager, J., Voet, V. S., “Photopolymer resins with biobased methacrylates based on soybean oil for stereolithography” ACS Applied Polymer Materials, Volume 2, Issue 2, Pages 949-957, 2020.
  • 22. Borrello, J., Nasser, P., Iatridis, J. C., Costa, K. D., “3D printing a mechanically-tunable acrylate resin on a commercial DLP-SLA printer”, Additive manufacturing, Vol. 23, Pages 374-380, 2018.
  • 23. Park, H. K., Shin, M., Kim, B., Park, J. W., & Lee, H., “A visible light-curable yet visible wavelength-transparent resin for stereolithography 3D printing”, NPG Asia Materials, Vol. 10, Issue 4, Pages 82-89, 2018.
  • 24. Huang, B., Wu, B., Han, L., Lu, Z., & Zhou, W., “Preparation of a novel cationic photosensitive resin (3D-SLR01) for stereolithography 3D printing and determination of its some properties”, Journal of Wuhan University of Technology-Material Science Ed., Vol. 34, Issue 4, Pages 761-768, 2019.
  • 25. Li, J., Wang, L., Dai, L., Zhong, L., Liu, B., Ren, J., & Xu, Y., “Synthesis and characterization of reinforced acrylate photosensitive resin by 2-hydroxyethyl methacrylate-functionalized graphene nanosheets for 3D printing”, Journal of Materials Science, Vol. 53, Issue 3, Pages 1874-1886, 2018.
  • 26. Ligon, S. C., Liska, R., Stampfl, J., Gurr, M., & Mülhaupt, R., “Polymers for 3D printing and customized additive manufacturing”, Chemical reviews, Vol. 117, Issue 15, Pages 10212-10290, 2017.
  • 27. Schmidleithner, C., & Kalaskar, D. M., “Stereolithography”, Cvetković, D., 3D Printing, Pages 1-22, Intech Open, London, 2018.
  • 28. Shan, J., Yang, Z., Chen, G., Hu, Y., Luo, Y., Dong, X., Zhou, W., “Design and Synthesis of Free-Radical/Cationic Photosensitive Resin Applied for 3D Printer with Liquid Crystal Display (LCD) Irradiation”, Polymers, Vol. 12, Issue 6, Pages 1346, 2020.
  • 29. Deng, Y., Li, J., He, Z., Hong, J., & Bao, J., “Urethane acrylate‐based photosensitive resin for three‐dimensional printing of stereolithographic elastomer”, Journal of Applied Polymer Science, Vol. 137, Issue 42, Pages 49294, 2020.

THE EFFECT OF TRIACRYLATE MONOMER STRUCTURE ON VOLUME SHRINKAGE AND TENSILE PROPERTIES OF VAT POLYMERIZATION RESINS

Yıl 2021, Cilt: 5 Sayı: 2, 220 - 226, 31.08.2021
https://doi.org/10.46519/ij3dptdi.942006

Öz

This study investigates the influence of triacrylate monomer structure on volume shrinkage, tensile properties, and viscosity of vat polymerization (VP) resins. The amount of triacrylate monomer kept constant as 20%wt. to prevent excessive volume shrinkage effect. Results indicated that ethoxylated and propoxylated triacrylate structures are beneficial to reduce the volume shrinkage of VP resins. However, these flexible chain structures led to a reduction in tensile properties and the elastic modulus of VP resins deteriorated up to 35% compared to trimethylolpropane triacrylate (TMPTA). There is no significant effect observed on VP resin reactivity according to the triacrylate type. Besides, ethoxylated triacrylate presented the best dilution effect on VP resin.

Kaynakça

  • 1. Sachs, E., Cima, M., & Cornie, J., “Three-dimensional printing: rapid tooling and prototypes directly from a CAD model”, CIRP Annals, Vol. 39, Issue 1, Pages 201-204, 1990.
  • 2. Kruth, J. P., Leu, M. C., & Nakagawa, T., “Progress in additive manufacturing and rapid prototyping.”, Cirp Annals, Vol. 4, Issue 2, Pages 525-540, 1998.
  • 3. T. Wohlers, T. Gornet, “History of Additive Manufacturing”, Wohlers Report, 2016.
  • 4. Standard, A. S. T. M., “Standard terminology for additive manufacturing technologies.” ASTM International F2792-12a, 2012.
  • 5. Fiedor, P., & Ortyl, J., “A new approach to micromachining: High-precision and innovative additive manufacturing solutions based on photopolymerization technology”, Materials, Vol. 13, Issue 13, 2951, 2020.
  • 6. Envisiontech 3D Printing Materials, “Jewelry”, https://envisiontec.com/3d-printing-materials/jewelry/, May 21, 2021.
  • 7. Formlabs 3D Printing Materials, “Jewelry”, https://formlabs.com/blog/3d-printed-jewelry/, May 24, 2021.
  • 8. 3dprint.com, “Automotive application” https://tinyurl.com/hyam4nhk , May 24, 2021.
  • 9. 3dprintingindustry.com, “Automotive application”, https://tinyurl.com/3975xz3s , May 24, 2021.
  • 10. RPS 3D Printers, “Automotive application” https://tinyurl.com/4kbkj4dy , May 24, 2021.
  • 11. RPS 3D Printers, “Automotive application”, https://tinyurl.com/37tm8ndt , May 24, 2021.
  • 12. decisionsindentistry.com, “Dental Applications” https://tinyurl.com/552mr2ce ,May 24, 2021.
  • 13. amfg.ai, “Shoe modeling application”, https://tinyurl.com/3sc4jvey , May 24, 2021.
  • 14. RPS 3D Printers, “Shoe modeling application” https://tinyurl.com/587jcjar , May 24, 2021.
  • 15. Li, X., Yu, R., He, Y., Zhang, Y., Yang, X., Zhao, X., & Huang, W., “Self-healing polyurethane elastomers based on a disulfide bond by digital light processing 3D printing”, ACS Macro Letters, Vol. 8, Issue 11, Pages 1511-1516, 2019.
  • 16. Wallin, T. J., J. H. Pikul, S. Bodkhe, B. N. Peele, B. C. Mac Murray, D. Therriault, B. W. McEnerney, R. P. Dillon, E. P. Giannelis, and R. F. Shepherd, “Click chemistry stereolithography for soft robots that self-heal”, Journal of Materials Chemistry B, Vol.5, Issue 31, Pages 6249-6255, 2017.
  • 17. Choong, Y. Y. C., Maleksaeedi, S., Eng, H., Wei, J., & Su, P. C. (2017). 4D printing of high-performance shape memory polymer using stereolithography. Materials & Design, 126, 219-225, 2017.
  • 18. Zhao, Tingting, Ran Yu, Xinpan Li, Bing Cheng, Ying Zhang, Xin Yang, Xiaojuan Zhao, Yulei Zhao, Wei Huang. "4D printing of shape memory polyurethane via stereolithography." European Polymer Journal, Vol. 101, Pages 120-126, 2018.
  • 19. Voet, V. S., Strating, T., Schnelting, G. H., Dijkstra, P., Tietema, M., Xu, J., Folkersma, R., “Biobased acrylate photocurable resin formulation for stereolithography 3D printing” ACS Omega, Vol. 3, Issue 2, Pages 1403-1408, 2018.
  • 20. Sutton, J. T., Rajan, K., Harper, D. P., & Chmely, S. C., “Lignin-containing photoactive resins for 3D printing by stereolithography” ACS applied materials & interfaces, Vol. 10, Issue 42, Pages 36456-36463, 2018.
  • 21. Guit, J., Tavares, M. B., Hul, J., Ye, C., Loos, K., Jager, J., Voet, V. S., “Photopolymer resins with biobased methacrylates based on soybean oil for stereolithography” ACS Applied Polymer Materials, Volume 2, Issue 2, Pages 949-957, 2020.
  • 22. Borrello, J., Nasser, P., Iatridis, J. C., Costa, K. D., “3D printing a mechanically-tunable acrylate resin on a commercial DLP-SLA printer”, Additive manufacturing, Vol. 23, Pages 374-380, 2018.
  • 23. Park, H. K., Shin, M., Kim, B., Park, J. W., & Lee, H., “A visible light-curable yet visible wavelength-transparent resin for stereolithography 3D printing”, NPG Asia Materials, Vol. 10, Issue 4, Pages 82-89, 2018.
  • 24. Huang, B., Wu, B., Han, L., Lu, Z., & Zhou, W., “Preparation of a novel cationic photosensitive resin (3D-SLR01) for stereolithography 3D printing and determination of its some properties”, Journal of Wuhan University of Technology-Material Science Ed., Vol. 34, Issue 4, Pages 761-768, 2019.
  • 25. Li, J., Wang, L., Dai, L., Zhong, L., Liu, B., Ren, J., & Xu, Y., “Synthesis and characterization of reinforced acrylate photosensitive resin by 2-hydroxyethyl methacrylate-functionalized graphene nanosheets for 3D printing”, Journal of Materials Science, Vol. 53, Issue 3, Pages 1874-1886, 2018.
  • 26. Ligon, S. C., Liska, R., Stampfl, J., Gurr, M., & Mülhaupt, R., “Polymers for 3D printing and customized additive manufacturing”, Chemical reviews, Vol. 117, Issue 15, Pages 10212-10290, 2017.
  • 27. Schmidleithner, C., & Kalaskar, D. M., “Stereolithography”, Cvetković, D., 3D Printing, Pages 1-22, Intech Open, London, 2018.
  • 28. Shan, J., Yang, Z., Chen, G., Hu, Y., Luo, Y., Dong, X., Zhou, W., “Design and Synthesis of Free-Radical/Cationic Photosensitive Resin Applied for 3D Printer with Liquid Crystal Display (LCD) Irradiation”, Polymers, Vol. 12, Issue 6, Pages 1346, 2020.
  • 29. Deng, Y., Li, J., He, Z., Hong, J., & Bao, J., “Urethane acrylate‐based photosensitive resin for three‐dimensional printing of stereolithographic elastomer”, Journal of Applied Polymer Science, Vol. 137, Issue 42, Pages 49294, 2020.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyomateryaller
Bölüm Araştırma Makalesi
Yazarlar

Volkan Kılıç 0000-0003-0553-1372

Şebnem Camadanlı Bu kişi benim 0000-0002-1807-5380

Yayımlanma Tarihi 31 Ağustos 2021
Gönderilme Tarihi 24 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 5 Sayı: 2

Kaynak Göster

APA Kılıç, V., & Camadanlı, Ş. (2021). THE EFFECT OF TRIACRYLATE MONOMER STRUCTURE ON VOLUME SHRINKAGE AND TENSILE PROPERTIES OF VAT POLYMERIZATION RESINS. International Journal of 3D Printing Technologies and Digital Industry, 5(2), 220-226. https://doi.org/10.46519/ij3dptdi.942006
AMA Kılıç V, Camadanlı Ş. THE EFFECT OF TRIACRYLATE MONOMER STRUCTURE ON VOLUME SHRINKAGE AND TENSILE PROPERTIES OF VAT POLYMERIZATION RESINS. IJ3DPTDI. Ağustos 2021;5(2):220-226. doi:10.46519/ij3dptdi.942006
Chicago Kılıç, Volkan, ve Şebnem Camadanlı. “THE EFFECT OF TRIACRYLATE MONOMER STRUCTURE ON VOLUME SHRINKAGE AND TENSILE PROPERTIES OF VAT POLYMERIZATION RESINS”. International Journal of 3D Printing Technologies and Digital Industry 5, sy. 2 (Ağustos 2021): 220-26. https://doi.org/10.46519/ij3dptdi.942006.
EndNote Kılıç V, Camadanlı Ş (01 Ağustos 2021) THE EFFECT OF TRIACRYLATE MONOMER STRUCTURE ON VOLUME SHRINKAGE AND TENSILE PROPERTIES OF VAT POLYMERIZATION RESINS. International Journal of 3D Printing Technologies and Digital Industry 5 2 220–226.
IEEE V. Kılıç ve Ş. Camadanlı, “THE EFFECT OF TRIACRYLATE MONOMER STRUCTURE ON VOLUME SHRINKAGE AND TENSILE PROPERTIES OF VAT POLYMERIZATION RESINS”, IJ3DPTDI, c. 5, sy. 2, ss. 220–226, 2021, doi: 10.46519/ij3dptdi.942006.
ISNAD Kılıç, Volkan - Camadanlı, Şebnem. “THE EFFECT OF TRIACRYLATE MONOMER STRUCTURE ON VOLUME SHRINKAGE AND TENSILE PROPERTIES OF VAT POLYMERIZATION RESINS”. International Journal of 3D Printing Technologies and Digital Industry 5/2 (Ağustos 2021), 220-226. https://doi.org/10.46519/ij3dptdi.942006.
JAMA Kılıç V, Camadanlı Ş. THE EFFECT OF TRIACRYLATE MONOMER STRUCTURE ON VOLUME SHRINKAGE AND TENSILE PROPERTIES OF VAT POLYMERIZATION RESINS. IJ3DPTDI. 2021;5:220–226.
MLA Kılıç, Volkan ve Şebnem Camadanlı. “THE EFFECT OF TRIACRYLATE MONOMER STRUCTURE ON VOLUME SHRINKAGE AND TENSILE PROPERTIES OF VAT POLYMERIZATION RESINS”. International Journal of 3D Printing Technologies and Digital Industry, c. 5, sy. 2, 2021, ss. 220-6, doi:10.46519/ij3dptdi.942006.
Vancouver Kılıç V, Camadanlı Ş. THE EFFECT OF TRIACRYLATE MONOMER STRUCTURE ON VOLUME SHRINKAGE AND TENSILE PROPERTIES OF VAT POLYMERIZATION RESINS. IJ3DPTDI. 2021;5(2):220-6.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.