Shafts are extensively used in engineering fields, serving roles in power transmission and rotational movement, thus holding significant importance. This study focuses on analyzing the structure of a selected shaft model derived from research. Subsequently, topology optimization is applied based on the obtained findings. ANSYS software is utilized for performing analysis and optimization analysis. Following the completion of these analyses, the results are thoroughly examined. The optimization process resulted in a reduction of about 2.65% in the maximum stress and approximately 2.46% decrease in the maximum strain, indicating improved mechanical performance. However, an increase of about 33.24% in maximum deformation was observed, which warrants further consideration. Most notably, the weight of the shaft decreased significantly by approximately 57.81%, resulting in the creation of a much lighter model. These outcomes highlight the potential of topology optimization, demonstrating the ability to create lighter and stronger models while utilizing resources efficiently. Consequently, it becomes imperative to explore these outcomes further by modifying selected parameters to achieve optimal results and enhance the model's performance. This study successfully showcases the potential of topology optimization, paving the way for the creation of lighter and stronger models in engineering applications.
Shaft Topology Optimization Structural Analysis Resource-Efficient Engineering
Birincil Dil | İngilizce |
---|---|
Konular | Makine Mühendisliğinde Optimizasyon Teknikleri, Makine Mühendisliği (Diğer) |
Bölüm | Araştırma Makalesi |
Yazarlar | |
Erken Görünüm Tarihi | 25 Aralık 2023 |
Yayımlanma Tarihi | 31 Aralık 2023 |
Gönderilme Tarihi | 26 Eylül 2023 |
Yayımlandığı Sayı | Yıl 2023 Cilt: 7 Sayı: 3 |
Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.