Araştırma Makalesi
BibTex RIS Kaynak Göster

OMEGA METAMATERYAL YAPISININ PENTA YAMA ANTENİN PERFORMANSINA ETKİSİ

Yıl 2025, Cilt: 9 Sayı: 2, 155 - 163, 30.08.2025
https://doi.org/10.46519/ij3dptdi.1598765

Öz

Bu çalışma, omega metamateryal yapılarının penta yama anten (PYA) performansına olan etkilerini incelemektedir. İlk olarak, 10.5 GHz merkez frekansı hedeflenerek PYA tasarlanmış ve CST yazılımı kullanılarak simüle edilmiştir. Referans antenin kazancı 3.042 dBi olarak elde edilmiştir. Daha sonra, çift negatif özelliklere sahip bir omega metamateryal tasarlanmış, elektriksel ve manyetik geçirgenlik değerleri belirlenmiş ve 9-13 GHz frekans aralığında negatif kırınım indisi gözlemlenmiştir. Bu özelliklerin metamateryalin etkin kullanımını mümkün kıldığı görülmüştür. Simülasyonlarda, omega metamateryal ile tek ve çift katmanlı lens tabakaları tasarlanmıştır. Tek katmanlı omega lens ile anten kazancında %30.51 artış sağlanmış ve kazanç değeri 3.97 dBi'ye ulaşmıştır. Çift katmanlı lens kullanımında ise lensler arası mesafe optimize edilerek 5.14 dBi kazanç elde edilmiş, bu değer referans anten kazancından %68.97 daha yüksek olmuştur. Bu bulgular, omega metamateryal yapılarının anten kazancını artırmada ve elektromanyetik yayılımın odaklanmasında önemli avantajlar sunduğunu göstermektedir. Sonuç olarak, bu çalışma metamateryal destekli anten tasarımında yenilikçi bir yaklaşım sunmakta ve uydu haberleşme gibi yüksek frekanslı uygulamalarda etkili çözümler önererek alanın ilerlemesine katkıda bulunmaktadır.

Kaynakça

  • 1. Veselago, V.G., "The electrodynamics of substances with simultaneously negative values of ε and μ", Usp. fiz. nauk, Vol. 92, Issue 3, Pages 517-526, 1967.
  • 2. Smith, D.R., Pendry, J.B. and Wiltshire, M.C.K., "Metamaterials and negative refractive index", Science, Vol. 305, Issue 5685, Pages 788-792, 2004.
  • 3. Pendry, J. B., Holden, A. J., Robbins, D. J. and Stewart, W. J., "Magnetism from conductors and enhanced nonlinear phenomena", IEEE transactions on microwave theory and techniques, Vol. 47, Issue 11, Pages 2075-2084, 1999.
  • 4. Urul, B., “Fraktal yapılar ile yüksek kazançlı yansıtıcı dizi anten tasarımı”, International Journal of 3D Printing Technologies and Digital Industry, Vol. 6, Issue 3, Pages 408-415, 2020.
  • 5. Urul, B., “Gain enhancement of microstrip antenna with a novel DNG material”, Microwave and Optical Technology Letters”, Vol. 62, Issue 4, Pages 1824-1829, 2020.
  • 6. Lanuzza, L., Monorchio, A. and Manara, G., “Synthesis of high-impedance FSSs using genetic algorithms”, IEEE Antennas Prop. Soc Int. Symp 4, Pages 364-367, 2002.
  • 7. Yuan, Y., Chan, C. H., Man, K. F. and Luk, K. M., “Metamaterial surface design using the hierarchical genetic algorithm”, Microwave and Optical Technology Letters, Vol. 39, Issue 3, Pages 226-230, 2003.
  • 8. Chan, C.H., “Analysis of frequency selective surfaces, Ch. 2, in Frequency selective surface and grid array”, Wiley Inter-Science, New York, Pages 27-85, 1995.
  • 9. Manara, G., Monorchio, A. and Mittra, R., “Frequency selective surface design based on genetic algorithm”, Electron Lett Vol. 36, Pages 1400 -1401, 1999.
  • 10. Yılmaz M., “Nano Ölçekli Işık Manipülasyonu İçin Optik Nanoantenlerin İncelenmesi”, Yüksek Lisans Tezi, Konya Teknik Üniversitesi, 2022.
  • 11. Alam, M. S., Islam, M. T. and Misran, N., “Electromagnetic Band Gap Structure for Microstrip Antenna Gain Enhancement at WLAN Band”, IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), Pages 1-4, 2020.
  • 12. Tian, J., Cao, W., “Reconfigurable flexible metasurfaces: from fundamentals towards biomedical applications”, PhotoniX , Vol 5, Issue 2, 2024.
  • 13. Khan, O. M., Islam, Z. U., Rashid, I., Bhatti, F. A. and Islam, Q. U., “Novel miniaturized Koch pentagonal fractal antenna for multiband wireless applications”, Progress in Electromagnetics Research, Vol. 141, Pages 693-710, 2013.
  • 14. Yu, Z.W., Wang, G.M., Gao, X.J. and Lu, K., “A novel small-size single patch microstrip antenna based on Koch and Sierpinski fractal-shapes”, Progress in Electromagnetics Research Letters, Vol. 17, Pages 95-103, 2010.
  • 15. Li, D. and Mao, J.F., “Koch-like sided Sierpinski gasket multifractal dipole antenna”, Progress in Electromagnetics Research, Vol. 126, Pages 399-427, 2012.
  • 16. Ramya, S. and Rao, I. S., “A compact ultra-thin ultra-wideband microwave metamaterial absorber”, Microwave and Optical Technology Letters, Vol 59, Issue 8, Pages 1837-1845, 2017.
  • 17. Wu, W., Yuan, B., Guan, B. and Xiang, T., “A bandwidth enhancement for metamaterial microstrip antenna”, Microwave and Optical Technology Letters, Vol. 59, Issue 12, Pages 3076-3082, 2017.
  • 18. Tutuncu, B., Torpi, H. and İmeci, S. T., "Directivity improvement of microstrip antenna by inverse refraction metamaterial", Journal of Engineering Research, Vol. 7, Issue 4, Pages 151-164, 2019.
  • 19. Shi, Y., Hao, T., Li, L. and Liang, C.H., “An improved NRW method to extract electromagnetic parameters of metamaterials”, Microwave Optical Technology Letters, Vol. 58, Issue 3, Pages 647-652, 2016.
  • 20. Shi, Y., Li, Z.Y., Li, L. and Liang, C.H., “An electromagnetic parameters extraction method for metamaterials based on phase unwrapping technique”, Waves Random Complex Medium, Vol. 26, Issue 4, Pages 417-433, 2016.
  • 21. Hu, D., Zhao, R., Du, L. and Wang, Y., “Design, simulation and measurement of an omega metamaterial at X band”, In 2017 Sixth Asia-Pacific Conference on Antennas and Propagation, APCAP, IEEE, Pages 1-3, 2017.

THE EFFECT OF OMEGA METAMATERIAL STRUCTURE ON THE PERFORMANCE OF PENTAGONAL PATCH ANTENNA

Yıl 2025, Cilt: 9 Sayı: 2, 155 - 163, 30.08.2025
https://doi.org/10.46519/ij3dptdi.1598765

Öz

This study investigates the effects of omega metamaterial structures on the performance of pentagonal patch antennas (PPA). Initially, a PPA was designed targeting a central frequency of 10.5 GHz and simulated using CST software. The reference antenna achieved a gain of 3.042 dBi. Subsequently, an omega metamaterial with double-negative properties was designed, with its electrical and magnetic permeability values determined. A negative refractive index was observed in the 9-13 GHz frequency range, demonstrating the effective utilization potential of the metamaterial. In the simulations, single- and double-layer omega metamaterial lenses were designed. The single-layer omega lens resulted in a 30.51% increase in antenna gain, reaching a gain value of 3.97 dBi. For the double-layer lens configuration, optimizing the inter-layer distance yielded a gain of 5.14 dBi, which is 68.97% higher than the reference antenna's gain. These findings demonstrate that omega metamaterial structures offer significant advantages in enhancing antenna gain and focusing electromagnetic radiation. In conclusion, this study presents an innovative approach to metamaterial-supported antenna design and provides effective solutions for high-frequency applications, such as satellite communications, contributing to advancements in the field.

Kaynakça

  • 1. Veselago, V.G., "The electrodynamics of substances with simultaneously negative values of ε and μ", Usp. fiz. nauk, Vol. 92, Issue 3, Pages 517-526, 1967.
  • 2. Smith, D.R., Pendry, J.B. and Wiltshire, M.C.K., "Metamaterials and negative refractive index", Science, Vol. 305, Issue 5685, Pages 788-792, 2004.
  • 3. Pendry, J. B., Holden, A. J., Robbins, D. J. and Stewart, W. J., "Magnetism from conductors and enhanced nonlinear phenomena", IEEE transactions on microwave theory and techniques, Vol. 47, Issue 11, Pages 2075-2084, 1999.
  • 4. Urul, B., “Fraktal yapılar ile yüksek kazançlı yansıtıcı dizi anten tasarımı”, International Journal of 3D Printing Technologies and Digital Industry, Vol. 6, Issue 3, Pages 408-415, 2020.
  • 5. Urul, B., “Gain enhancement of microstrip antenna with a novel DNG material”, Microwave and Optical Technology Letters”, Vol. 62, Issue 4, Pages 1824-1829, 2020.
  • 6. Lanuzza, L., Monorchio, A. and Manara, G., “Synthesis of high-impedance FSSs using genetic algorithms”, IEEE Antennas Prop. Soc Int. Symp 4, Pages 364-367, 2002.
  • 7. Yuan, Y., Chan, C. H., Man, K. F. and Luk, K. M., “Metamaterial surface design using the hierarchical genetic algorithm”, Microwave and Optical Technology Letters, Vol. 39, Issue 3, Pages 226-230, 2003.
  • 8. Chan, C.H., “Analysis of frequency selective surfaces, Ch. 2, in Frequency selective surface and grid array”, Wiley Inter-Science, New York, Pages 27-85, 1995.
  • 9. Manara, G., Monorchio, A. and Mittra, R., “Frequency selective surface design based on genetic algorithm”, Electron Lett Vol. 36, Pages 1400 -1401, 1999.
  • 10. Yılmaz M., “Nano Ölçekli Işık Manipülasyonu İçin Optik Nanoantenlerin İncelenmesi”, Yüksek Lisans Tezi, Konya Teknik Üniversitesi, 2022.
  • 11. Alam, M. S., Islam, M. T. and Misran, N., “Electromagnetic Band Gap Structure for Microstrip Antenna Gain Enhancement at WLAN Band”, IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), Pages 1-4, 2020.
  • 12. Tian, J., Cao, W., “Reconfigurable flexible metasurfaces: from fundamentals towards biomedical applications”, PhotoniX , Vol 5, Issue 2, 2024.
  • 13. Khan, O. M., Islam, Z. U., Rashid, I., Bhatti, F. A. and Islam, Q. U., “Novel miniaturized Koch pentagonal fractal antenna for multiband wireless applications”, Progress in Electromagnetics Research, Vol. 141, Pages 693-710, 2013.
  • 14. Yu, Z.W., Wang, G.M., Gao, X.J. and Lu, K., “A novel small-size single patch microstrip antenna based on Koch and Sierpinski fractal-shapes”, Progress in Electromagnetics Research Letters, Vol. 17, Pages 95-103, 2010.
  • 15. Li, D. and Mao, J.F., “Koch-like sided Sierpinski gasket multifractal dipole antenna”, Progress in Electromagnetics Research, Vol. 126, Pages 399-427, 2012.
  • 16. Ramya, S. and Rao, I. S., “A compact ultra-thin ultra-wideband microwave metamaterial absorber”, Microwave and Optical Technology Letters, Vol 59, Issue 8, Pages 1837-1845, 2017.
  • 17. Wu, W., Yuan, B., Guan, B. and Xiang, T., “A bandwidth enhancement for metamaterial microstrip antenna”, Microwave and Optical Technology Letters, Vol. 59, Issue 12, Pages 3076-3082, 2017.
  • 18. Tutuncu, B., Torpi, H. and İmeci, S. T., "Directivity improvement of microstrip antenna by inverse refraction metamaterial", Journal of Engineering Research, Vol. 7, Issue 4, Pages 151-164, 2019.
  • 19. Shi, Y., Hao, T., Li, L. and Liang, C.H., “An improved NRW method to extract electromagnetic parameters of metamaterials”, Microwave Optical Technology Letters, Vol. 58, Issue 3, Pages 647-652, 2016.
  • 20. Shi, Y., Li, Z.Y., Li, L. and Liang, C.H., “An electromagnetic parameters extraction method for metamaterials based on phase unwrapping technique”, Waves Random Complex Medium, Vol. 26, Issue 4, Pages 417-433, 2016.
  • 21. Hu, D., Zhao, R., Du, L. and Wang, Y., “Design, simulation and measurement of an omega metamaterial at X band”, In 2017 Sixth Asia-Pacific Conference on Antennas and Propagation, APCAP, IEEE, Pages 1-3, 2017.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Bülent Urul 0000-0003-2656-2450

Yayımlanma Tarihi 30 Ağustos 2025
Gönderilme Tarihi 9 Aralık 2024
Kabul Tarihi 12 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 2

Kaynak Göster

APA Urul, B. (2025). OMEGA METAMATERYAL YAPISININ PENTA YAMA ANTENİN PERFORMANSINA ETKİSİ. International Journal of 3D Printing Technologies and Digital Industry, 9(2), 155-163. https://doi.org/10.46519/ij3dptdi.1598765
AMA Urul B. OMEGA METAMATERYAL YAPISININ PENTA YAMA ANTENİN PERFORMANSINA ETKİSİ. IJ3DPTDI. Ağustos 2025;9(2):155-163. doi:10.46519/ij3dptdi.1598765
Chicago Urul, Bülent. “OMEGA METAMATERYAL YAPISININ PENTA YAMA ANTENİN PERFORMANSINA ETKİSİ”. International Journal of 3D Printing Technologies and Digital Industry 9, sy. 2 (Ağustos 2025): 155-63. https://doi.org/10.46519/ij3dptdi.1598765.
EndNote Urul B (01 Ağustos 2025) OMEGA METAMATERYAL YAPISININ PENTA YAMA ANTENİN PERFORMANSINA ETKİSİ. International Journal of 3D Printing Technologies and Digital Industry 9 2 155–163.
IEEE B. Urul, “OMEGA METAMATERYAL YAPISININ PENTA YAMA ANTENİN PERFORMANSINA ETKİSİ”, IJ3DPTDI, c. 9, sy. 2, ss. 155–163, 2025, doi: 10.46519/ij3dptdi.1598765.
ISNAD Urul, Bülent. “OMEGA METAMATERYAL YAPISININ PENTA YAMA ANTENİN PERFORMANSINA ETKİSİ”. International Journal of 3D Printing Technologies and Digital Industry 9/2 (Ağustos2025), 155-163. https://doi.org/10.46519/ij3dptdi.1598765.
JAMA Urul B. OMEGA METAMATERYAL YAPISININ PENTA YAMA ANTENİN PERFORMANSINA ETKİSİ. IJ3DPTDI. 2025;9:155–163.
MLA Urul, Bülent. “OMEGA METAMATERYAL YAPISININ PENTA YAMA ANTENİN PERFORMANSINA ETKİSİ”. International Journal of 3D Printing Technologies and Digital Industry, c. 9, sy. 2, 2025, ss. 155-63, doi:10.46519/ij3dptdi.1598765.
Vancouver Urul B. OMEGA METAMATERYAL YAPISININ PENTA YAMA ANTENİN PERFORMANSINA ETKİSİ. IJ3DPTDI. 2025;9(2):155-63.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.