Araştırma Makalesi
BibTex RIS Kaynak Göster

ELECTRIC MOTOR DESIGN BASED ON VEHICLE MODEL AND DRIVING CYCLE FOR LIGHT ELECTRIC VEHICLES

Yıl 2025, Cilt: 9 Sayı: 2, 236 - 246, 30.08.2025
https://doi.org/10.46519/ij3dptdi.1630021

Öz

The widespread adoption of electric vehicles has accelerated research in this field. Light electric vehicles, due to their specific speed-torque characteristics during driving cycles and their requirement for high torque at low speeds, necessitate the selection, design, and analysis of suitable electric motors. This study focuses on the design and analysis of an outer rotor, surface-mounted, permanent magnet synchronous motor (PMSM) for light electric vehicles. Before initiating the motor design process, vehicle geometry, physical parameters, and the driving cycle were analyzed. Motor design requirements were then determined based on the vehicle model, track conditions, and the specified driving cycle, and an optimization process was carried out accordingly. The outer rotor PMSM, developed for use in light electric vehicle competitions where energy efficiency and performance are critical, was optimized to meet these demands. This design and analysis process aims to ensure high energy efficiency and performance of the motor.

Etik Beyan

This study does not contain any ethical violations, and all data has been provided by the authors.

Destekleyen Kurum

This study has not received any financial support from any institution.

Kaynakça

  • 1. Cao, J., Chen, X., Qiu, R., Hou, S., "Electric vehicle industry sustainable development with a stakeholder engagement system", Technology in Society, Vol. 67, Pages 101771, 2021.
  • 2. Pielecha, J., Skobiej, K., Kurtyka, K., "Exhaust Emissions and Energy Consumption Analysis of Conventional, Hybrid, and Electric Vehicles in Real Driving Cycles", Energies, Vol. 13, Issue 23, Pages 6423, Dec. 2020.
  • 3. Kıyaklı, A. O., Solmaz, H., "Modeling of an Electric Vehicle with MATLAB/Simulink", International Journal of Automotive Science And Technology, Vol. 2, Issue 4, Pages 9-15, Dec. 2018.
  • 4. Camargos, Pedro H., Ricardo E. Caetano., "A performance study of a high-torque induction motor designed for light electric vehicles applications.", Electrical Engineering, Vol. 104, Issue 2, Pages 797-805, 2022.
  • 5. Polat, A.O, et al., " Light electric vehicle performance with digital twin technology: a comparison of motor types.", Arabian Journal for Science and Engineering, Vol. 49, Issue 5, Pages 7209-7222, 2024.
  • 6. Krasopoulos, C. T., Beniakar, M. E., Kladas, A. G., "Multicriteria PM Motor Design Based on ANFIS Evaluation of EV Driving Cycle Efficiency", IEEE Transactions on Transportation Electrification, Vol. 4, Issue 2, Pages 525-535, June 2018.
  • 7. Hu, X., Guo, H., Qian, H., Ding, X., Yang, Y., "Development of a high-power-density motor for formula SAE electric race car", IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, Pages 6618-6622, 2017.
  • 8. Targosz, M., Skarka, W., Przystałka, P., "Model-Based Optimization of Velocity Strategy for Lightweight Electric Racing Cars", Journal of Advanced Transportation, Vol. 2018, Article ID 3614025, Pages 20, 2018.
  • 9. International Energy Agency (IEA), "Global EV outlook 2020", https://www.iea.org/reports/global-ev-outlook-2020, Februay 10, 2025.
  • 10. Ballo, F., Stabile, P., Gobbi, M., Mastinu, G., "A Lightweight Ultra-Efficient Electric Vehicle Multi-Physics Modeling and Driving Strategy Optimization", IEEE Transactions on Vehicular Technology, Vol. 71, Issue 8, Pages 8089-8103, Aug. 2022.
  • 11. Pusztai, Z., Kőrös, P., Szauter, F., Friedler, F., "Vehicle Model-Based Driving Strategy Optimization for Lightweight Vehicle", Energies, Vol. 15, Issue 10, Pages 3631, May 2022.
  • 12. Bolvashenkov, I., Kammermann, J., Herzog, H. -G., "Methodology for selecting electric traction motors and its application to vehicle propulsion systems", 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Pages 1214-1219, Capri, Italy, 2016.
  • 13. Hashemnia, N., Asaei, B., "Comparative study of using different electric motors in the electric vehicles", 2008 18th International Conference on Electrical Machines, Pages 1-5, Vilamoura, Portugal, 2008.
  • 14. Hadraoui, H., et al., " A multi-criteria analysis and trends of electric motors for electric vehicles.", World Electric Vehicle Journal, Vol. 13, Issue 4, Pages 65, 2022.
  • 15. Yilmaz, M., "Limitations/capabilities of electric machine technologies and modeling approaches for electric motor design and analysis in plug-in electric vehicle applications", Renewable and Sustainable Energy Reviews, Vol. 52, Pages 80-99, 2015.
  • 16. Sun, Y., Li, M., Liao, C., "Analysis of wheel hub motor drive application in electric vehicles", MATEC Web of Conferences, Vol. 100, Pages 01004, 2017.
  • 17. Kumar, A., Chandekar, A., Deshmukh, P. W., Ugale, R. T., "Development of electric vehicle with permanent magnet synchronous motor and its analysis with drive cycles in MATLAB/Simulink", Materials Today: Proceedings, Vol. 72, Issue 3, Pages 643-651, 2023.
  • 18. TEKNOFEST, "Uluslarası Efficiency Challange Elektrikli Araç Yarışları Şartnamesi", https://www.teknofest.org/tr/competitions/competition/44, April 1, 2023.
  • 19. Vidhya, S. D., Balaji, M., "Modelling, design and control of a light electric vehicle with hybrid energy storage system for Indian driving cycle", Measurement and Control, Vol. 52, Issue 9-10, Pages 1420-1433, 2019.
  • 20. Cardoso, J. F., Chillet, C., Gerbaud, L., Belhaj, L. A., "Electrical Machine Design by optimization for E-motor Application: a Drive Cycle Approach", 2020 International Conference on Electrical Machines (ICEM), Pages 2514-2519, Gothenburg, Sweden, 2020.
  • 21. Canseven, H. T., Altıntaş, M., Bakbak, A., Ayaz, M., Meşe, E. and Pyrhönen, J., “Maintaining Synchronous Operation of a Damperless Dual-Port Tooth-Coil-Winding PMSG”, IEEE Transactions on Industry Applications, Vol. 60, Issue 1, Pages 112-122, 2024.
  • 22. Rosu, M., Zhou, P., Lin, D., Popescu, M., Rallabandi, V., Staton, D., Blaabjerg, F., Ionel, D. M., "Multiphysics simulation by design for Electrical Machines, Power Electronics, and drives", IEEE Press, Pages 8-9, 2018.
  • 23. Zhu, Z. Q., Jamil, M. L. M., Wu, L. J., "Influence of Slot and Pole Number Combinations on Unbalanced Magnetic Force in PM Machines With Diametrically Asymmetric Windings", IEEE Transactions on Industry Applications, Vol. 49, Issue 1, Pages 19-30, 2013.
  • 24. Levent, A., Lordoglu, A., Aydeniz, M., "Design and Optimization of Permanent Magnet Synchronous Motor for Electric Vehicle Applications", GPECOM, Pages 148-151, 2020. 25. Choi, G., Jahns, T. M., "Design of electric machines for electric vehicles based on driving schedules", 2013 International Electric Machines & Drives Conference, Chicago, IL, USA, Pages 54-61, 2013.
  • 26. Bakbak, A., et al., "PMSG-Based Dual-Port Wind-Energy Conversion System With Reduced Converter Size", IEEE Access, Vol. 9, Pages 118953-118967, 2021. 27. Jang, G., Sehwan K., Gilsu C., "Design and Optimization of an Outer-Rotor PMSM for Torque Ripple Minimization.", 2024 27th International Conference on Electrical Machines and Systems (ICEMS). IEEE, 2024.

HAFİF ELEKTRİKLİ ARAÇLAR İÇİN ARAÇ MODELİ VE SÜRÜŞ DÖNGÜSÜNE GÖRE ELEKTRİK MOTORU TASARIMI

Yıl 2025, Cilt: 9 Sayı: 2, 236 - 246, 30.08.2025
https://doi.org/10.46519/ij3dptdi.1630021

Öz

Günümüzde elektrikli araçların yaygınlaşması, bu alanda yapılan araştırmaları hızlandırmıştır. Hafif elektrikli araçlar, sürüş döngüleri sırasında belirli bir hız-tork karakteristiğine sahip olmaları ve düşük hızlarda yüksek tork gereksinimleri nedeniyle, bu tür araçlara uygun elektrik motorlarının belirlenmesi, tasarımı ve analizi kritik bir öneme sahiptir. Bu çalışma, hafif elektrikli araçlar için dış rotorlu, yüzey montajlı, sabit mıknatıslı senkron motor (SMSM) tasarımı ve analizini kapsamaktadır. Araştırma kapsamında, motor tasarımı ve analizine geçilmeden önce, araçların geometrik ve fiziksel parametreleri ile ayrıntılı bir sürüş döngüsü analizi gerçekleştirilmiştir. Araç modeline, pist koşullarına ve belirlenen sürüş döngüsüne göre motor tasarım gereksinimleri belirlenmiş ve bu doğrultuda optimizasyon yapılmıştır. Enerji verimliliği ve araç performansının ön planda olduğu hafif elektrikli araç yarışlarında kullanılmak üzere tasarlanan dış rotorlu SMSM, bu gereksinimlere göre optimize edilmiştir. Bu tasarım ve analiz süreci, motorun yüksek enerji verimliliği ve performansını sağlamayı hedeflemektedir.

Etik Beyan

Bu çalışma herhangi bir etik ihlal içermemektedir ve tüm veriler yazarlar tarafından sağlanmıştır.

Destekleyen Kurum

Bu çalışma herhangi bir kurum tarafından finansal destek almamıştır.

Kaynakça

  • 1. Cao, J., Chen, X., Qiu, R., Hou, S., "Electric vehicle industry sustainable development with a stakeholder engagement system", Technology in Society, Vol. 67, Pages 101771, 2021.
  • 2. Pielecha, J., Skobiej, K., Kurtyka, K., "Exhaust Emissions and Energy Consumption Analysis of Conventional, Hybrid, and Electric Vehicles in Real Driving Cycles", Energies, Vol. 13, Issue 23, Pages 6423, Dec. 2020.
  • 3. Kıyaklı, A. O., Solmaz, H., "Modeling of an Electric Vehicle with MATLAB/Simulink", International Journal of Automotive Science And Technology, Vol. 2, Issue 4, Pages 9-15, Dec. 2018.
  • 4. Camargos, Pedro H., Ricardo E. Caetano., "A performance study of a high-torque induction motor designed for light electric vehicles applications.", Electrical Engineering, Vol. 104, Issue 2, Pages 797-805, 2022.
  • 5. Polat, A.O, et al., " Light electric vehicle performance with digital twin technology: a comparison of motor types.", Arabian Journal for Science and Engineering, Vol. 49, Issue 5, Pages 7209-7222, 2024.
  • 6. Krasopoulos, C. T., Beniakar, M. E., Kladas, A. G., "Multicriteria PM Motor Design Based on ANFIS Evaluation of EV Driving Cycle Efficiency", IEEE Transactions on Transportation Electrification, Vol. 4, Issue 2, Pages 525-535, June 2018.
  • 7. Hu, X., Guo, H., Qian, H., Ding, X., Yang, Y., "Development of a high-power-density motor for formula SAE electric race car", IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, Pages 6618-6622, 2017.
  • 8. Targosz, M., Skarka, W., Przystałka, P., "Model-Based Optimization of Velocity Strategy for Lightweight Electric Racing Cars", Journal of Advanced Transportation, Vol. 2018, Article ID 3614025, Pages 20, 2018.
  • 9. International Energy Agency (IEA), "Global EV outlook 2020", https://www.iea.org/reports/global-ev-outlook-2020, Februay 10, 2025.
  • 10. Ballo, F., Stabile, P., Gobbi, M., Mastinu, G., "A Lightweight Ultra-Efficient Electric Vehicle Multi-Physics Modeling and Driving Strategy Optimization", IEEE Transactions on Vehicular Technology, Vol. 71, Issue 8, Pages 8089-8103, Aug. 2022.
  • 11. Pusztai, Z., Kőrös, P., Szauter, F., Friedler, F., "Vehicle Model-Based Driving Strategy Optimization for Lightweight Vehicle", Energies, Vol. 15, Issue 10, Pages 3631, May 2022.
  • 12. Bolvashenkov, I., Kammermann, J., Herzog, H. -G., "Methodology for selecting electric traction motors and its application to vehicle propulsion systems", 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Pages 1214-1219, Capri, Italy, 2016.
  • 13. Hashemnia, N., Asaei, B., "Comparative study of using different electric motors in the electric vehicles", 2008 18th International Conference on Electrical Machines, Pages 1-5, Vilamoura, Portugal, 2008.
  • 14. Hadraoui, H., et al., " A multi-criteria analysis and trends of electric motors for electric vehicles.", World Electric Vehicle Journal, Vol. 13, Issue 4, Pages 65, 2022.
  • 15. Yilmaz, M., "Limitations/capabilities of electric machine technologies and modeling approaches for electric motor design and analysis in plug-in electric vehicle applications", Renewable and Sustainable Energy Reviews, Vol. 52, Pages 80-99, 2015.
  • 16. Sun, Y., Li, M., Liao, C., "Analysis of wheel hub motor drive application in electric vehicles", MATEC Web of Conferences, Vol. 100, Pages 01004, 2017.
  • 17. Kumar, A., Chandekar, A., Deshmukh, P. W., Ugale, R. T., "Development of electric vehicle with permanent magnet synchronous motor and its analysis with drive cycles in MATLAB/Simulink", Materials Today: Proceedings, Vol. 72, Issue 3, Pages 643-651, 2023.
  • 18. TEKNOFEST, "Uluslarası Efficiency Challange Elektrikli Araç Yarışları Şartnamesi", https://www.teknofest.org/tr/competitions/competition/44, April 1, 2023.
  • 19. Vidhya, S. D., Balaji, M., "Modelling, design and control of a light electric vehicle with hybrid energy storage system for Indian driving cycle", Measurement and Control, Vol. 52, Issue 9-10, Pages 1420-1433, 2019.
  • 20. Cardoso, J. F., Chillet, C., Gerbaud, L., Belhaj, L. A., "Electrical Machine Design by optimization for E-motor Application: a Drive Cycle Approach", 2020 International Conference on Electrical Machines (ICEM), Pages 2514-2519, Gothenburg, Sweden, 2020.
  • 21. Canseven, H. T., Altıntaş, M., Bakbak, A., Ayaz, M., Meşe, E. and Pyrhönen, J., “Maintaining Synchronous Operation of a Damperless Dual-Port Tooth-Coil-Winding PMSG”, IEEE Transactions on Industry Applications, Vol. 60, Issue 1, Pages 112-122, 2024.
  • 22. Rosu, M., Zhou, P., Lin, D., Popescu, M., Rallabandi, V., Staton, D., Blaabjerg, F., Ionel, D. M., "Multiphysics simulation by design for Electrical Machines, Power Electronics, and drives", IEEE Press, Pages 8-9, 2018.
  • 23. Zhu, Z. Q., Jamil, M. L. M., Wu, L. J., "Influence of Slot and Pole Number Combinations on Unbalanced Magnetic Force in PM Machines With Diametrically Asymmetric Windings", IEEE Transactions on Industry Applications, Vol. 49, Issue 1, Pages 19-30, 2013.
  • 24. Levent, A., Lordoglu, A., Aydeniz, M., "Design and Optimization of Permanent Magnet Synchronous Motor for Electric Vehicle Applications", GPECOM, Pages 148-151, 2020. 25. Choi, G., Jahns, T. M., "Design of electric machines for electric vehicles based on driving schedules", 2013 International Electric Machines & Drives Conference, Chicago, IL, USA, Pages 54-61, 2013.
  • 26. Bakbak, A., et al., "PMSG-Based Dual-Port Wind-Energy Conversion System With Reduced Converter Size", IEEE Access, Vol. 9, Pages 118953-118967, 2021. 27. Jang, G., Sehwan K., Gilsu C., "Design and Optimization of an Outer-Rotor PMSM for Torque Ripple Minimization.", 2024 27th International Conference on Electrical Machines and Systems (ICEMS). IEEE, 2024.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mekatronik Sistemlerin Simülasyonu, Modellenmesi ve Programlanması
Bölüm Araştırma Makalesi
Yazarlar

Doğukan Ayhan 0000-0002-7111-7260

Ali Bakbak 0000-0002-6465-4332

Yayımlanma Tarihi 30 Ağustos 2025
Gönderilme Tarihi 30 Ocak 2025
Kabul Tarihi 9 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 2

Kaynak Göster

APA Ayhan, D., & Bakbak, A. (2025). HAFİF ELEKTRİKLİ ARAÇLAR İÇİN ARAÇ MODELİ VE SÜRÜŞ DÖNGÜSÜNE GÖRE ELEKTRİK MOTORU TASARIMI. International Journal of 3D Printing Technologies and Digital Industry, 9(2), 236-246. https://doi.org/10.46519/ij3dptdi.1630021
AMA Ayhan D, Bakbak A. HAFİF ELEKTRİKLİ ARAÇLAR İÇİN ARAÇ MODELİ VE SÜRÜŞ DÖNGÜSÜNE GÖRE ELEKTRİK MOTORU TASARIMI. IJ3DPTDI. Ağustos 2025;9(2):236-246. doi:10.46519/ij3dptdi.1630021
Chicago Ayhan, Doğukan, ve Ali Bakbak. “HAFİF ELEKTRİKLİ ARAÇLAR İÇİN ARAÇ MODELİ VE SÜRÜŞ DÖNGÜSÜNE GÖRE ELEKTRİK MOTORU TASARIMI”. International Journal of 3D Printing Technologies and Digital Industry 9, sy. 2 (Ağustos 2025): 236-46. https://doi.org/10.46519/ij3dptdi.1630021.
EndNote Ayhan D, Bakbak A (01 Ağustos 2025) HAFİF ELEKTRİKLİ ARAÇLAR İÇİN ARAÇ MODELİ VE SÜRÜŞ DÖNGÜSÜNE GÖRE ELEKTRİK MOTORU TASARIMI. International Journal of 3D Printing Technologies and Digital Industry 9 2 236–246.
IEEE D. Ayhan ve A. Bakbak, “HAFİF ELEKTRİKLİ ARAÇLAR İÇİN ARAÇ MODELİ VE SÜRÜŞ DÖNGÜSÜNE GÖRE ELEKTRİK MOTORU TASARIMI”, IJ3DPTDI, c. 9, sy. 2, ss. 236–246, 2025, doi: 10.46519/ij3dptdi.1630021.
ISNAD Ayhan, Doğukan - Bakbak, Ali. “HAFİF ELEKTRİKLİ ARAÇLAR İÇİN ARAÇ MODELİ VE SÜRÜŞ DÖNGÜSÜNE GÖRE ELEKTRİK MOTORU TASARIMI”. International Journal of 3D Printing Technologies and Digital Industry 9/2 (Ağustos2025), 236-246. https://doi.org/10.46519/ij3dptdi.1630021.
JAMA Ayhan D, Bakbak A. HAFİF ELEKTRİKLİ ARAÇLAR İÇİN ARAÇ MODELİ VE SÜRÜŞ DÖNGÜSÜNE GÖRE ELEKTRİK MOTORU TASARIMI. IJ3DPTDI. 2025;9:236–246.
MLA Ayhan, Doğukan ve Ali Bakbak. “HAFİF ELEKTRİKLİ ARAÇLAR İÇİN ARAÇ MODELİ VE SÜRÜŞ DÖNGÜSÜNE GÖRE ELEKTRİK MOTORU TASARIMI”. International Journal of 3D Printing Technologies and Digital Industry, c. 9, sy. 2, 2025, ss. 236-4, doi:10.46519/ij3dptdi.1630021.
Vancouver Ayhan D, Bakbak A. HAFİF ELEKTRİKLİ ARAÇLAR İÇİN ARAÇ MODELİ VE SÜRÜŞ DÖNGÜSÜNE GÖRE ELEKTRİK MOTORU TASARIMI. IJ3DPTDI. 2025;9(2):236-4.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.