Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, , 165 - 171, 10.12.2019
https://doi.org/10.18245/ijaet.625754

Öz

Kaynakça

  • 1. Mancini M., Volpe M. L., Gatti B., Malik Y., Moreno A. C., Lekovar D., Cravero V. “Characterization of cardoon accessions as feedstock for biodiesel production” Fuel, 235 pp.1267-1293, 2019.
  • 2. Lamaisri C., Punsuvon V., Anuruck S. C., Srinives A. P., Liangsakul P., “Relationship between fatty acid composition and biodiesel quality for nine commercial palm oils”, Songklanakarin J. Sci. Technol., 37(4) pp 389-395, 2015.
  • 3. Sajjadi B., Abdul Raman A. A., Arandiyan H., “A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: composition, specifications and prediction models.” Renewable and Sustainable Energy Reviews, 63, pp. 62-92, 2016.
  • 4. Yang L., Takase M., Zhang M., Zhao T., Wu X. “Potential non-edible oil feedstock for biodiesel production in Africa: A survey”, Renewable and Sustainable Energy Reviews 38, pp 461-477, 2014.
  • 5. Şanlı H. “Influences of biodiesel fuels produced from highly degraded waste animal fats on the injection and emission characteristics of a CRDI diesel engine” International Journal of Automotive Engineering and Technologies 8(1), pp.11-21, 2019.
  • 6. Ors I., Kahraman A., and Ciniviz M. “Performance, emission, and combustion analysis of a compression ignition engine using biofuel blends” THERMAL SCIENCE, Vol. 21, No. 1B, pp. 511-522, 2017.
  • 7. Kahraman A., Ciniviz M, Ors I., Oğuz H., “The Effect on Performance and Exhaust Emissions of Adding Cotton Oil Methyl Ester to Diesel Fuel” International Journal of Automotive Engineering and Technologies Vol 5, Issue 4, pp.148-154, 2016.
  • 8. Özgün A. K., Eryılmaz T. “A Comparative study of engine performance and exhaust emissions of biodiesel and its blends produced from waste cooking oil and neutralized waste cooking oil” International Journal of Automotive Engineering and Technologies, 7 (3), pp. 88-97, 2018.
  • 9. Can O., Oztürk E., Yücesu H. S. “Combustion and exhaust emissions of canola biodiesel blends in a single cylinder DI diesel engine” Renewable Energy, 109, pp.73-82, 2017.
  • 10. Kaya C., Hamamcı C., Baysal A., Akba O., Erdogan S., Saydut A., “Methyl ester of peanut (Arachis hypogea L.) seed oil as a potential feedstock for biodiesel production” Renewable Energy 34, pp. 1257–1260, 2009.
  • 11. Salaheldeen M., Aroua, M.K., Mariod A.A., Cheng S. F., Abdelrahman M.A. “An evaluation of Moringa peregrine seeds as a source for bio-fuel” Industrial Crops and Products Volume 61, pp. 49-61, 2014.
  • 12. Yesilyurt M. K., Eryilmaz T., Arslan M. “A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/npentanol (C5 alcohol) fuel blends” Energy, 165, 1332-1351, 2018.
  • 13. Shrivastavaa P., Vermaa T. N., Pugazhendhib A., “An experimental evaluation of engine performance and emission characteristics of CI engine operated with Roselle and Karanja biodiesel” Fuel 254, 115652, 2019.
  • 14. www.turkstat.gov.tr cited 28.8.2019.
  • 15. https://www.dunyaenerji.org.tr/wp-content/uploads/2019/04/SelcukBorovaliSunum cited 28.8.2019.
  • 16. https://arastirma.tarimorman.gov.tr/Yetiştiricilik%20Bilgileri/Kiraz%20Yetiştiriciliği cited 28.8.2019.
  • 17. Başkaya Z. “Türkiye’de kiraz tarımının coğrafȋ esasları / The geographical foundations of cherry farming in Turkey”, Doğu Coğrafya Dergisi Cilt 16, Sayı 26, (2011), doi:http://dx.doi.org/10.17295/dcd.99899.
  • 18. Sahafi S.M., Ahmadibeni E., Talebi A. F., Goli S. A. H., Aghbashlo M., Tabatabaei M., “Seed oils of sisymbrium irio and Sisymbrium sophia as a potential non-edible feedstock for biodiesel production. BIOFUELS http://doi.org/10.1080/17597269.2018.1457 cited 28.8.2019.
  • 19. Talebi, A.F., Tabatabaei, M., Chisti Y., “Biodiesel analyzer©: a user friendly software for predicting the properties of prospective biodiesel” Biofuel Research Journal 2, pp. 55-57,2014.
  • 20. http://dieselnet.com/tech/fuel|biodiesel|std.php#spec cited 28.8.2019.
  • 21. Anwar M., Rasul M. G., Ashwath N. “The efficacy of multiple-criteria design matrix for biodiesel feedstock selection” Energy Conversion and Management, 198, 111790, 2019.
  • 22. https://doi.org.1016/j.enconman.2019.111790
  • 23. Giakoumis E. G., Sarakatsanis C. K., “Estimation of biodiesel cetane number, density, kinematic viscosity and heating values from its fatty acid composition” Fuel, 222, pp.574-585, 2018.
  • 24. Knothe G, Razon L.F.” Biodiesel fuels” Progress in Energy and Combustion Science, 58, pp36-59, 2017.
  • 25. Boz N., Kara M, Sunal O, Alptekin E., Değirmenbaşı N. “Investigation of the fuel properties of biodiesel produced over an alumina-based solid catalyst”. Turk J Chem 33, 433-442, 2009 DOI:10.3906/kim-0809-28.
  • 26. Yaşar H., Büyükkaya E., Soyhan H.S., Taymaz İ. “İçten yanmalı motorlar Mühendislik temelleri [Engineering Fundamentals of the Internal Combustion Engine -Willard W.Pulkrabek]”. İzmir Güven Kitabevi, 2016.
  • 27. “Biodiesel – Quality, Emissions and By-Products” Edited by Gisela Montero and Margarita Stoytcheva, ISBN 978-953-307-784-0, 2011.

Predicted fuel characteristics of prunus avium seed oil as a candidate for biodiesel production

Yıl 2019, , 165 - 171, 10.12.2019
https://doi.org/10.18245/ijaet.625754

Öz

Energy is an
indispensable requirement for both developed and developing societies today.
However, most of the energy needs are met by fossil fuels, these resources are
not renewable. Many countries are evaluating alternative sources to meet energy
demand and to sustain development. In this study, oil was obtained by using
Prunus avium kernels, also known as Turkish Cherry cultivated from Pozantı
which is on the Taurus Mountains. Oil characterization was performed by gas
chromatography (GC) and free fatty acids were determined. Oleic acid (C18:1)
and Linoleic acid (C18:2) determined as 38.938 and 40.963 respectively. The
free fatty acids were then evaluated using the Biodiesel Analyzer v1.2 program.
The predicted results were the t
otal percentage of monosaturated
fatty acids
(MUFA) 39.408, total
percentage of polyunsaturated fatty acids
(PUFA) 41.042, Allylic Position
Equivalents
(APE) 121.146, Bisallylic
position equivalents
(BAPE) 41.220
respectively. On the other hand, L
ong Chain Saturated Factor
(
LCSF) is calculated as 3.624. Higher Heating
Value (HHV) was calculated as 37.65Mj/kg, Cloud Point (CP) 0.099, Cold Filter
Plugging Point (CFPP) -5.091° C, Density (d) 0.838 (g/cm3), Cetane
Number (CN) 50.1, Iodine Value (IV) 109.878, Kinematic Viscosity 3.543, Flash
Point (FP) 160.56, Saponification Value (SV) 191.354, and Oxidation Stability
(OS) 5.468, respectively. As a result of this study, it was concluded that
Prunus Avium kernel oil is a promising biodiesel candidate.

Kaynakça

  • 1. Mancini M., Volpe M. L., Gatti B., Malik Y., Moreno A. C., Lekovar D., Cravero V. “Characterization of cardoon accessions as feedstock for biodiesel production” Fuel, 235 pp.1267-1293, 2019.
  • 2. Lamaisri C., Punsuvon V., Anuruck S. C., Srinives A. P., Liangsakul P., “Relationship between fatty acid composition and biodiesel quality for nine commercial palm oils”, Songklanakarin J. Sci. Technol., 37(4) pp 389-395, 2015.
  • 3. Sajjadi B., Abdul Raman A. A., Arandiyan H., “A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: composition, specifications and prediction models.” Renewable and Sustainable Energy Reviews, 63, pp. 62-92, 2016.
  • 4. Yang L., Takase M., Zhang M., Zhao T., Wu X. “Potential non-edible oil feedstock for biodiesel production in Africa: A survey”, Renewable and Sustainable Energy Reviews 38, pp 461-477, 2014.
  • 5. Şanlı H. “Influences of biodiesel fuels produced from highly degraded waste animal fats on the injection and emission characteristics of a CRDI diesel engine” International Journal of Automotive Engineering and Technologies 8(1), pp.11-21, 2019.
  • 6. Ors I., Kahraman A., and Ciniviz M. “Performance, emission, and combustion analysis of a compression ignition engine using biofuel blends” THERMAL SCIENCE, Vol. 21, No. 1B, pp. 511-522, 2017.
  • 7. Kahraman A., Ciniviz M, Ors I., Oğuz H., “The Effect on Performance and Exhaust Emissions of Adding Cotton Oil Methyl Ester to Diesel Fuel” International Journal of Automotive Engineering and Technologies Vol 5, Issue 4, pp.148-154, 2016.
  • 8. Özgün A. K., Eryılmaz T. “A Comparative study of engine performance and exhaust emissions of biodiesel and its blends produced from waste cooking oil and neutralized waste cooking oil” International Journal of Automotive Engineering and Technologies, 7 (3), pp. 88-97, 2018.
  • 9. Can O., Oztürk E., Yücesu H. S. “Combustion and exhaust emissions of canola biodiesel blends in a single cylinder DI diesel engine” Renewable Energy, 109, pp.73-82, 2017.
  • 10. Kaya C., Hamamcı C., Baysal A., Akba O., Erdogan S., Saydut A., “Methyl ester of peanut (Arachis hypogea L.) seed oil as a potential feedstock for biodiesel production” Renewable Energy 34, pp. 1257–1260, 2009.
  • 11. Salaheldeen M., Aroua, M.K., Mariod A.A., Cheng S. F., Abdelrahman M.A. “An evaluation of Moringa peregrine seeds as a source for bio-fuel” Industrial Crops and Products Volume 61, pp. 49-61, 2014.
  • 12. Yesilyurt M. K., Eryilmaz T., Arslan M. “A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/npentanol (C5 alcohol) fuel blends” Energy, 165, 1332-1351, 2018.
  • 13. Shrivastavaa P., Vermaa T. N., Pugazhendhib A., “An experimental evaluation of engine performance and emission characteristics of CI engine operated with Roselle and Karanja biodiesel” Fuel 254, 115652, 2019.
  • 14. www.turkstat.gov.tr cited 28.8.2019.
  • 15. https://www.dunyaenerji.org.tr/wp-content/uploads/2019/04/SelcukBorovaliSunum cited 28.8.2019.
  • 16. https://arastirma.tarimorman.gov.tr/Yetiştiricilik%20Bilgileri/Kiraz%20Yetiştiriciliği cited 28.8.2019.
  • 17. Başkaya Z. “Türkiye’de kiraz tarımının coğrafȋ esasları / The geographical foundations of cherry farming in Turkey”, Doğu Coğrafya Dergisi Cilt 16, Sayı 26, (2011), doi:http://dx.doi.org/10.17295/dcd.99899.
  • 18. Sahafi S.M., Ahmadibeni E., Talebi A. F., Goli S. A. H., Aghbashlo M., Tabatabaei M., “Seed oils of sisymbrium irio and Sisymbrium sophia as a potential non-edible feedstock for biodiesel production. BIOFUELS http://doi.org/10.1080/17597269.2018.1457 cited 28.8.2019.
  • 19. Talebi, A.F., Tabatabaei, M., Chisti Y., “Biodiesel analyzer©: a user friendly software for predicting the properties of prospective biodiesel” Biofuel Research Journal 2, pp. 55-57,2014.
  • 20. http://dieselnet.com/tech/fuel|biodiesel|std.php#spec cited 28.8.2019.
  • 21. Anwar M., Rasul M. G., Ashwath N. “The efficacy of multiple-criteria design matrix for biodiesel feedstock selection” Energy Conversion and Management, 198, 111790, 2019.
  • 22. https://doi.org.1016/j.enconman.2019.111790
  • 23. Giakoumis E. G., Sarakatsanis C. K., “Estimation of biodiesel cetane number, density, kinematic viscosity and heating values from its fatty acid composition” Fuel, 222, pp.574-585, 2018.
  • 24. Knothe G, Razon L.F.” Biodiesel fuels” Progress in Energy and Combustion Science, 58, pp36-59, 2017.
  • 25. Boz N., Kara M, Sunal O, Alptekin E., Değirmenbaşı N. “Investigation of the fuel properties of biodiesel produced over an alumina-based solid catalyst”. Turk J Chem 33, 433-442, 2009 DOI:10.3906/kim-0809-28.
  • 26. Yaşar H., Büyükkaya E., Soyhan H.S., Taymaz İ. “İçten yanmalı motorlar Mühendislik temelleri [Engineering Fundamentals of the Internal Combustion Engine -Willard W.Pulkrabek]”. İzmir Güven Kitabevi, 2016.
  • 27. “Biodiesel – Quality, Emissions and By-Products” Edited by Gisela Montero and Margarita Stoytcheva, ISBN 978-953-307-784-0, 2011.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Article
Yazarlar

Aslı Abdulvahitoğlu 0000-0002-3603-6748

Yayımlanma Tarihi 10 Aralık 2019
Gönderilme Tarihi 27 Eylül 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Abdulvahitoğlu, A. (2019). Predicted fuel characteristics of prunus avium seed oil as a candidate for biodiesel production. International Journal of Automotive Engineering and Technologies, 8(4), 165-171. https://doi.org/10.18245/ijaet.625754
AMA Abdulvahitoğlu A. Predicted fuel characteristics of prunus avium seed oil as a candidate for biodiesel production. International Journal of Automotive Engineering and Technologies. Aralık 2019;8(4):165-171. doi:10.18245/ijaet.625754
Chicago Abdulvahitoğlu, Aslı. “Predicted Fuel Characteristics of Prunus Avium Seed Oil As a Candidate for Biodiesel Production”. International Journal of Automotive Engineering and Technologies 8, sy. 4 (Aralık 2019): 165-71. https://doi.org/10.18245/ijaet.625754.
EndNote Abdulvahitoğlu A (01 Aralık 2019) Predicted fuel characteristics of prunus avium seed oil as a candidate for biodiesel production. International Journal of Automotive Engineering and Technologies 8 4 165–171.
IEEE A. Abdulvahitoğlu, “Predicted fuel characteristics of prunus avium seed oil as a candidate for biodiesel production”, International Journal of Automotive Engineering and Technologies, c. 8, sy. 4, ss. 165–171, 2019, doi: 10.18245/ijaet.625754.
ISNAD Abdulvahitoğlu, Aslı. “Predicted Fuel Characteristics of Prunus Avium Seed Oil As a Candidate for Biodiesel Production”. International Journal of Automotive Engineering and Technologies 8/4 (Aralık 2019), 165-171. https://doi.org/10.18245/ijaet.625754.
JAMA Abdulvahitoğlu A. Predicted fuel characteristics of prunus avium seed oil as a candidate for biodiesel production. International Journal of Automotive Engineering and Technologies. 2019;8:165–171.
MLA Abdulvahitoğlu, Aslı. “Predicted Fuel Characteristics of Prunus Avium Seed Oil As a Candidate for Biodiesel Production”. International Journal of Automotive Engineering and Technologies, c. 8, sy. 4, 2019, ss. 165-71, doi:10.18245/ijaet.625754.
Vancouver Abdulvahitoğlu A. Predicted fuel characteristics of prunus avium seed oil as a candidate for biodiesel production. International Journal of Automotive Engineering and Technologies. 2019;8(4):165-71.