Araştırma Makalesi
BibTex RIS Kaynak Göster

Katı Faz Fermantasyonunun Çayır Otu Besin Madde İçeriği ve Anti-Metanojenik Özelliklerine Etkisi

Yıl 2023, , 278 - 288, 21.08.2023
https://doi.org/10.24180/ijaws.1242317

Öz

Bu çalışmada, çayır otunun 3 farklı fermantasyona uğratılarak yem değeri üzerine olan etkisinin tespiti amaçlanmıştır. Bu amaç doğrultusunda çayır out; silaj suyu (SS), peynir altı suyu (PAS) ve PAS+SS (1:1) ile %70 nem içeriğinde 30 günlük fermantasyona tabi tutulmuştur. Fermantasyonun 0. 15. ve 30. günlerinde örnekler alınarak kimyasal ve in vitro gaz üretimindeki değişiklikler tespit edilmiştir. Kimyasal analiz sonucunda ham kül içeriği 30. gün örneklerde SS fermantasyonunda artarken, PAS fermantasyonunda azalmıştır. Fermantasyonun NDF ve ADF içerikleri üzerine etkisini 15. gün örneklerde önemli bulunmuştur. Selüloz içeriğine bakıldığında ise SS fermantasyonunda arttığı, PAS+SS fermantasyonunda ise azaldığı tespit edilmiştir. Fermantasyonun gaz üretimine etkisi incelendiğinde ise 0. gün örneklere göre SS fermantasyonunda azaldığı, PAS fermantasyonunda ise 15. gün örneklerinde artmasına rağmen 30. gün örneklerinde azaldığı saptanmıştır. SS fermantasyonu % metan üretimini artırırken, PAS fermantasyonu net metan ve % metan içeriğini azaltmıştır. SS ve PAS ile yürütülen fermantasyonların gerçek sindirim derecesi, gerçek sindirilebilir kuru madde, taksimat faktörü, mikrobiyal protein ve mikrobiyal protein sentezleme etkinliği üzerine pozitif etkisi olmuştur. Fermantasyon sırasında açığa çıkan enterik metan hem küresel ısınmaya hem de yemin enerji kaybına neden olmasından dolayı hem çevreciler ve hem de hayvan beslemeciler tarafından arzu edilmemektedir. Metan gazı karbondioksit gazından sonra küresel ısınmaya neden olan ikinci gazdır. SS fermantasyonun metan içeriğini artırdığı, PAS ve PAS+SS ile yürütülen fermantasyonlarda azaldığı saptanmıştır. Sonuç olarak, katı faz fermantasyonu ile özellikle de PAS fermantasyonu sonucunda çayır otunun içeriğinin iyileştiği söylenebilir.

Destekleyen Kurum

yok

Kaynakça

  • Abera, F., Urge, M., & Animut, G. (2018). Feeding value of maize stover treated with urea or urea molasses for hararghe highland sheep. The Open Agriculture Journal, 12(1), 84-94. https://doi.org/10.2174/1874331501812010084.
  • AOAC. (1990). Official Method of Analysis. Association of Official Analytical Chemists. 15.edition. Washington, DC. USA.
  • Atalay, A. I., Ozkan, C. O., Kaya, E., Kamalak, A., & Canbolat, O. (2018). Chemical composition, nutritive value and rumen methane potential of some legume tree pods. Livestock Research for Rural Development, 30(5).
  • Atalay A. İ., & Kamalak, A. (2019). Olgunlaşma dönemlerinin sirken (Chenopodium album) otunun kimyasal kompozisyonuna, besleme değerine ve metan üretimine etkisi. Türk Tarım ve Doğa Bilimleri Dergisi, 6(3), 489-493. https://doi.org/10.30910/turkjans.595363.
  • Bartkiene, E., Krungleviciute, V., Juodeikiene, G., Vidmantiene, D., & Maknickiene, Z. (2014). Solid state fermentation with lactic acid bacteria to improve the nutritional qualityof lupin and soya bean. Journal of the Science of Food and Agriculture, 95, 1336-1342. https://doi.org/10.1002/jsfa.6827.
  • Beyzi, S. B., Ülger, İ., & Konca, Y. (2022). Chemical, fermantative, nutritive and anti-nutritive composition of common reed (Phragmites australis) plant and silage. Waste Biomass Valorization, https://doi.org/10.1007/s12649-022-01903-w.
  • Blümmel, M., Steingass, H., & Becker, K. (1997). The relationship between in vitro gas production, in vitro microbial biomass yield and N-15 incorporation and its implications for the prediction of voluntary feed intake of roughages. British Journal of Nutrition, 77, 911-921. https://doi.org/10.1079/BJN19970089.
  • Canbolat, Ö., (2012). Bazı buğdaygil kaba yemlerinin in vitro gaz üretimi, sindirilebilir organik madde, nispi yem değeri ve metabolik enerji içeriklerinin karşılaştırılması. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 18(4), 571-577. https://doi.org/10.9775/kvfd.2011.5833.
  • Canbolat, Ö., (2022). Alkalilerle işlemenin mısır samanının besin madde bileşim, in vitro gaz üretim ve yem değeri üzerine etkisi. Gıda ve Yem Bilimi - Teknolojisi Dergisi, 27, 61-67.
  • Carrillo-Díaz, M. I., Miranda-Romero, L. A., Chávez-Aguilar, G., Zepeda-Batista, J. L., González-Reyes, M., García-Casillas, A. C., Tirado-González, D. N., & Tirado-Estrada, G. (2022). Improvement of ruminal neutral detergent fiber degradability by obtaining and using exogenous fibrolytic enzymes from white-rot fungi. Animals, 12(7), 843. https://doi.org/10.3390/ani12070843.
  • Cengiz, T., & Kamalak, A. (2020). Farklı bölgelerde yetişen söğüt yapraklarının potansiyel besleme değerlerinin ve antimetanojenik özelliklerinin belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(5), 1351-1358. https://doi.org/10.18016/ksutarimdoga.vi.679689.
  • Datsomor, O., Gou-qi, Z., & Miao, L. (2022). Effect of ligninolytic axenic and coculture white-rot fungi on rice straw chemical composition and in vitro fermentation characteristics. Science Report, 12, 1129. https://doi.org/10.1038/s41598-022-05107-z.
  • Du, C., Nan, X., Wang, K., Zhao, Y., & Xiong, B. (2019). Evaluation of the digestibility of steam-exploded wheat straw by ruminal fermantation, sugar yield and microbial structure in vitro. RSC Advances, 9, 41775–41782. https://doi.org/10.1039/c9ra08167d.
  • Fazaeli, H. (2007). Nutritive value index of treated wheat straw with Pleurotus fungi. Biotechnology in Animal Husbandry, 23, 169–180.
  • Getachew G, Robinson PH, DePeters EJ, Taylor SJ, Gisi DD, Higginbotham GE, Riordan TJ2005. Methane production from commercial dairy rations estimated using an in vitro gas technique. Feed Science and Technology, 123-124:391-402.
  • Goel, G., Makkar, H. P. S., & Becker, K. (2008). Effect of Sesbaniases banand Carduuspycno cephalus leaves and Fenugreek (Trigonellafoenum-graecum L) seed sand the irextract on partitioning of nutrients from roug hage-and concentrate-based feeds to methane. Animal Feed Science Technology, 147: 72-89.
  • Jafari, M. A., Nikkhah, A., Sadeghi, A. A., & Chamani, M. (2007). The effect of Pleurotus spp. fungi on chemical composition and in vitro digestibility of rice straw. Pakistan Journal of Biological Sciences, 10,2460–2464. Johnson KA, Johnson DE 1995. Methane emissions from cattle. Journal of Animal Science, 73: 24832492.
  • John, R. P., Nampoothiri, K. M., & Pandey, A., (2006). Solid-state fermentation for l-lactic acid production from agro wastes using Lactobacillus delbrueckii. Process Biochemistry, 41(4), 759-763. https://doi.org/10.1016/j.procbio.2005.09.013.
  • Joseph, I., Raj, R. P., & Bhatnagar, D. 2008. Effect of solid state fermentation on nutrient composition of selected feed ingredients. Indian Journal of Fisheries, 55(4), 327-332.
  • Karabulut, A., & Canbolat, Ö. (2005). Yem değerlendirme ve analiz yöntemleri. Uludağ Üniversitesi Yayınları. Kaya, E., & Kamalak, A. (2019). Determination of chemical compositions and gas production values of some root and tuber crops from market wastes. Black Sea Journal of Agriculture, 2(4), 186-190.
  • Ke, L., Wu, Q., & Zhang, D. (2011). Bioconversion of rape straw into a nutritionally enriched substrate by Ganoderma lucidum and yeast. African Journal of Biotechnology, 10(29), 5648-5653.
  • Keskin, B., Temel, S., & Eren, B. (2021a). Bazı yem bezelyesi (Pisum sativum ssp. arvense L.) çeşitlerinin farklı ekim zamanlarındaki tohum verimi ve verim öğelerine olan etkileri. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 24(6), 1315-1326. https://doi.org/10.18016/ksutarimdoga.vi.870115.
  • Keskin, B., Temel, S., & Eren, B. (2021b). Farklı zamanlarda ekilen bazı yem bezelyesi (Pisum sativum ssp.arvense L.) çeşitlerinin tohum ve kesinin besin değerleri. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 7(1): 96-105. https://doi.org/10.24180/ijaws.870687.
  • Khonkhaeng, B., & Cherdthong, A. (2020). Improving nutritive value of purple field corn residue and rice straw by culturing with white-rot fungi. Journal of Fungi, 6, 69. https://doi.org/10.3390/jof6020069.
  • Kutshik, J. R., Usman, A. M., & Ali-Dunkrah, U. (2016). Comparative study of protein enrichment of lignocellulose wastes using baker’s yeast (Saccharomyces cerevisiae) for animal feeds. Journal of Biotechnology and Biochemistry, 2(7), 73-77. https://doi.org/10.13140/RG.2.2.29745.48485.
  • Lynch, J. P., O’Kiely, P., Murphy, R., & Doyle, M. (2014). Changes in chemical composition and digestibility of three maize stover components digested by white-rot fungi. Journal of Animal Physiology and Animal Nutrition, 98, 731–738. https://doi.org/10.1111/jpn.12131.
  • Menke, K. H., & Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28, 7-55.
  • Nasehi, M., Torbatinejad, N. M., Zerehdaran, S., & Safaie, A. R. (2017). Effect of solid-state fermentation by oyster mushroom (Pleurotus florida) on nutritive value of some agro by-products. Journal of Applied Animal Research, 45(1), 221-226. https://doi.org/10.1080/09712119.2016.1150850.
  • Olukomaiya, O. O., Fernando, W. C., Mereddy, R., Li, X., & Sultanbawa, Y. (2020a). Solid-state fermentation of canola meal with Aspergillus sojae, Aspergillus ficuum and their co-cultures: Effects on physicochemical, microbiological and functional properties. LWT-Food Science and Technology, 127, 109362. https://doi.org/10.1016/j.lwt.2020.109362.
  • Olukomaiya, O. O., Adiamo, O. Q., Fernando. W. C., Mereddy, R., Li, X., & Sultanbawa, Y. (2020b). Effect of solid-state fermentation on proximate composition, anti-nutritional factor, microbiological and functional properties of lupin flour. Food Chemistry, 315, 126238. https://doi.org/10.1016/j.foodchem.2020.126238.
  • Özkan, Ç. Ö., Cengiz, T., Yanık, M., Evlice, S., Selçuk, B., Ceren, B., & Kamalak, A., (2020). Ruminant hayvan beslemede kullanılan bazı kaba ve kesif yemlerin in vitro gaz üretiminin, metan üretiminin, sindirim derecesinin ve mikrobiyal protein üretiminin belirlenmesi. Black Sea Journal of Agriculture, 3(1), 56-60.
  • Pandey A, 2003. Solid-state fermantation. Biochemical Engineering Journal, 13, 81-84.
  • Ramli, M. N., Imura, Y., Takayama, K., & Nakanishi, Y. (2005). Bioconversion of sugarcane bagasse with Japanese koji by solid-state fermentation and its effects on nutritive value and preference in goats. Asian-Australasian Journal of Animal Sciences, 18(9), 1279–1284.
  • Rohweder, D. A., Barnes, R. F., & Jorgensen, N. (1978). Proposed hay grading standards based on laboratory analyses for evaluating quality. Journal of Animal Science, 47(3), 747-759. https://doi.org/10.2527/jas1978.473747x.
  • Sarnklong, C., Cone, J. W., Pellikaan, W., & Hendrilks, H. (2010). Utilization of rice straw and different treatments to ımprove ıts feed value for ruminants: A Review. Asian-Australasian Journal of Animal Sciences, 23(5), 680 – 692. https://doi.org/10.5713/ajas.2010.80619.
  • Shrivastava, B., Jain, K. K., Kalra, A., & Kuhad, R. C. (2014). Bioprocessing of wheat straw into nutritionally rich and digested cattle feed. Science Report, 4,1–9. https://doi.org/10.1038/srep06360.
  • Sufyan, A., Ahmad, N., Shahzad, F., Embaby, M. G., AbuGhazaleh, A., & Khan, N. A. (2022). Improving the nutritional value and digestibility of wheat straw, rice straw, and corn cob through solid state fermentation using different Pleurotus species. Journal of the Science of Food and Agriculture, 102(6), 2445-2453. https://doi.org/10.1002/jsfa.11584.
  • Terefe, Z. K., Omwamn-Ba, M. N., & Nkudo, J. M. (2021). Effect of solid state fermentation on proximate composition, antinutritional factors and in vitro protein digestibility of maize flour. Food Science and Nutrition, 9(11), 6343-6352. https://doi.org/10.1002/fsn3.2599.
  • Tuyen, D. V., Phuong, H. N., Cone, J. W., Baars, J. J. P., Sonnenberg, A. S. M., & Hendriks, W. H. (2013). Effect of fungal treatments of fibrous agricultural by-products on chemical composition and in vitro rumen fermentation and methane production. Bioresource Technology, 129, 256-263. https://doi.org/10.1016/j.biortech.2012.10.128 . Uvere, P. O., Onyekwere, E. U., & Ngoddy, P. O. (2010). Production of maize-bambara groundnut complementary foods fortified pre-fermentation with processed foods rich in calcium, iron, zinc and provitamin A. Journal of the Science of Food and Agriculture, 90(4), 566-573. https://doi.org/10.1002/jsfa.3846.
  • Van Kuijk, S. J. A., Sonnenberg, A. S. M., Baars, J. J. P., Hendriks, W. H., & Cone, J. W. (2015). Fungal treated lignocellulosic biomass as ruminant feed ingredient: A review. Biotechnology Advances, 33, 191-202. https://doi.org/10.1016/j.biotechadv.2014.10.014.
  • Van Kuijk, S. J. A., del Río, J. C., Rencoret, J., Gutierrez, A., Sonnenberg, A. S. M., Baars, J. J. P., Hendriks, W. H., & Cone, J. W. (2016). Selective ligninolysis of wheat straw and wood chips by the white-rot fungus Lentinula edodes and its influence on in vitro rumen degradability. Journal of Animal Science and Biotechnology, 7, 55. https://doi.org/10.1186/s40104-016-0110-z.
  • Van Soest, P. J. (1994). Nutritional Ecology of the Ruminant. 2. ed. Ithaca, N.Y., Cornell University Press.
  • Van Soest, P. J., Robertson, J. B., & Lewis, B.A. (1991). Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2.
  • Vercoe, P. E., Makkar, H. P. S., & Schlink, A.C. (2010). In vitro screening of plant resources for extranutritional attributes in ruminants: Nuclear and related methodologies. Springer Science + Business Media B.V. Springer, Dordrecht.
  • Xie, P. J., Huang, L. X., Zhang, C. H., & Zhang, Y. L. (2016). Nutrient assessment of olive leaf residues processed by solidstate fermentation as an innovative feedstuff additive. Journal of Applied Microbiology, 121(1), 28-40. https://doi.org/10.1111/jam.13131.
  • Yasar, S., & Tosun, R. (2018). Predicting chemical, enzymatic and nutritional properties of fermented barley (Hordeum vulgare L.) by second derivate spectra analysis from attenuated total reflectance-Fourier transform infrared data and its nutritional value in Japanese quails. Archives of Animal Nutrition, 72(5), 407-423. https://doi.org/10.1080/1745039X.2018.1500242.
  • Yasar, S., & Tosun, R. (2020). Improving nutritional qualities of tomato pomace by Pleurotus ostreatus and Phanerochaete chrysosporium fermantation. Journal Of Agriculture and Nature, 23(2), 527-535. https://doi.org/10.18016/ksutarimdoga.vi.629347.
  • You, Z., Zhang, S., Kim, H., Chiang, P. C., Sun, Y., Guo, Z., & Xu, H. (2019). Effects of corn stover pretreated with NaOH and CaO on anaerobic co-digeston of swine manure and corn stover. Appled Sciences, 9(1), 123. https://doi.org/10.3390/app9010123.

Effect of Solid State Fermentation on Meadow Grass Nutrient Content and Anti-Methanogenic Properties

Yıl 2023, , 278 - 288, 21.08.2023
https://doi.org/10.24180/ijaws.1242317

Öz

This study aimed to determine the effect on the feed value by three different fermentation of meadow grass. For this purpose, meadow grass was subjected to 30 days of fermentation with silage water (SS), whey (PAS) and PAS+SS (1:1) at 70% moisture content. Changes in chemical and in vitro gas production were determine by taking samples at 0, 15 and 30 days of fermentation. As a result of chemical analysis, while the crude ash content increased in SS fermentation in 30th day samples, decreased in PAS fermentation. The effect of fermentation on NDF and ADF contents was found significant in the 15th day samples. Considering the cellulose content, it increased in SS fermentation and decreased in PAS+SS fermentation. When the effect of fermentation on gas production was examined, it was determined that it decreased in SS fermentation compared to the 0th day samples, and decreased in the 30th day samples, although it increased in the 15th day samples in the PAS fermentation. While SS fermentation increased % methane production, PAS fermentation decreased net methane and % methane content. Fermentations carried out with SS and PAS had a positive effect on the true substrate digestibility, true dry matter digestion, partitioning factor, microbial protein yield and efficiency. Enteric methane, which is released during fermentation, is not desired by both environmentalists and animal nutritionists because it causes both global warming and energy loss of feed. Methane gas is the second gas that causes global warming after carbon dioxide gas. It was determined that SS fermentation increased the methane content and decreased in fermentations carried out with PAS and PAS+SS. As a result, it can be said that the content of meadow grass is improved as a result of solid state fermentation, especially PAS fermentation.

Kaynakça

  • Abera, F., Urge, M., & Animut, G. (2018). Feeding value of maize stover treated with urea or urea molasses for hararghe highland sheep. The Open Agriculture Journal, 12(1), 84-94. https://doi.org/10.2174/1874331501812010084.
  • AOAC. (1990). Official Method of Analysis. Association of Official Analytical Chemists. 15.edition. Washington, DC. USA.
  • Atalay, A. I., Ozkan, C. O., Kaya, E., Kamalak, A., & Canbolat, O. (2018). Chemical composition, nutritive value and rumen methane potential of some legume tree pods. Livestock Research for Rural Development, 30(5).
  • Atalay A. İ., & Kamalak, A. (2019). Olgunlaşma dönemlerinin sirken (Chenopodium album) otunun kimyasal kompozisyonuna, besleme değerine ve metan üretimine etkisi. Türk Tarım ve Doğa Bilimleri Dergisi, 6(3), 489-493. https://doi.org/10.30910/turkjans.595363.
  • Bartkiene, E., Krungleviciute, V., Juodeikiene, G., Vidmantiene, D., & Maknickiene, Z. (2014). Solid state fermentation with lactic acid bacteria to improve the nutritional qualityof lupin and soya bean. Journal of the Science of Food and Agriculture, 95, 1336-1342. https://doi.org/10.1002/jsfa.6827.
  • Beyzi, S. B., Ülger, İ., & Konca, Y. (2022). Chemical, fermantative, nutritive and anti-nutritive composition of common reed (Phragmites australis) plant and silage. Waste Biomass Valorization, https://doi.org/10.1007/s12649-022-01903-w.
  • Blümmel, M., Steingass, H., & Becker, K. (1997). The relationship between in vitro gas production, in vitro microbial biomass yield and N-15 incorporation and its implications for the prediction of voluntary feed intake of roughages. British Journal of Nutrition, 77, 911-921. https://doi.org/10.1079/BJN19970089.
  • Canbolat, Ö., (2012). Bazı buğdaygil kaba yemlerinin in vitro gaz üretimi, sindirilebilir organik madde, nispi yem değeri ve metabolik enerji içeriklerinin karşılaştırılması. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 18(4), 571-577. https://doi.org/10.9775/kvfd.2011.5833.
  • Canbolat, Ö., (2022). Alkalilerle işlemenin mısır samanının besin madde bileşim, in vitro gaz üretim ve yem değeri üzerine etkisi. Gıda ve Yem Bilimi - Teknolojisi Dergisi, 27, 61-67.
  • Carrillo-Díaz, M. I., Miranda-Romero, L. A., Chávez-Aguilar, G., Zepeda-Batista, J. L., González-Reyes, M., García-Casillas, A. C., Tirado-González, D. N., & Tirado-Estrada, G. (2022). Improvement of ruminal neutral detergent fiber degradability by obtaining and using exogenous fibrolytic enzymes from white-rot fungi. Animals, 12(7), 843. https://doi.org/10.3390/ani12070843.
  • Cengiz, T., & Kamalak, A. (2020). Farklı bölgelerde yetişen söğüt yapraklarının potansiyel besleme değerlerinin ve antimetanojenik özelliklerinin belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(5), 1351-1358. https://doi.org/10.18016/ksutarimdoga.vi.679689.
  • Datsomor, O., Gou-qi, Z., & Miao, L. (2022). Effect of ligninolytic axenic and coculture white-rot fungi on rice straw chemical composition and in vitro fermentation characteristics. Science Report, 12, 1129. https://doi.org/10.1038/s41598-022-05107-z.
  • Du, C., Nan, X., Wang, K., Zhao, Y., & Xiong, B. (2019). Evaluation of the digestibility of steam-exploded wheat straw by ruminal fermantation, sugar yield and microbial structure in vitro. RSC Advances, 9, 41775–41782. https://doi.org/10.1039/c9ra08167d.
  • Fazaeli, H. (2007). Nutritive value index of treated wheat straw with Pleurotus fungi. Biotechnology in Animal Husbandry, 23, 169–180.
  • Getachew G, Robinson PH, DePeters EJ, Taylor SJ, Gisi DD, Higginbotham GE, Riordan TJ2005. Methane production from commercial dairy rations estimated using an in vitro gas technique. Feed Science and Technology, 123-124:391-402.
  • Goel, G., Makkar, H. P. S., & Becker, K. (2008). Effect of Sesbaniases banand Carduuspycno cephalus leaves and Fenugreek (Trigonellafoenum-graecum L) seed sand the irextract on partitioning of nutrients from roug hage-and concentrate-based feeds to methane. Animal Feed Science Technology, 147: 72-89.
  • Jafari, M. A., Nikkhah, A., Sadeghi, A. A., & Chamani, M. (2007). The effect of Pleurotus spp. fungi on chemical composition and in vitro digestibility of rice straw. Pakistan Journal of Biological Sciences, 10,2460–2464. Johnson KA, Johnson DE 1995. Methane emissions from cattle. Journal of Animal Science, 73: 24832492.
  • John, R. P., Nampoothiri, K. M., & Pandey, A., (2006). Solid-state fermentation for l-lactic acid production from agro wastes using Lactobacillus delbrueckii. Process Biochemistry, 41(4), 759-763. https://doi.org/10.1016/j.procbio.2005.09.013.
  • Joseph, I., Raj, R. P., & Bhatnagar, D. 2008. Effect of solid state fermentation on nutrient composition of selected feed ingredients. Indian Journal of Fisheries, 55(4), 327-332.
  • Karabulut, A., & Canbolat, Ö. (2005). Yem değerlendirme ve analiz yöntemleri. Uludağ Üniversitesi Yayınları. Kaya, E., & Kamalak, A. (2019). Determination of chemical compositions and gas production values of some root and tuber crops from market wastes. Black Sea Journal of Agriculture, 2(4), 186-190.
  • Ke, L., Wu, Q., & Zhang, D. (2011). Bioconversion of rape straw into a nutritionally enriched substrate by Ganoderma lucidum and yeast. African Journal of Biotechnology, 10(29), 5648-5653.
  • Keskin, B., Temel, S., & Eren, B. (2021a). Bazı yem bezelyesi (Pisum sativum ssp. arvense L.) çeşitlerinin farklı ekim zamanlarındaki tohum verimi ve verim öğelerine olan etkileri. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 24(6), 1315-1326. https://doi.org/10.18016/ksutarimdoga.vi.870115.
  • Keskin, B., Temel, S., & Eren, B. (2021b). Farklı zamanlarda ekilen bazı yem bezelyesi (Pisum sativum ssp.arvense L.) çeşitlerinin tohum ve kesinin besin değerleri. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 7(1): 96-105. https://doi.org/10.24180/ijaws.870687.
  • Khonkhaeng, B., & Cherdthong, A. (2020). Improving nutritive value of purple field corn residue and rice straw by culturing with white-rot fungi. Journal of Fungi, 6, 69. https://doi.org/10.3390/jof6020069.
  • Kutshik, J. R., Usman, A. M., & Ali-Dunkrah, U. (2016). Comparative study of protein enrichment of lignocellulose wastes using baker’s yeast (Saccharomyces cerevisiae) for animal feeds. Journal of Biotechnology and Biochemistry, 2(7), 73-77. https://doi.org/10.13140/RG.2.2.29745.48485.
  • Lynch, J. P., O’Kiely, P., Murphy, R., & Doyle, M. (2014). Changes in chemical composition and digestibility of three maize stover components digested by white-rot fungi. Journal of Animal Physiology and Animal Nutrition, 98, 731–738. https://doi.org/10.1111/jpn.12131.
  • Menke, K. H., & Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28, 7-55.
  • Nasehi, M., Torbatinejad, N. M., Zerehdaran, S., & Safaie, A. R. (2017). Effect of solid-state fermentation by oyster mushroom (Pleurotus florida) on nutritive value of some agro by-products. Journal of Applied Animal Research, 45(1), 221-226. https://doi.org/10.1080/09712119.2016.1150850.
  • Olukomaiya, O. O., Fernando, W. C., Mereddy, R., Li, X., & Sultanbawa, Y. (2020a). Solid-state fermentation of canola meal with Aspergillus sojae, Aspergillus ficuum and their co-cultures: Effects on physicochemical, microbiological and functional properties. LWT-Food Science and Technology, 127, 109362. https://doi.org/10.1016/j.lwt.2020.109362.
  • Olukomaiya, O. O., Adiamo, O. Q., Fernando. W. C., Mereddy, R., Li, X., & Sultanbawa, Y. (2020b). Effect of solid-state fermentation on proximate composition, anti-nutritional factor, microbiological and functional properties of lupin flour. Food Chemistry, 315, 126238. https://doi.org/10.1016/j.foodchem.2020.126238.
  • Özkan, Ç. Ö., Cengiz, T., Yanık, M., Evlice, S., Selçuk, B., Ceren, B., & Kamalak, A., (2020). Ruminant hayvan beslemede kullanılan bazı kaba ve kesif yemlerin in vitro gaz üretiminin, metan üretiminin, sindirim derecesinin ve mikrobiyal protein üretiminin belirlenmesi. Black Sea Journal of Agriculture, 3(1), 56-60.
  • Pandey A, 2003. Solid-state fermantation. Biochemical Engineering Journal, 13, 81-84.
  • Ramli, M. N., Imura, Y., Takayama, K., & Nakanishi, Y. (2005). Bioconversion of sugarcane bagasse with Japanese koji by solid-state fermentation and its effects on nutritive value and preference in goats. Asian-Australasian Journal of Animal Sciences, 18(9), 1279–1284.
  • Rohweder, D. A., Barnes, R. F., & Jorgensen, N. (1978). Proposed hay grading standards based on laboratory analyses for evaluating quality. Journal of Animal Science, 47(3), 747-759. https://doi.org/10.2527/jas1978.473747x.
  • Sarnklong, C., Cone, J. W., Pellikaan, W., & Hendrilks, H. (2010). Utilization of rice straw and different treatments to ımprove ıts feed value for ruminants: A Review. Asian-Australasian Journal of Animal Sciences, 23(5), 680 – 692. https://doi.org/10.5713/ajas.2010.80619.
  • Shrivastava, B., Jain, K. K., Kalra, A., & Kuhad, R. C. (2014). Bioprocessing of wheat straw into nutritionally rich and digested cattle feed. Science Report, 4,1–9. https://doi.org/10.1038/srep06360.
  • Sufyan, A., Ahmad, N., Shahzad, F., Embaby, M. G., AbuGhazaleh, A., & Khan, N. A. (2022). Improving the nutritional value and digestibility of wheat straw, rice straw, and corn cob through solid state fermentation using different Pleurotus species. Journal of the Science of Food and Agriculture, 102(6), 2445-2453. https://doi.org/10.1002/jsfa.11584.
  • Terefe, Z. K., Omwamn-Ba, M. N., & Nkudo, J. M. (2021). Effect of solid state fermentation on proximate composition, antinutritional factors and in vitro protein digestibility of maize flour. Food Science and Nutrition, 9(11), 6343-6352. https://doi.org/10.1002/fsn3.2599.
  • Tuyen, D. V., Phuong, H. N., Cone, J. W., Baars, J. J. P., Sonnenberg, A. S. M., & Hendriks, W. H. (2013). Effect of fungal treatments of fibrous agricultural by-products on chemical composition and in vitro rumen fermentation and methane production. Bioresource Technology, 129, 256-263. https://doi.org/10.1016/j.biortech.2012.10.128 . Uvere, P. O., Onyekwere, E. U., & Ngoddy, P. O. (2010). Production of maize-bambara groundnut complementary foods fortified pre-fermentation with processed foods rich in calcium, iron, zinc and provitamin A. Journal of the Science of Food and Agriculture, 90(4), 566-573. https://doi.org/10.1002/jsfa.3846.
  • Van Kuijk, S. J. A., Sonnenberg, A. S. M., Baars, J. J. P., Hendriks, W. H., & Cone, J. W. (2015). Fungal treated lignocellulosic biomass as ruminant feed ingredient: A review. Biotechnology Advances, 33, 191-202. https://doi.org/10.1016/j.biotechadv.2014.10.014.
  • Van Kuijk, S. J. A., del Río, J. C., Rencoret, J., Gutierrez, A., Sonnenberg, A. S. M., Baars, J. J. P., Hendriks, W. H., & Cone, J. W. (2016). Selective ligninolysis of wheat straw and wood chips by the white-rot fungus Lentinula edodes and its influence on in vitro rumen degradability. Journal of Animal Science and Biotechnology, 7, 55. https://doi.org/10.1186/s40104-016-0110-z.
  • Van Soest, P. J. (1994). Nutritional Ecology of the Ruminant. 2. ed. Ithaca, N.Y., Cornell University Press.
  • Van Soest, P. J., Robertson, J. B., & Lewis, B.A. (1991). Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2.
  • Vercoe, P. E., Makkar, H. P. S., & Schlink, A.C. (2010). In vitro screening of plant resources for extranutritional attributes in ruminants: Nuclear and related methodologies. Springer Science + Business Media B.V. Springer, Dordrecht.
  • Xie, P. J., Huang, L. X., Zhang, C. H., & Zhang, Y. L. (2016). Nutrient assessment of olive leaf residues processed by solidstate fermentation as an innovative feedstuff additive. Journal of Applied Microbiology, 121(1), 28-40. https://doi.org/10.1111/jam.13131.
  • Yasar, S., & Tosun, R. (2018). Predicting chemical, enzymatic and nutritional properties of fermented barley (Hordeum vulgare L.) by second derivate spectra analysis from attenuated total reflectance-Fourier transform infrared data and its nutritional value in Japanese quails. Archives of Animal Nutrition, 72(5), 407-423. https://doi.org/10.1080/1745039X.2018.1500242.
  • Yasar, S., & Tosun, R. (2020). Improving nutritional qualities of tomato pomace by Pleurotus ostreatus and Phanerochaete chrysosporium fermantation. Journal Of Agriculture and Nature, 23(2), 527-535. https://doi.org/10.18016/ksutarimdoga.vi.629347.
  • You, Z., Zhang, S., Kim, H., Chiang, P. C., Sun, Y., Guo, Z., & Xu, H. (2019). Effects of corn stover pretreated with NaOH and CaO on anaerobic co-digeston of swine manure and corn stover. Appled Sciences, 9(1), 123. https://doi.org/10.3390/app9010123.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hayvansal Üretim (Diğer)
Bölüm Zootekni
Yazarlar

Ali İhsan Atalay 0000-0002-7379-9082

Ramazan Tosun 0000-0002-8209-6362

Ali Kaya 0000-0002-7694-7220

Erken Görünüm Tarihi 14 Ağustos 2023
Yayımlanma Tarihi 21 Ağustos 2023
Gönderilme Tarihi 25 Ocak 2023
Kabul Tarihi 3 Mayıs 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Atalay, A. İ., Tosun, R., & Kaya, A. (2023). Katı Faz Fermantasyonunun Çayır Otu Besin Madde İçeriği ve Anti-Metanojenik Özelliklerine Etkisi. International Journal of Agricultural and Wildlife Sciences, 9(2), 278-288. https://doi.org/10.24180/ijaws.1242317

17365   17368      17366     17369    17370              


88x31.png    Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi Creative Commons Attribution 4.0 Generic License a