Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Glutathione S-Transferase-Alpha and Glutathione S-Transferase-Pi Expression Levels in Spermophilus xanthoprymnus and Meriones tristrami in Terms of Living Conditions and Natural Habitat Differences in Kırıkkale Province

Yıl 2023, , 448 - 459, 20.12.2023
https://doi.org/10.24180/ijaws.1315843

Öz

Glutathione S-transferase (GST) is a multifunctional enzyme that provides homeostasis by catalyzing the first step in the formation of the end product mercapturic acid in the detoxification metabolic pathway. Being found in mammals, insects, fish, birds, annelids, molluscs, and many microorganisms, GST takes part the elimination of toxic substances taken into body by consuming food, and their transport by binding non-substrate ligands (e.g. heme and bilirubin) with GSH. In addition, it can prevent reactive electrophilic compounds from harming the body by covalent bonding similar compounds to each other. These xenobiotic acceptors affected by GST include nitrogen halogen compounds, organophosphates, and polycyclic aromatic hydrocarbons. Xenobiotics are oxygenated by this enzyme system, the next mechanism of oxygenated products is more oxygenation, and these products become more easily soluble in water. In this study, Glutathione S-Transferase was detected in the liver tissue of Spermophilus xanthoprymnus and Meriones tristrami and its characteristic features were determined. For this purpose, the animals were anesthetized with sodium pentobarbital and their liver tissues were harvested. After necessary preparations were completed, the samples were analyzed by using immunohistochemical staining method and the expressions of GST isozymes were determined. As a result, glutathione s-transferase-alpha and glutathione s-transferase-pi expression levels were found to differ in Spermophilus xanthoprymnus and Meriones tristrami samples obtained from different localities of Kırıkkale province. Differences in GST enzyme expression in these species indicate that both species differ in their detoxification capacity and response to xenobiotics.

Teşekkür

We are thankful for Assist. Prof. Dr Aykut Arif Topçu and Prof.Dr.İrfan Albayrak for their contribution to this study.

Kaynakça

  • Aniya, Y., & Daido, A. (1993). Organic hydroperoxide-induced activation of liver microsomal glutathione S-transferase of rats in vitro. Japanese Journal of Pharmacology, 62(1), 9–14. https://doi.org/10.1254/jjp.62.9.
  • Avcı, E., Bulut, S., Bircan, F. S., Özlük, A., & Coşkun Cevher, Ş. (2014). Effect of hibernation on oxidative and antioxidant events under laboratory conditions in anatolian ground squirrel, spermophilus xanthoprymnus (Bennett, 1835) (Mammalia: Sciuridae) from Central Anatolia. Pakistan Journal of Zoology, 46(1), 177-183. Bocedi, A., Noce, A., Marrone, G., Noce, G., Cattani, G., Gambardella, G., Di Lauro, M., Di Daniele, N., & Ricci, G. (2019). Glutathione transferase P1-1 an enzyme useful in biomedicine and as biomarker in clinical practice and in environmental pollution. Nutrients, 11(8), 1741. https://doi.org/10.3390/nu11081741.
  • Casalino, E., Sblano, C., Landriscina, V., Calzaretti, G., & Landriscina, C. (2004). Rat liver glutathione S-transferase activity stimulation following acute cadmium or manganese intoxication. Toxicology, 200(1), 29-38. https://doi.org/10.1016/j.tox.2004.03.004.
  • Dixon, D. P., Lapthorn, A., & Edwards, R. (2002). Plant glutathione transferases. Genome Biology, 3(3), 3004. https://doi.org/10.1186/gb-2002-3-3-reviews3004.
  • Dominey, R. J., Nimmo, I. A., Cronshaw, A. D., & Hayes, J. D. (1991). The major glutathione S-transferase in salmonid fish livers is homologous to the mammalian pi-class GST. Comparative Biochemistry and Physiology. B, Comparative Biochemistry, 100(1), 93–98. https://doi.org/10.1016/0305-0491(91)90090-z.
  • Egaas, E., Skaare, J. U., Svendsen, N. O., Sandvik, M., Falls, J. G., Dauterman, W. C., Collier, T. K., & Netland, J. (1993). A comparative study of effects of atrazine on xenobiotic metabolizing enzymes in fish and insect, and of the invitro phase II atrazine metabolism in some fish, insects, mammals and one plant species. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 106(1), 141-149. https://doi.org/10.1016/0742-8413(93)90265-M.
  • Gyamfi, M. A., Ohtani, I. I., Shinno, E., & Aniya, Y. (2004). Inhibition of glutathione S-transferases by thonningianin A, isolated from the African medicinal herb, Thonningia sanguinea, in vitro. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association, 42(9), 1401-1408. https://doi.org/10.1016/j.fct.2004.04.001.
  • Lizuka, M., Inoue, Y., Murata, K., & Kimura, A. (1989). Purification and some properties of glutathione S-transferase from Escherichia coli B. Journal of Bacteriology, 171(11), 6039–6042. https://doi.org/10.1128/jb.171.11.6039-6042.1989.
  • Inoue, N., Imai, K., & Aimoto, T. (1999). Circadian variation of hepatic glutathione S-transferase activities in the mouse. Xenobiotica; The Fate of Foreign Compounds in Biological Systems, 29(1), 43–51. https://doi.org/10.1080/004982599238803.
  • Ismail, A., Sawmi, J., & Mannervik, B. (2021). Marmoset glutathione transferases with ketosteroid isomerase activity. Biochemistry and Biophysics Reports, 27, 101078. https://doi.org/10.1016/j.bbrep.2021.101078.
  • Ismert, M., Oster, T., & Bagrel, D. (2002). Effects of atmospheric exposure to naphthalene on xenobiotic-metabolising enzymes in the snail Helix aspersa. Chemosphere, 46(2), 273-280. https://doi.org/10.1016/s0045-6535(01)00124-2.
  • Jowsey, I. R., Thomson, A. M., Flanagan, J. U., Murdock, P. R., Moore, G. B., Meyer, D. J., Murphy, G. J., Smith, S. A., & Hayes, J. D. (2001). Mammalian class Sigma glutathione S-transferases: catalytic properties and tissue-specific expression of human and rat GSH-dependent prostaglandin D2 synthases. The Biochemical Journal, 359(3), 507–516. https://doi.org/10.1042/0264-6021:3590507.
  • Leblanc, G. A., & Dauterman, W. C. (2001). Conjugation and elimination of toxicants. In E. Hodgson & R. C. Smart (Eds.), Introduction to biochemical toxicology (pp. 115-135). Wiley and Sons, Inc.
  • Llavanera, M., Mateo-Otero, Y., Bonet, S., Barranco, I., Fernández-Fuertes, B., & Yeste, M. (2020). The triple role of glutathione S-transferases in mammalian male fertility. Cellular and Molecular Life Sciences, 77, 2331-2342. https://doi.org/10.1007/s00018-019-03405-w.
  • Mannervik, B., Board, P. G., Hayes, J. D., Listowsky, I., & Pearson, W. R. (2005). Nomenclature for mammalian soluble glutathione transferases. Methods in Enzymology, 401, 1–8. https://doi.org/10.1016/S0076-6879(05)01001-3.
  • Moody, D. E., Narloch, B. A., Shull, L. R., & Hammock, B. D. (1991). The effect of structurally divergent herbicides on mouse liver xenobiotic-metabolizing enzymes (P-450-dependent mono-oxygenases, epoxide hydrolases and glutathione S-transferases) and carnitine acetyltransferase. Toxicology Letters, 59(1-3), 175–185. https://doi.org/10.1016/0378-4274(91)90070-m.
  • Moran, S. (1995). Reducing sodium fluoroacetate and fluoroacetamide concentrations in field rodent baits. Phytoparasitica, 23(3), 195-203. https://doi.org/10.1007/BF02981383.
  • Morgenstren, R., Lundqvist, G., Hancock, V., & De Pierre, J. W. (1988). Studies on the activity and activation of rat liver microsomal glutathione transferase, in particular with a substrate analogue series. Journal of Biological Chemistry, 263, 71-75.
  • Park, H. J., Cho, H. Y., & Kong, K. H. (2005). Purification and biochemical properties of glutathione S-transferase from Lactuca sativa. Journal of Biochemistry and Molecular Biology, 38(2), 232–237. https://doi.org/10.5483/bmbrep.2005.38.2.232.
  • Ploemen, J. P., van Iersel, M. L., Wormhoudt, L. W., Commandeur, J. N., Vermeulen, N. P., & van Bladeren, P. J. (1996). In vitro inhibition of rat and human glutathione S-transferase isoenzymes by disulfiram and diethyldithiocarbamate. Biochemical Pharmacology, 52(2), 197–204. https://doi.org/10.1016/0006-2952(96)00142-6.

Kırıkkale İlinde Spermophilus xanthoprymnus ve Meriones tristrami’de Glutatyon S-Transferaz-Alfa ve Glutatyon S-Transferaz-Pi Ekspresyon Düzeylerinin Yaşam Koşulları ve Doğal Habitat Farklılıkları Açısından İncelenmesi

Yıl 2023, , 448 - 459, 20.12.2023
https://doi.org/10.24180/ijaws.1315843

Öz

Glutatyon S-transferaz (GST) çok fonksiyonlu bir enzim olup detoksifikasyon metabolik yolunda son ürün merkaptürik asit oluşumundaki ilk adımı katalize ederek homeostaz sağlar. Memeliler, böcekler, balıklar, kuşlar, annelidler, yumuşakçalar ve birçok mikroorganizmada bulunan GST, besinlerin tüketilmesiyle vücuda alınan toksik maddelerin vücuttan atılmasında ve substrat olmayan ligandlara (örn. heme ve bilirubin) bağlanarak taşınmasında görev alır. GSH. Ayrıca benzer bileşikleri birbirine kovalent yolla bağlayarak reaktif elektrofilik bileşiklerin vücuda zarar vermesini engelleyebilmektedir. GST'den etkilenen bu ksenobiyotik alıcılar, nitrojen halojen bileşikleri, organofosfatlar ve polisiklik aromatik hidrokarbonları içerir. Ksenobiyotikler bu enzim sistemi tarafından oksijenlenir, oksijenli ürünlerin bir sonraki mekanizması daha fazla oksijenlenme olur ve bu ürünler suda daha kolay çözünür hale gelir. Bu çalışmada Spermophilus xanthoprymnus ve Meriones tristrami'nin karaciğer dokusunda Glutatyon S-Transferaz saptanmış ve karakteristik özellikleri belirlenmiştir. Bu amaçla hayvanlara sodyum pentobarbital ile anestezi uygulandı ve karaciğer dokuları alındı. Gerekli hazırlıklar tamamlandıktan sonra örnekler immunohistokimyasal boyama yöntemi kullanılarak analiz edildi ve GST izozimlerinin ifadeleri belirlendi. Sonuç olarak, Kırıkkale ilinin farklı lokalitelerinden temin edilen Spermophilus xanthoprymnus ve Meriones tristrami örneklerinde glutatyon s-transferaz alfa ve glutatyon s-transferaz-pi ifade düzeylerinin farklı olduğu bulundu. Bu türlerdeki GST enzim ekspresyon farklılıkları her iki türün detoksifikasyon kapasitesinin ve ksenobiyotiklere vereceği cevabın farklı olduğunu gösterir.

Kaynakça

  • Aniya, Y., & Daido, A. (1993). Organic hydroperoxide-induced activation of liver microsomal glutathione S-transferase of rats in vitro. Japanese Journal of Pharmacology, 62(1), 9–14. https://doi.org/10.1254/jjp.62.9.
  • Avcı, E., Bulut, S., Bircan, F. S., Özlük, A., & Coşkun Cevher, Ş. (2014). Effect of hibernation on oxidative and antioxidant events under laboratory conditions in anatolian ground squirrel, spermophilus xanthoprymnus (Bennett, 1835) (Mammalia: Sciuridae) from Central Anatolia. Pakistan Journal of Zoology, 46(1), 177-183. Bocedi, A., Noce, A., Marrone, G., Noce, G., Cattani, G., Gambardella, G., Di Lauro, M., Di Daniele, N., & Ricci, G. (2019). Glutathione transferase P1-1 an enzyme useful in biomedicine and as biomarker in clinical practice and in environmental pollution. Nutrients, 11(8), 1741. https://doi.org/10.3390/nu11081741.
  • Casalino, E., Sblano, C., Landriscina, V., Calzaretti, G., & Landriscina, C. (2004). Rat liver glutathione S-transferase activity stimulation following acute cadmium or manganese intoxication. Toxicology, 200(1), 29-38. https://doi.org/10.1016/j.tox.2004.03.004.
  • Dixon, D. P., Lapthorn, A., & Edwards, R. (2002). Plant glutathione transferases. Genome Biology, 3(3), 3004. https://doi.org/10.1186/gb-2002-3-3-reviews3004.
  • Dominey, R. J., Nimmo, I. A., Cronshaw, A. D., & Hayes, J. D. (1991). The major glutathione S-transferase in salmonid fish livers is homologous to the mammalian pi-class GST. Comparative Biochemistry and Physiology. B, Comparative Biochemistry, 100(1), 93–98. https://doi.org/10.1016/0305-0491(91)90090-z.
  • Egaas, E., Skaare, J. U., Svendsen, N. O., Sandvik, M., Falls, J. G., Dauterman, W. C., Collier, T. K., & Netland, J. (1993). A comparative study of effects of atrazine on xenobiotic metabolizing enzymes in fish and insect, and of the invitro phase II atrazine metabolism in some fish, insects, mammals and one plant species. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 106(1), 141-149. https://doi.org/10.1016/0742-8413(93)90265-M.
  • Gyamfi, M. A., Ohtani, I. I., Shinno, E., & Aniya, Y. (2004). Inhibition of glutathione S-transferases by thonningianin A, isolated from the African medicinal herb, Thonningia sanguinea, in vitro. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association, 42(9), 1401-1408. https://doi.org/10.1016/j.fct.2004.04.001.
  • Lizuka, M., Inoue, Y., Murata, K., & Kimura, A. (1989). Purification and some properties of glutathione S-transferase from Escherichia coli B. Journal of Bacteriology, 171(11), 6039–6042. https://doi.org/10.1128/jb.171.11.6039-6042.1989.
  • Inoue, N., Imai, K., & Aimoto, T. (1999). Circadian variation of hepatic glutathione S-transferase activities in the mouse. Xenobiotica; The Fate of Foreign Compounds in Biological Systems, 29(1), 43–51. https://doi.org/10.1080/004982599238803.
  • Ismail, A., Sawmi, J., & Mannervik, B. (2021). Marmoset glutathione transferases with ketosteroid isomerase activity. Biochemistry and Biophysics Reports, 27, 101078. https://doi.org/10.1016/j.bbrep.2021.101078.
  • Ismert, M., Oster, T., & Bagrel, D. (2002). Effects of atmospheric exposure to naphthalene on xenobiotic-metabolising enzymes in the snail Helix aspersa. Chemosphere, 46(2), 273-280. https://doi.org/10.1016/s0045-6535(01)00124-2.
  • Jowsey, I. R., Thomson, A. M., Flanagan, J. U., Murdock, P. R., Moore, G. B., Meyer, D. J., Murphy, G. J., Smith, S. A., & Hayes, J. D. (2001). Mammalian class Sigma glutathione S-transferases: catalytic properties and tissue-specific expression of human and rat GSH-dependent prostaglandin D2 synthases. The Biochemical Journal, 359(3), 507–516. https://doi.org/10.1042/0264-6021:3590507.
  • Leblanc, G. A., & Dauterman, W. C. (2001). Conjugation and elimination of toxicants. In E. Hodgson & R. C. Smart (Eds.), Introduction to biochemical toxicology (pp. 115-135). Wiley and Sons, Inc.
  • Llavanera, M., Mateo-Otero, Y., Bonet, S., Barranco, I., Fernández-Fuertes, B., & Yeste, M. (2020). The triple role of glutathione S-transferases in mammalian male fertility. Cellular and Molecular Life Sciences, 77, 2331-2342. https://doi.org/10.1007/s00018-019-03405-w.
  • Mannervik, B., Board, P. G., Hayes, J. D., Listowsky, I., & Pearson, W. R. (2005). Nomenclature for mammalian soluble glutathione transferases. Methods in Enzymology, 401, 1–8. https://doi.org/10.1016/S0076-6879(05)01001-3.
  • Moody, D. E., Narloch, B. A., Shull, L. R., & Hammock, B. D. (1991). The effect of structurally divergent herbicides on mouse liver xenobiotic-metabolizing enzymes (P-450-dependent mono-oxygenases, epoxide hydrolases and glutathione S-transferases) and carnitine acetyltransferase. Toxicology Letters, 59(1-3), 175–185. https://doi.org/10.1016/0378-4274(91)90070-m.
  • Moran, S. (1995). Reducing sodium fluoroacetate and fluoroacetamide concentrations in field rodent baits. Phytoparasitica, 23(3), 195-203. https://doi.org/10.1007/BF02981383.
  • Morgenstren, R., Lundqvist, G., Hancock, V., & De Pierre, J. W. (1988). Studies on the activity and activation of rat liver microsomal glutathione transferase, in particular with a substrate analogue series. Journal of Biological Chemistry, 263, 71-75.
  • Park, H. J., Cho, H. Y., & Kong, K. H. (2005). Purification and biochemical properties of glutathione S-transferase from Lactuca sativa. Journal of Biochemistry and Molecular Biology, 38(2), 232–237. https://doi.org/10.5483/bmbrep.2005.38.2.232.
  • Ploemen, J. P., van Iersel, M. L., Wormhoudt, L. W., Commandeur, J. N., Vermeulen, N. P., & van Bladeren, P. J. (1996). In vitro inhibition of rat and human glutathione S-transferase isoenzymes by disulfiram and diethyldithiocarbamate. Biochemical Pharmacology, 52(2), 197–204. https://doi.org/10.1016/0006-2952(96)00142-6.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hayvan Koruma, Hayvan Üretiminde Çevre Çalışmaları, Hayvan Yönetimi
Bölüm Yaban Hayatı ve Ekolojisi
Yazarlar

Nahit Pamukoğlu 0000-0003-4506-4123

Serpil Oğuztüzün 0000-0002-5892-3735

Onur Dirican 0000-0003-0511-6611

Sezen Yılmaz Sarıaltın 0000-0002-8387-4146

Erken Görünüm Tarihi 20 Aralık 2023
Yayımlanma Tarihi 20 Aralık 2023
Gönderilme Tarihi 17 Haziran 2023
Kabul Tarihi 13 Eylül 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Pamukoğlu, N., Oğuztüzün, S., Dirican, O., Yılmaz Sarıaltın, S. (2023). Investigation of Glutathione S-Transferase-Alpha and Glutathione S-Transferase-Pi Expression Levels in Spermophilus xanthoprymnus and Meriones tristrami in Terms of Living Conditions and Natural Habitat Differences in Kırıkkale Province. Uluslararası Tarım Ve Yaban Hayatı Bilimleri Dergisi, 9(3), 448-459. https://doi.org/10.24180/ijaws.1315843

17365   17368      17366     17369    17370              


88x31.png    Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi Creative Commons Attribution 4.0 Generic License a