Araştırma Makalesi
BibTex RIS Kaynak Göster

Ruhsatlı Bazı Nematisitlerin Farklı Uygulama Zamanlarının Kök-ur Nematodu, Meloidogyne javanica Üzerine Etkisi

Yıl 2025, Cilt: 11 Sayı: 3, 304 - 313, 29.12.2025
https://doi.org/10.24180/ijaws.1708965

Öz

Kök-ur nematodları (KUN) (Meloidogyne spp.), sebze üretimi, özellikle domates üretimi için ekonomik açıdan en önemli bitki paraziti nematodlar (BPN) olarak kabul edilmektedir. KUN'u kontrol etmek için bir seçenek, günümüzde hala yaygın olarak kullanılan nematisitlerin uygulanmasıdır. Bu çalışmada, üç nematisitin (abamektin, fosthiazate ve fluopyram) KUN türü Meloidogyne javanica (Treub, 1885) (Tylenchida: Meloidogynidae) üzerindeki etkinliği değerlendirilmiştir. Nematisitler beş farklı zamanda uygulanmıştır: dikimden üç ila altı gün önce (A); dikimden hemen sonra (B); dikimden 15 gün sonra (C); 30 gün sonra (D); ve 45 gün sonra (E). Sonuçlar, kontrol (+) ile karşılaştırıldığında, en düşük gal oluşumu şu sırayla fluopyram (B) (1.60 ± 0.24), fosthiazate (A) (2.20 ± 0.20) ve abamectin (B) (3.20 ± 0.37) gözlemlenmiştir. En yüksek gal oluşumu abamektin (E) uygulamasında (5.60 ± 0.24) gözlemlenmiştir. Fluopyram (B), fostiazate (A) ve abamektin (B) uygulamaları, ikinci dönem larvaların (L2) sayısını sırasıyla %94.62, %91.38 ve %72.88 oranında azaltmıştır. Bu bulgular, nematisitlerin etkinliğinde uygulama zamanlamasının önemine işaret etmekte ve fluopyramın KUN yönetimi için etkili bir seçenek olduğunu göstermektedir, bu da yüksek verim ve sürdürülebilir tarımı desteklemektedir.

Kaynakça

  • Abad, P., Favery, B., Rosso, M. N., & Castagnone-Sereno, P. (2003). Root-knot nematode parasitism and host response: Molecular basis of a sophisticated interaction. Molecular Plant Pathology, 4(4), 217–224. https://doi.org/10.1046/J.1364-3703.2003.00170.X
  • Abad, P., Gouzy, J., Aury, J. M., Castagnone-Sereno, P., Danchin, E. G., Deleury, E., & Wincker, P. (2008). Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology, 26, 909–915. https://doi.org/10.1038/nbt.1482
  • Burns, A. R., Luciani, G. M., Musso, G., Bagg, R., Yeo, M., Zhang, Y., & Roy, P. J. (2015). Caenorhabditis elegans is a useful model for anthelmintic discovery. Nature Communications, 6, 7485. https://doi.org/10.1038/ncomms8485
  • Calderón-Urrea, A., Vanholme, B., Vangestel, S., Kane, S. M., Bahaji, A., Pha, K., & Gheysen, G. (2016). Early development of the root-knot nematode Meloidogyne incognita. BMC Developmental Biology, 16, 1–14. https://doi.org/10.1186/s12861-016-0109-x
  • Dejene, T. A. (2014). Opportunities for biological control of root-knot nematodes in organic farming systems: A review. International Journal of Organic Agriculture Research and Development, 9, 87–107.
  • Dionisio, A. C., & Rath, S. (2016). Abamectin in soils: Analytical methods, kinetics, sorption, and dissipation. Chemosphere, 151, 17–29. https://doi.org/10.1016/j.chemosphere.2016.02.058
  • El-Aziz, A., & El-Khouly, A. (2022). Optimization the impact of fluopyram and abamectin against the root-knot nematode (Meloidogyne incognita) on tomato plants by using Trichoderma album. Egyptian Journal of Agronematology, 21, 79–90. https://dx.doi.org/10.21608/ejaj.2022.257672
  • El-Nagdi, W. M., Hafez, O. M., & Saleh, M. A. (2015). Impact of a biocide abamectin for controlling plant parasitic nematodes, productivity and fruit quality of some date palm cultivars. Scientia Agricultura, 11, 20–25. https://doi.org/10.15192/PSCP.SA.2015.11.1.2025
  • Faske, T. R., & Hurd, K. (2015). Sensitivity of Meloidogyne incognita and Rotylenchulus reniformis to fluopyram. Journal of Nematology, 47, 316–322.
  • Giannakou, I. O., & Anastasiadis, I. (2005). Evaluation of chemical strategies as alternatives to methyl bromide for the control of root-knot nematodes in greenhouse cultivated crops. Crop Protection, 24, 499–506. https://doi.org/10.1016/j.cropro.2004.09.007
  • Giblin-Davis, R., Cisar, J., & Bilz, F. (1993). Evaluation of fosthiazate for the suppression of phytoparasitic nematodes in turfgrass. Nematropica, 23, 167–175.
  • Hajihassani, A., Lawrence, K. S., & Jagdale, G. B. (2018). Plant parasitic nematodes in Georgia and Alabama. In Plant Parasitic Nematodes in Sustainable Agriculture of North America (Vol. 2, pp. 357–391). https://doi.org/10.1007/978-3-319-99588-5_14
  • Halley, B. A., VandenHeuvel, W. J., & Wislocki, P. G. (1993). Environmental effects of the usage of avermectins in livestock. Veterinary Parasitology, 48, 109–125. https://doi.org/10.1016/0304-4017(93)90149-H
  • Hooper, D. J. (1986). Laboratory methods for work with plant and soil nematodes. Reference Book 402. Ministry of Agriculture, Fisheries, and Food Technical Bulletin, 2, 133–154.
  • Hunt, D. J., & Handoo, Z. A. (2009). Taxonomy, identification, and principal species. In Root-knot Nematodes (pp. 55–97). Wallingford, UK: CABI Publishing. https://doi.org/10.1079/9781845934927.0055
  • Ibrahim, H. S., Saad, A. F., Massoud, M. A., & Khalil, M. S. (2010). Evaluation of certain agrochemical and biological agents against Meloidogyne incognita on tomatoes. Alexandria Science Exchange Journal, 31, 10–17. https://doi.org/10.21608/asejaiqjsae.2010.2070
  • Ibrahim, I. K. A. (2011). Nematode pests parasitic on agricultural field crops (p.250). Alexandria: Manshaat El. Maaref.
  • Javed, N., Anwar, S. A., Fyaz, S., Khan, M. M., & Ashfaq, M. (2008). Effects of neem formulations applied as soil drenching on the development of root-knot nematode Meloidogyne javanica on roots of tomato. Pakistan Journal of Botany, 40, 905–910.
  • Jones, J. G., Kleczewski, N. M., Desaeger, J., Meyer, S. L., & Johnson, G. C. (2017). Evaluation of nematicides for southern root-knot nematode management in lima bean. Crop Protection, 96, 151–157. https://doi.org/10.1016/j.cropro.2017.02.015
  • Jones, J. T., Haegeman, A., Danchin, E. G., Gaur, H. S., Helder, J., Jones, M. G., & Perry, R. N. (2013). Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14, 946–961. https://doi.org/10.1111/mpp.12057
  • Jordan, S. (2018). Yield to the resistance: The impact of nematode resistant varieties on alfalfa yield. Natural Resource Modeling, 31, e12150. https://doi.org/10.1111/nrm.12150
  • Karssen, G., & Moens, M. (2006). Root-knot nematodes. In Plant Nematology (pp. 59–90). Wallingford, UK: CABI Publishing.
  • Khalil, M. S., & Alqadasi, A. A. (2019). Potential of non-fumigant nematicides at different formulations against southern root-knot nematode (Meloidogyne incognita) on tomato plants. International Journal of Phytopathology, 8, 23–28. https://doi.org/10.33687/phytopath.008.01.2899
  • Lamovšek, J., Urek, G., & Trdan, S. (2013). Biological control of root-knot nematodes (Meloidogyne spp.): Microbes against the pests. Acta Agriculturae Slovenica, 101, 263–275. https://doi.org/10.14720/aas.2013.101.2.14917
  • Li, Q. Q., Li, J. J., Yu, Q. T., Shang, Z. Y., & Xue, C. B. (2021). Mixtures of fluopyram and abamectin for management of Meloidogyne incognita in tomato. Journal of Nematology, 52, 1–11. https://doi.org/10.21307/jofnem-2020-129
  • Liu, G., Lin, X., Xu, S., Liu, G., Liu, F., & Mu, W. (2020). Screening, identification and application of soil bacteria with nematicidal activity against root-knot nematode (Meloidogyne incognita) on tomato. Pest Management Science, 76, 2217–2224. https://doi.org/10.1002/ps.5759
  • Lu, H., Xu, S., Zhang, W., Xu, C., Li, B., Zhang, D., & Liu, F. (2017). Nematicidal activity of trans-2-hexenal against southern root-knot nematode (Meloidogyne incognita) on tomato plants. Journal of Agricultural and Food Chemistry, 65, 544–550. https://doi.org/10.1021/acs.jafc.6b04091
  • Luc, M., Bridge, J., & Sikora, R. A. (2005). Reflections on nematology in subtropical and tropical agriculture. In M. Luc, J. Bridge, & R. A. Sikora (Eds.), Plant parasitic nematodes in subtropical and tropical agriculture (pp. 1–10). CAB International. https://doi.org/10.1079/9780851997278.0000
  • Morris, K. A., Langston, D. B., Davis, R. F., Noe, J. P., Dickson, D. W., & Timper, P. (2016). Efficacy of various application methods of fluensulfone for managing root-knot nematodes in vegetables. Journal of Nematology, 48, 65–71.
  • Oka, Y., Shapira, N., & Fine, P. (2007). Control of root-knot nematodes in organic farming systems by organic amendments and soil solarization. Crop Protection, 26, 1556–1565. https://doi.org/10.1016/j.cropro.2007.01.003
  • Putter, I., Connell, J. M., Preiser, F. A., Haidri, A. A., Ristich, S. S., & Dybas, R. A. (1981). Avermectins: Novel insecticides, acaricides, and nematicides from a soil microorganism. Experientia, 37, 963–964. https://doi.org/10.1007/BF01971780
  • Raddy, H. M., Fouad, A. F. A., Montasser, S. A., Abdel-Lateef, M. F., & El-Samadisy, A. M. (2013). Efficacy of six nematicides and six commercial bioproducts against root-knot nematode, Meloidogyne incognita, on tomato. Journal of Applied Sciences Research, 9(9), 4410–4417.
  • Radwan, M. A., Saad, A. S. A., Mesbah, H. A., Ibrahim, H. S., & Khalil, M. S. (2019). Investigating the nematicidal performance of structurally related macrolides against the root-knot nematode. Hellenic Plant Protection Journal, 12, 24–37. https://doi.org/10.2478/hppj-2019-0005
  • Saad, A. F. S., Massoud, M. A., Ibrahim, H. S., & Khalil, M. S. (2012). Activity of nemathorin, natural product and bioproducts against root-knot nematodes on tomatoes. Archives of Phytopathology and Plant Protection, 45, 955–962. https://doi.org/10.1080/03235408.2012.655145
  • Saad, A. S. A., Radwan, M. A., Mesbah, H. A., Ibrahim, H. S., & Khalil, M. S. (2017). Evaluation of some non-fumigant nematicides and the biocide avermectin for managing Meloidogyne incognita in tomatoes. Pakistan Journal of Nematology, 35, 85–92. http://dx.doi.org/10.18681/pjn.v35.i01.p85-92
  • Sasser, J. N., & Freckman, D. W. (1987). A world perspective on nematology: The role of the society. In J. A. Veech & D. W. Dickson (Eds.), Vistas on nematology (pp. 7–14). Society of Nematologists.
  • Sasser, J. N., Eisenback, J. D., Carter, C. C., & Triantaphyllou, A. C. (1983). The international Meloidogyne Project—its goals and accomplishments. Annual Review of Phytopathology, 21, 271–288.
  • Sharma, I. P., & Sharma, A. K. (2015). Root-knot nematodes (Meloidogyne incognita) suppression through pre-colonized arbuscular mycorrhiza (Glomus intraradices) in tomato-PT3. Scientia Agricultura, 12, 52–57. https://doi.org/10.15192/PSCP.SA.2015.12.1.5257
  • Silva, J. D. O., Loffredo, A., da Rocha, M. R., & Becker, J. O. (2019). Efficacy of new nematicides for managing Meloidogyne incognita in tomato crop. Journal of Phytopathology, 167, 295–298. https://doi.org/10.1111/jph.12798
  • Stucky, T., & Dahlin, P. (2022). Fluopyram: Optimal application time point and planting hole treatment to control Meloidogyne incognita. Agronomy, 12, 1576. https://doi.org/10.3390/agronomy12071576
  • Thoden, T. C., Korthals, G. W., & Termorshuizen, A. J. (2011). Organic amendments and their influences on plant-parasitic and free-living nematodes: A promising method for nematode management? Nematology, 13, 133–153.
  • Yue, X., Li, F., & Wang, B. (2020). Activity of four nematicides against Meloidogyne incognita race 2 on tomato plants. Journal of Phytopathology, 168, 399–404. https://publons.com/publon/10.1111/jph.12904
  • Zasada, I. A., Halbrendt, J. M., Kokalis-Burelle, N., LaMondia, J., McKenry, M. V., & Noling, J. W. (2010). Managing nematodes without methyl bromide. Annual Review of Phytopathology, 48, 311–328. https://doi.org/10.1146/annurev-phyto-073009-114425
  • Zeck, W. M. (1971). A rating scheme for field evaluation of root-knot nematode infestations. Pflanzenschutz-Nachrichten Bayer, 10, 141–144.

The Effect of Different Application Times of Some Registered Nematicides on the Root-Knot Nematode, Meloidogyne javanica

Yıl 2025, Cilt: 11 Sayı: 3, 304 - 313, 29.12.2025
https://doi.org/10.24180/ijaws.1708965

Öz

Root-knot nematodes (RKNs) (Meloidogyne spp.) are considered the most economically important plant-parasitic nematodes (PPNs) for vegetable production, particularly for tomatoes. One control option for managing RKN is the application of nematicides, which is still widely used today. This study evaluated the efficacy of three nematicides (abamectin, fosthiazate and fluopyram) against the RKN species Meloidogyne javanica (Treub, 1885) (Tylenchida: Meloidogynidae). The nematicides were applied at five different times: three to six days before transplanting (A); just after transplanting (B); 15 days after transplanting (DAT) (C); 30 DAT (D); and 45 DAT (E). The results showed that, compared to the control (+), the lowest gall formation was observed in the following order: fluopyram (B) (1.60 ± 0.24), fosthiazate (A) (2.20 ± 0.20), and abamectin (B) (3.20 ± 0.37). The highest gall formation was observed in the abamectin (E) treatment (5.60 ± 0.24). Application of fluopyram (B), fosthiazate (A) and abamectin (B) reduced the number of second-stage juveniles (J2) by 94.62%, 91.38% and 72.88% respectively. These results point to the significance of application timing in the efficacy of nematicides and suggest that fluopyram is an effective option for the management of RKN, therefore advocating for high yields and sustainable agriculture.

Kaynakça

  • Abad, P., Favery, B., Rosso, M. N., & Castagnone-Sereno, P. (2003). Root-knot nematode parasitism and host response: Molecular basis of a sophisticated interaction. Molecular Plant Pathology, 4(4), 217–224. https://doi.org/10.1046/J.1364-3703.2003.00170.X
  • Abad, P., Gouzy, J., Aury, J. M., Castagnone-Sereno, P., Danchin, E. G., Deleury, E., & Wincker, P. (2008). Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology, 26, 909–915. https://doi.org/10.1038/nbt.1482
  • Burns, A. R., Luciani, G. M., Musso, G., Bagg, R., Yeo, M., Zhang, Y., & Roy, P. J. (2015). Caenorhabditis elegans is a useful model for anthelmintic discovery. Nature Communications, 6, 7485. https://doi.org/10.1038/ncomms8485
  • Calderón-Urrea, A., Vanholme, B., Vangestel, S., Kane, S. M., Bahaji, A., Pha, K., & Gheysen, G. (2016). Early development of the root-knot nematode Meloidogyne incognita. BMC Developmental Biology, 16, 1–14. https://doi.org/10.1186/s12861-016-0109-x
  • Dejene, T. A. (2014). Opportunities for biological control of root-knot nematodes in organic farming systems: A review. International Journal of Organic Agriculture Research and Development, 9, 87–107.
  • Dionisio, A. C., & Rath, S. (2016). Abamectin in soils: Analytical methods, kinetics, sorption, and dissipation. Chemosphere, 151, 17–29. https://doi.org/10.1016/j.chemosphere.2016.02.058
  • El-Aziz, A., & El-Khouly, A. (2022). Optimization the impact of fluopyram and abamectin against the root-knot nematode (Meloidogyne incognita) on tomato plants by using Trichoderma album. Egyptian Journal of Agronematology, 21, 79–90. https://dx.doi.org/10.21608/ejaj.2022.257672
  • El-Nagdi, W. M., Hafez, O. M., & Saleh, M. A. (2015). Impact of a biocide abamectin for controlling plant parasitic nematodes, productivity and fruit quality of some date palm cultivars. Scientia Agricultura, 11, 20–25. https://doi.org/10.15192/PSCP.SA.2015.11.1.2025
  • Faske, T. R., & Hurd, K. (2015). Sensitivity of Meloidogyne incognita and Rotylenchulus reniformis to fluopyram. Journal of Nematology, 47, 316–322.
  • Giannakou, I. O., & Anastasiadis, I. (2005). Evaluation of chemical strategies as alternatives to methyl bromide for the control of root-knot nematodes in greenhouse cultivated crops. Crop Protection, 24, 499–506. https://doi.org/10.1016/j.cropro.2004.09.007
  • Giblin-Davis, R., Cisar, J., & Bilz, F. (1993). Evaluation of fosthiazate for the suppression of phytoparasitic nematodes in turfgrass. Nematropica, 23, 167–175.
  • Hajihassani, A., Lawrence, K. S., & Jagdale, G. B. (2018). Plant parasitic nematodes in Georgia and Alabama. In Plant Parasitic Nematodes in Sustainable Agriculture of North America (Vol. 2, pp. 357–391). https://doi.org/10.1007/978-3-319-99588-5_14
  • Halley, B. A., VandenHeuvel, W. J., & Wislocki, P. G. (1993). Environmental effects of the usage of avermectins in livestock. Veterinary Parasitology, 48, 109–125. https://doi.org/10.1016/0304-4017(93)90149-H
  • Hooper, D. J. (1986). Laboratory methods for work with plant and soil nematodes. Reference Book 402. Ministry of Agriculture, Fisheries, and Food Technical Bulletin, 2, 133–154.
  • Hunt, D. J., & Handoo, Z. A. (2009). Taxonomy, identification, and principal species. In Root-knot Nematodes (pp. 55–97). Wallingford, UK: CABI Publishing. https://doi.org/10.1079/9781845934927.0055
  • Ibrahim, H. S., Saad, A. F., Massoud, M. A., & Khalil, M. S. (2010). Evaluation of certain agrochemical and biological agents against Meloidogyne incognita on tomatoes. Alexandria Science Exchange Journal, 31, 10–17. https://doi.org/10.21608/asejaiqjsae.2010.2070
  • Ibrahim, I. K. A. (2011). Nematode pests parasitic on agricultural field crops (p.250). Alexandria: Manshaat El. Maaref.
  • Javed, N., Anwar, S. A., Fyaz, S., Khan, M. M., & Ashfaq, M. (2008). Effects of neem formulations applied as soil drenching on the development of root-knot nematode Meloidogyne javanica on roots of tomato. Pakistan Journal of Botany, 40, 905–910.
  • Jones, J. G., Kleczewski, N. M., Desaeger, J., Meyer, S. L., & Johnson, G. C. (2017). Evaluation of nematicides for southern root-knot nematode management in lima bean. Crop Protection, 96, 151–157. https://doi.org/10.1016/j.cropro.2017.02.015
  • Jones, J. T., Haegeman, A., Danchin, E. G., Gaur, H. S., Helder, J., Jones, M. G., & Perry, R. N. (2013). Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14, 946–961. https://doi.org/10.1111/mpp.12057
  • Jordan, S. (2018). Yield to the resistance: The impact of nematode resistant varieties on alfalfa yield. Natural Resource Modeling, 31, e12150. https://doi.org/10.1111/nrm.12150
  • Karssen, G., & Moens, M. (2006). Root-knot nematodes. In Plant Nematology (pp. 59–90). Wallingford, UK: CABI Publishing.
  • Khalil, M. S., & Alqadasi, A. A. (2019). Potential of non-fumigant nematicides at different formulations against southern root-knot nematode (Meloidogyne incognita) on tomato plants. International Journal of Phytopathology, 8, 23–28. https://doi.org/10.33687/phytopath.008.01.2899
  • Lamovšek, J., Urek, G., & Trdan, S. (2013). Biological control of root-knot nematodes (Meloidogyne spp.): Microbes against the pests. Acta Agriculturae Slovenica, 101, 263–275. https://doi.org/10.14720/aas.2013.101.2.14917
  • Li, Q. Q., Li, J. J., Yu, Q. T., Shang, Z. Y., & Xue, C. B. (2021). Mixtures of fluopyram and abamectin for management of Meloidogyne incognita in tomato. Journal of Nematology, 52, 1–11. https://doi.org/10.21307/jofnem-2020-129
  • Liu, G., Lin, X., Xu, S., Liu, G., Liu, F., & Mu, W. (2020). Screening, identification and application of soil bacteria with nematicidal activity against root-knot nematode (Meloidogyne incognita) on tomato. Pest Management Science, 76, 2217–2224. https://doi.org/10.1002/ps.5759
  • Lu, H., Xu, S., Zhang, W., Xu, C., Li, B., Zhang, D., & Liu, F. (2017). Nematicidal activity of trans-2-hexenal against southern root-knot nematode (Meloidogyne incognita) on tomato plants. Journal of Agricultural and Food Chemistry, 65, 544–550. https://doi.org/10.1021/acs.jafc.6b04091
  • Luc, M., Bridge, J., & Sikora, R. A. (2005). Reflections on nematology in subtropical and tropical agriculture. In M. Luc, J. Bridge, & R. A. Sikora (Eds.), Plant parasitic nematodes in subtropical and tropical agriculture (pp. 1–10). CAB International. https://doi.org/10.1079/9780851997278.0000
  • Morris, K. A., Langston, D. B., Davis, R. F., Noe, J. P., Dickson, D. W., & Timper, P. (2016). Efficacy of various application methods of fluensulfone for managing root-knot nematodes in vegetables. Journal of Nematology, 48, 65–71.
  • Oka, Y., Shapira, N., & Fine, P. (2007). Control of root-knot nematodes in organic farming systems by organic amendments and soil solarization. Crop Protection, 26, 1556–1565. https://doi.org/10.1016/j.cropro.2007.01.003
  • Putter, I., Connell, J. M., Preiser, F. A., Haidri, A. A., Ristich, S. S., & Dybas, R. A. (1981). Avermectins: Novel insecticides, acaricides, and nematicides from a soil microorganism. Experientia, 37, 963–964. https://doi.org/10.1007/BF01971780
  • Raddy, H. M., Fouad, A. F. A., Montasser, S. A., Abdel-Lateef, M. F., & El-Samadisy, A. M. (2013). Efficacy of six nematicides and six commercial bioproducts against root-knot nematode, Meloidogyne incognita, on tomato. Journal of Applied Sciences Research, 9(9), 4410–4417.
  • Radwan, M. A., Saad, A. S. A., Mesbah, H. A., Ibrahim, H. S., & Khalil, M. S. (2019). Investigating the nematicidal performance of structurally related macrolides against the root-knot nematode. Hellenic Plant Protection Journal, 12, 24–37. https://doi.org/10.2478/hppj-2019-0005
  • Saad, A. F. S., Massoud, M. A., Ibrahim, H. S., & Khalil, M. S. (2012). Activity of nemathorin, natural product and bioproducts against root-knot nematodes on tomatoes. Archives of Phytopathology and Plant Protection, 45, 955–962. https://doi.org/10.1080/03235408.2012.655145
  • Saad, A. S. A., Radwan, M. A., Mesbah, H. A., Ibrahim, H. S., & Khalil, M. S. (2017). Evaluation of some non-fumigant nematicides and the biocide avermectin for managing Meloidogyne incognita in tomatoes. Pakistan Journal of Nematology, 35, 85–92. http://dx.doi.org/10.18681/pjn.v35.i01.p85-92
  • Sasser, J. N., & Freckman, D. W. (1987). A world perspective on nematology: The role of the society. In J. A. Veech & D. W. Dickson (Eds.), Vistas on nematology (pp. 7–14). Society of Nematologists.
  • Sasser, J. N., Eisenback, J. D., Carter, C. C., & Triantaphyllou, A. C. (1983). The international Meloidogyne Project—its goals and accomplishments. Annual Review of Phytopathology, 21, 271–288.
  • Sharma, I. P., & Sharma, A. K. (2015). Root-knot nematodes (Meloidogyne incognita) suppression through pre-colonized arbuscular mycorrhiza (Glomus intraradices) in tomato-PT3. Scientia Agricultura, 12, 52–57. https://doi.org/10.15192/PSCP.SA.2015.12.1.5257
  • Silva, J. D. O., Loffredo, A., da Rocha, M. R., & Becker, J. O. (2019). Efficacy of new nematicides for managing Meloidogyne incognita in tomato crop. Journal of Phytopathology, 167, 295–298. https://doi.org/10.1111/jph.12798
  • Stucky, T., & Dahlin, P. (2022). Fluopyram: Optimal application time point and planting hole treatment to control Meloidogyne incognita. Agronomy, 12, 1576. https://doi.org/10.3390/agronomy12071576
  • Thoden, T. C., Korthals, G. W., & Termorshuizen, A. J. (2011). Organic amendments and their influences on plant-parasitic and free-living nematodes: A promising method for nematode management? Nematology, 13, 133–153.
  • Yue, X., Li, F., & Wang, B. (2020). Activity of four nematicides against Meloidogyne incognita race 2 on tomato plants. Journal of Phytopathology, 168, 399–404. https://publons.com/publon/10.1111/jph.12904
  • Zasada, I. A., Halbrendt, J. M., Kokalis-Burelle, N., LaMondia, J., McKenry, M. V., & Noling, J. W. (2010). Managing nematodes without methyl bromide. Annual Review of Phytopathology, 48, 311–328. https://doi.org/10.1146/annurev-phyto-073009-114425
  • Zeck, W. M. (1971). A rating scheme for field evaluation of root-knot nematode infestations. Pflanzenschutz-Nachrichten Bayer, 10, 141–144.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Nematoloji
Bölüm Araştırma Makalesi
Yazarlar

Furkan Ulaş 0009-0002-3052-4457

Mustafa İmren 0000-0002-7217-9092

Gönderilme Tarihi 29 Mayıs 2025
Kabul Tarihi 23 Temmuz 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 3

Kaynak Göster

APA Ulaş, F., & İmren, M. (2025). The Effect of Different Application Times of Some Registered Nematicides on the Root-Knot Nematode, Meloidogyne javanica. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 11(3), 304-313. https://doi.org/10.24180/ijaws.1708965

17365   17368      17366     17369    17370              


88x31.png    Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi Creative Commons Attribution 4.0 Generic License a