Araştırma Makalesi
BibTex RIS Kaynak Göster

Samsun İli Çayır ve Meralarında Bitki Çeşitliliğinin Orta Dereceli Tahribat Hipotezine Göre Otlatma ve Erozyon Faktörleri ile Test Edilmesi

Yıl 2020, , 570 - 581, 21.12.2020
https://doi.org/10.24180/ijaws.773991

Öz

Erozyon ve otlatma çayır ve meralarda biyolojik çeşitliliği etkilyen önemli faktörler arasındadır. Tahribat ile biyolojik çeşitlilik arasındaki ilişkinin olumsuz yönde olacağı düşünülse de bazı durumlarda biyoçeşitliliği arttırıcı etkisi bilinmektedir. Bu durum orta dereceli tahribat hipotezi ile açıklanmaktadır. Bu hipoteze göre tahribatın orta şiddette oldduğu durumlarda biyoçeşitliliğin daha yüksek olacağı savunulmuştur. Bu çalışmada toprak organik madde içeriği yönünden birbirine benzer olan Samsun ilinin çayır ve mera alanlarında yürütülmüştür. Erozyon ve otlatma şiddetine göre oluşturulan grupların bitki çeşitliliği hesaplanmış ve karşılaştırılmıştır. Elde edilen sonuçlara göre bu iki tahribat faktörünün bitki çeşitliliğine etkisi ortaya konmuş ve özellikle otlatma şiddetinin orta dereceli olduğu grupta çeşitlilik indeksleri yüksek bulunmuştur. Erozyon için ise çeşitliliğin en yüksek olduğu grup şiddetli erozyonun gözlemlendiği çayır ve meralar olmuştur. Ayrıca Samsun İli’nde çayır ve mera olarak kullanılan arazilerin tamamını temsil eden alansal dağılım haritaları çizilmiş alanlar hakkında değerlendirmeler ortaya konmuştur.

Destekleyen Kurum

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Proje Numarası

106G017

Kaynakça

  • Allen, D. C., Cardinale, B. J., & Wynn-Thompson, T. (2016). Plant biodiversity effects in reducing fluvial erosion are limited to low species richness. Ecology, 97(1), 17–24.
  • Altın, M., Tuna, C., Nizam, İ., & Ateş, E. (2005). Pirinççi köyü meraları dolgu alanlarını bitkilendirme uygulamaları. VI. Tarla Bitkileri Kongresi, Antalya.
  • Amiri, F., Ariapour, A., & Fadai, S. (2008). Effects of livestock grazing on vegetation composition and soil moisture properties in grazed and non-grazed range site. Journal of Biological Sciences, 8(8), 1289-1297.
  • Anonim. (2005). Toprak ve arazi sınıflaması standartları teknik talimatı. http://www. tarim.gov.tr/Belgeler /Mevzuat/ Talimatlar/ Toprak Arazi Siniflamasi Standartlari Teknik TalimativeIlgiliMevzuat_yeni.pdf. Erişim tarihi: 21 Mayıs 2020.
  • Arslan, H. (2012). Spatial and temporal mapping of groundwater salinity using ordinary kriging and indicator kriging: The case of Bafra Plain, Turkey. Agricultural Water Management, 113, 57-63.
  • Balvanera, P., Pfisterer, A. B., Buchmann, N., He, J. S., Nakashizuka, T., Raffaelli, D., & Schmid, B. (2006). Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 9(10), 1146–1156.
  • Biswas, S. R., & Mallik, A. U. (2010). Disturbance effects on species diversity and functional diversity in riparian and upland plant communities. Ecology, 91(1), 28–35.
  • Biswas, S. R., & Mallik, A. U. (2011). Species diversity and functional diversity relationship varies with disturbance intensity. Ecosphere, 2(4), art52.
  • Buckling, A., Kassen, R., Bell, G., & Rainey, P. B. (2000). Disturbance and diversity in experimental microcosms. Nature, 408(6815), 961–964.
  • Callaway, R. M., Kikvidze, Z., & Kikodze, D. (2000). Facilitation by unpalatable weeds may conserve plant diversity in overgrazed meadows in the Caucasus Mountains. Oikos, 89(2), 275–282.
  • Collins, S. L., & Glenn, S. M. (1997). Intermediate disturbance and its relationship to within- and between-patch dynamics. New Zealand Journal of Ecology, 21(1), 103-110.
  • Connell, J. H. (1979). Intermediate-disturbance hypothesis. Science, 204(4399), 1345–1345. Corp, I. (2013). IBM SPSS statistics for windows. Armonk, NY.
  • Dupré, C., & Diekmann, M. (2001). Differences in species richness and life-history traits between grazed and abandoned grasslands in southern Sweden. Ecography, 24(3), 275–286.
  • Duru, M., Ansquer, P., Jouany, C., Theau, J. P., & Cruz, P. (2010). Comparison of methods for assessing the impact of different disturbances and nutrient conditions upon functional characteristics of grassland communities. Annals of Botany, 106(5), 823-831.
  • Eldridge, D.J., Poore, A. G. B., Ruiz-Colmenero, M., Letnic, M., & Soliveres, S. (2016). Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing. Ecological Applications, 26(4), 1273–1283.
  • Faria, N., Peco, B., & Carmona, C. P. (2018). Effects of haying on vegetation communities, taxonomic diversity and sward properties in mediterranean dry grasslands: A preliminary assessment. Agriculture, Ecosystems & Environment, 251, 48-58.
  • Fedrigo, J. K., Ataide, P. F., Filho, J. A., Oliveira, L. V., Jaurena, M., Laca, E. A., … Nabinger, C. (2018). Temporary grazing exclusion promotes rapid recovery of species richness and productivity in a long-term overgrazed Campos grassland. Restoration Ecology, 26(4), 677685.
  • Flöder, S., & Sommer, U. (1999). Diversity in planktonic communities: An experimental test of the intermediate disturbance hypothesis. Limnology and Oceanography, 44(4), 1114–1119.
  • Gamoun, M. (2014). Grazing intensity effects on the vegetation in desert rangelands of Southern Tunisia. Journal of Arid Land, 6(3), 324–333.
  • García, R. R., Jáureguı, B. M., García, U., Osoro, K., & Celaya, R. (2009). Effects of livestock breed and grazing pressure on ground-dwelling arthropods in Cantabrian heathlands. Ecological Entomology, 34(4), 466–475.
  • Grime, J. P. (1973). Competitive exclusion in herbaceous vegetation. Nature, 242(5396), 344–347.
  • Gülsoy, S., & Özkan, K. (2008). Tür çeşitliliğinin ekolojik açıdan önemi ve kullanılan bazı indisler. Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi, 9(1), 168–178.
  • İmamoğlu, A., Bahadır, M., & Dengiz, O. (2016). Çorum Alaca havzasında toprak erozyon duyarlılık faktörünün farklı enterpolasyon modeller kullanılarak konumsal dağılımlarının belirlenmesi. Toprak Su Dergisi, 5(1), 8–15.
  • Imamoglu, A., & Dengiz, O. (2017). Determination of soil erosion risk using RUSLE model and soil organic carbon loss in Alaca catchment (Central Black Sea region, Turkey). Rendiconti Lincei, 28(1), 11–23.
  • Kiełtyk, P., & Mirek, Z. (2015). Importance of molehill disturbances for invasion by Bunias orientalis in meadows and pastures. Acta Oecologica, 64, 29–34.
  • Kılınç, M., Kutbay, H. G., Yalçın, E., & Bilgin, A. (2006). Bitki Ekolojisi ve Bitki Sosyolojisi Uygulamaları. Palme Yayınevi, Ankara.
  • Kobayashi, T., Hori, Y., & Nomoto, N. (1997). Effects of trampling and vegetation removal on species diversity and micro-environment under different shade conditions. Journal of Vegetation Science, 8(6), 873–880.
  • Koç, A., & Çakal, Ş. (2004). Comparison of some rangeland canopy coverage methods. International Soil Congress Natural Resource Management for Sustainable Development, Erzurum.
  • Kumar, R., & Shahabuddın, G. (2005). Effects of biomass extraction on vegetation structure, diversity and composition of forests in Sariska Tiger Reserve, India. Environmental Conservation, 32(3), 248–259.
  • Lázaro, A., Tscheulın, T., Devalez, J., Nakas, G., & Petanıdou, T. (2016). Effects of grazing intensity on pollinator abundance and diversity, and on pollination services. Ecological Entomology, 41(4), 400–412.
  • Li, Y., & Shipley, B. (2019). Functional niche occupation and species richness in herbaceous plant communities along experimental gradients of stress and disturbance. Annals of Botany, 124(5), 861–867.
  • Liddle, M. J. (1991). Recreation ecology: Effects of trampling on plants and corals. Trends in Ecology & Evolution, 6(1), 13–17.
  • Linse, S. J., Mergen, D. E., Smith, J. L., & Trlica, M. J. (2006). Upland erosion under a simulated most damaging storm. Journal of Range Management, 54(4), 356-361.
  • Liu, Y., Wu, G., Ding, L., Tian, F., & Shi, Z. (2017). Diversity–productivity trade‐off during converting cropland to perennial grassland in the semi‐arid areas of China. Land Degradation & Development, 28(2), 699–707.
  • Lu, X., Kelsey, K. C., Yan, Y., Sun, J., Wang, X., Cheng, G., & Neff, J. C. (2017). Effects of grazing on ecosystem structure and function of alpine grasslands in Qinghai-Tibetan Plateau: a synthesis. Ecosphere, 8(1), e01656.
  • Malik, Z. A., Pandey, R., & Bhatt, A. B. (2016). Anthropogenic disturbances and their impact on vegetation in Western Himalaya, India. Journal of Mountain Science, 13(1), 69–82.
  • Martin, C., Pohl, M., Alewell, C., Körner, C., & Rixen, C. (2010). Interrill erosion at disturbed alpine sites: Effects of plant functional diversity and vegetation cover. Basic and Applied Ecology, 11(7), 619–626.
  • Martinsen, G. D., Cushman, J. H., & Whitham, T. G. (1990). Impact of pocket gopher disturbance on plant species diversity in a shortgrass prairie community. Oecologia, 83(1), 132–138.
  • McAleece, N., Lambshead, P., Paterson, G., & Gage, J. (1997). BioDiversity Professional: London. Mcintyre, S., Heard, K. M., & Martin, T. G. (2003). The relative importance of cattle grazing in subtropical grasslands: does it reduce or enhance plant biodiversity? Journal of Applied Ecology, 40(3), 445–457.
  • Morrison, J. (2006). Grasslands of the World. Experimental Agriculture, 42(2), 254–255.
  • Özturk, D., Beyazit, I., & Kilic, F. (2015). Spatiotemporal analysis of shoreline changes of the Kizilirmak Delta. Journal of Coastal Research, 31(6), 1389–1402.
  • Peratoner, G., & Pötsch, E. M. (2019). Methods to describe the botanical composition of vegetation in grassland research. Die Bodenkultur: Journal of Land Management, Food and Environment, 70(1), 1–18.
  • Pettit, N. E., Froend, R. H., & Ladd, P. G. (1995). Grazing in remnant woodland vegetation: changes in species composition and life form groups. Journal of Vegetation Science, 6(1), 121–130.
  • Pohl, M., Alig, D., Körner, C., & Rixen, C. (2009). Higher plant diversity enhances soil stability in disturbed alpine ecosystems. Plant and Soil, 324(1–2), 91–102.
  • Pollock, M. M., Naiman, R. J., & Hanley, T. A. (1998). Plant species richness in riparian wetlands-a test of biodiversity theory. Ecology, 79(1), 94.
  • Pueyo, Y., Alados, C. L., & Ferrer-Benimeli, C. (2006). Is the analysis of plant community structure better than common species-diversity indices for assessing the effects of livestock grazing on a Mediterranean arid ecosystem? Journal of Arid Environments, 64(4), 698–712.
  • Ren, H., Schönbach, P., Wan, H., Gierus, M., & Taube, F. (2012). Effects of grazing ıntensity and environmental factors on species composition and diversity in typical steppe of inner Mongolia, China. PLoS ONE, 7(12), e52180.
  • Roder, W., Gratzer, G., & Wangdi, K. (2002). Cattle grazing in the conifer forests of Bhutan. Mountain Research and Development, 22(4), 1–7.
  • Shea, K., Roxburgh, S. H., & Rauschert, E. S. J. (2004). Moving from pattern to process: coexistence mechanisms under intermediate disturbance regimes. Ecology Letters, 7(6), 491–508.
  • Sun, D., & Liddle, M. J. (1993). A survey of trampling effects on vegetation and soil in eight tropical and subtropical sites. Environmental Management, 17(4), 497–510.
  • Sürmen, M., & Kara, E. (2018). Aydın İli ekolojik koşullarında farklı eğimlerdeki mera vejetasyonlarının verim ve kalite özellikleri. Derim, 35(1), 67–72.
  • Sürmen, M., Yavuz, T., Sürmen, B., & Kutbay, H. G. (2015). Determination of the population densities of invasive species in meadows and pastures of Samsun. Türkiye Herboloji Dergisi, 18(3), 9–10.
  • Tälle, M., Deák, B., Poschlod, P., Valkó, O., Westerberg, L., & Milberg, P. (2016). Grazing vs. mowing: A meta-analysis of biodiversity benefits for grassland management. Agriculture, Ecosystems & Environment, 222, 200–212.
  • Tilman, D. (1983). Plant succession and gopher disturbance along an experimental gradient. Oecologia, 60(3), 285–292.
  • Türk, M., Albayrak, S., & Bozkurt, Y. (2015). Otlatmanın Farklı yapay meralarda botanik kompozisyon üzerine etkisi. SDÜ Ziraat Fakültesi Dergisi, 10(1), 17–34.
  • Ünal, S., Mutlu, Z., Mermer, A., Urla, Ö., Ünal, E., Özaydın, K. A., … Aslan, S. (2012). Çankırı ili meralarının mera durumu ve sağlığının belirlenmesi üzerine bir çalışma. Tarım Bilimleri Araştırma Dergisi, 5(2), 131–135.
  • Villnäs, A., Norkko, J., Hietanen, S., Josefson, A. B., Lukkari, K., & Norkko, A. (2013). The role of recurrent disturbances for ecosystem multifunctionality. Ecology, 94(10), 2275–2287.
  • Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A., & Wright, I. J. (2002). Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33(1), 125–159.
  • Wiesmair, M., Otte, A., & Waldhardt, R. (2017). Relationships between plant diversity, vegetation cover, and site conditions: implications for grassland conservation in the Greater Caucasus. Biodiversity and Conservation, 26(2), 273–291.
  • Wilson, S. D., & Tilman, D. (1991). Interactive effects of fertilization and disturbance on community structure and resource availability in an old-field plant community. Oecologia, 88(1), 61–71.
  • Yuan, Z. Y., Jiao, F., Li, Y. H., & Kallenbach, R. L. (2016). Anthropogenic disturbances are key to maintaining the biodiversity of grasslands. Scientific Reports, 6(1), 22132.
  • Zhao, W. Y., Li, J. L., & Qi, J. G. (2007). Changes in vegetation diversity and structure in response to heavy grazing pressure in the northern Tianshan Mountains, China. Journal of Arid Environments, 68(3), 465–479.
  • Zhu, Z.-H., Lundholm, J., Li, Y., & Wang, X. (2008). Response of Polygonum viviparum species and community level to long-term livestock grazing in alpine shrub meadow in Qinghai-Tibet Plateau. Journal of Integrative Plant Biology, 50(6), 659–672.

The Testing of Plant Diversity in the Meadows and Pastures of Samsun Province for Grazing and Erosion Factors according to Intermediate Disturbance Hypothesis

Yıl 2020, , 570 - 581, 21.12.2020
https://doi.org/10.24180/ijaws.773991

Öz

Erosion and grazing are among the most important factors affecting biodiversity in meadows and pastures. However, although the relationship between disturbance and biodiversity is thought to be negative, in some cases, it is known to increase the biodiversity effect. This situation is explained by the intermediate disturbance hypothesis. According to this hypothesis, it is argued that biodiversity will be higher when the disturbance is moderate. This study was carried out in meadow and pasture areas in Samsun province, which are similar in terms of soil organic matter content. The biological diversity of the groups formed according to the erosion and grazing level were calculated and compared. According to the results obtained, the effect of these two disturbance factors on species diversity was revealed, and the diversity indexes were found to be high especially in the group where grazing intensity was moderate. For erosion, the most severely group was meadows and pastures, where severe erosion was observed. In addition, spatial distribution maps drawn on all of the lands used as meadows and pastures in Samsun Province have been evaluated.

Proje Numarası

106G017

Kaynakça

  • Allen, D. C., Cardinale, B. J., & Wynn-Thompson, T. (2016). Plant biodiversity effects in reducing fluvial erosion are limited to low species richness. Ecology, 97(1), 17–24.
  • Altın, M., Tuna, C., Nizam, İ., & Ateş, E. (2005). Pirinççi köyü meraları dolgu alanlarını bitkilendirme uygulamaları. VI. Tarla Bitkileri Kongresi, Antalya.
  • Amiri, F., Ariapour, A., & Fadai, S. (2008). Effects of livestock grazing on vegetation composition and soil moisture properties in grazed and non-grazed range site. Journal of Biological Sciences, 8(8), 1289-1297.
  • Anonim. (2005). Toprak ve arazi sınıflaması standartları teknik talimatı. http://www. tarim.gov.tr/Belgeler /Mevzuat/ Talimatlar/ Toprak Arazi Siniflamasi Standartlari Teknik TalimativeIlgiliMevzuat_yeni.pdf. Erişim tarihi: 21 Mayıs 2020.
  • Arslan, H. (2012). Spatial and temporal mapping of groundwater salinity using ordinary kriging and indicator kriging: The case of Bafra Plain, Turkey. Agricultural Water Management, 113, 57-63.
  • Balvanera, P., Pfisterer, A. B., Buchmann, N., He, J. S., Nakashizuka, T., Raffaelli, D., & Schmid, B. (2006). Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 9(10), 1146–1156.
  • Biswas, S. R., & Mallik, A. U. (2010). Disturbance effects on species diversity and functional diversity in riparian and upland plant communities. Ecology, 91(1), 28–35.
  • Biswas, S. R., & Mallik, A. U. (2011). Species diversity and functional diversity relationship varies with disturbance intensity. Ecosphere, 2(4), art52.
  • Buckling, A., Kassen, R., Bell, G., & Rainey, P. B. (2000). Disturbance and diversity in experimental microcosms. Nature, 408(6815), 961–964.
  • Callaway, R. M., Kikvidze, Z., & Kikodze, D. (2000). Facilitation by unpalatable weeds may conserve plant diversity in overgrazed meadows in the Caucasus Mountains. Oikos, 89(2), 275–282.
  • Collins, S. L., & Glenn, S. M. (1997). Intermediate disturbance and its relationship to within- and between-patch dynamics. New Zealand Journal of Ecology, 21(1), 103-110.
  • Connell, J. H. (1979). Intermediate-disturbance hypothesis. Science, 204(4399), 1345–1345. Corp, I. (2013). IBM SPSS statistics for windows. Armonk, NY.
  • Dupré, C., & Diekmann, M. (2001). Differences in species richness and life-history traits between grazed and abandoned grasslands in southern Sweden. Ecography, 24(3), 275–286.
  • Duru, M., Ansquer, P., Jouany, C., Theau, J. P., & Cruz, P. (2010). Comparison of methods for assessing the impact of different disturbances and nutrient conditions upon functional characteristics of grassland communities. Annals of Botany, 106(5), 823-831.
  • Eldridge, D.J., Poore, A. G. B., Ruiz-Colmenero, M., Letnic, M., & Soliveres, S. (2016). Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing. Ecological Applications, 26(4), 1273–1283.
  • Faria, N., Peco, B., & Carmona, C. P. (2018). Effects of haying on vegetation communities, taxonomic diversity and sward properties in mediterranean dry grasslands: A preliminary assessment. Agriculture, Ecosystems & Environment, 251, 48-58.
  • Fedrigo, J. K., Ataide, P. F., Filho, J. A., Oliveira, L. V., Jaurena, M., Laca, E. A., … Nabinger, C. (2018). Temporary grazing exclusion promotes rapid recovery of species richness and productivity in a long-term overgrazed Campos grassland. Restoration Ecology, 26(4), 677685.
  • Flöder, S., & Sommer, U. (1999). Diversity in planktonic communities: An experimental test of the intermediate disturbance hypothesis. Limnology and Oceanography, 44(4), 1114–1119.
  • Gamoun, M. (2014). Grazing intensity effects on the vegetation in desert rangelands of Southern Tunisia. Journal of Arid Land, 6(3), 324–333.
  • García, R. R., Jáureguı, B. M., García, U., Osoro, K., & Celaya, R. (2009). Effects of livestock breed and grazing pressure on ground-dwelling arthropods in Cantabrian heathlands. Ecological Entomology, 34(4), 466–475.
  • Grime, J. P. (1973). Competitive exclusion in herbaceous vegetation. Nature, 242(5396), 344–347.
  • Gülsoy, S., & Özkan, K. (2008). Tür çeşitliliğinin ekolojik açıdan önemi ve kullanılan bazı indisler. Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi, 9(1), 168–178.
  • İmamoğlu, A., Bahadır, M., & Dengiz, O. (2016). Çorum Alaca havzasında toprak erozyon duyarlılık faktörünün farklı enterpolasyon modeller kullanılarak konumsal dağılımlarının belirlenmesi. Toprak Su Dergisi, 5(1), 8–15.
  • Imamoglu, A., & Dengiz, O. (2017). Determination of soil erosion risk using RUSLE model and soil organic carbon loss in Alaca catchment (Central Black Sea region, Turkey). Rendiconti Lincei, 28(1), 11–23.
  • Kiełtyk, P., & Mirek, Z. (2015). Importance of molehill disturbances for invasion by Bunias orientalis in meadows and pastures. Acta Oecologica, 64, 29–34.
  • Kılınç, M., Kutbay, H. G., Yalçın, E., & Bilgin, A. (2006). Bitki Ekolojisi ve Bitki Sosyolojisi Uygulamaları. Palme Yayınevi, Ankara.
  • Kobayashi, T., Hori, Y., & Nomoto, N. (1997). Effects of trampling and vegetation removal on species diversity and micro-environment under different shade conditions. Journal of Vegetation Science, 8(6), 873–880.
  • Koç, A., & Çakal, Ş. (2004). Comparison of some rangeland canopy coverage methods. International Soil Congress Natural Resource Management for Sustainable Development, Erzurum.
  • Kumar, R., & Shahabuddın, G. (2005). Effects of biomass extraction on vegetation structure, diversity and composition of forests in Sariska Tiger Reserve, India. Environmental Conservation, 32(3), 248–259.
  • Lázaro, A., Tscheulın, T., Devalez, J., Nakas, G., & Petanıdou, T. (2016). Effects of grazing intensity on pollinator abundance and diversity, and on pollination services. Ecological Entomology, 41(4), 400–412.
  • Li, Y., & Shipley, B. (2019). Functional niche occupation and species richness in herbaceous plant communities along experimental gradients of stress and disturbance. Annals of Botany, 124(5), 861–867.
  • Liddle, M. J. (1991). Recreation ecology: Effects of trampling on plants and corals. Trends in Ecology & Evolution, 6(1), 13–17.
  • Linse, S. J., Mergen, D. E., Smith, J. L., & Trlica, M. J. (2006). Upland erosion under a simulated most damaging storm. Journal of Range Management, 54(4), 356-361.
  • Liu, Y., Wu, G., Ding, L., Tian, F., & Shi, Z. (2017). Diversity–productivity trade‐off during converting cropland to perennial grassland in the semi‐arid areas of China. Land Degradation & Development, 28(2), 699–707.
  • Lu, X., Kelsey, K. C., Yan, Y., Sun, J., Wang, X., Cheng, G., & Neff, J. C. (2017). Effects of grazing on ecosystem structure and function of alpine grasslands in Qinghai-Tibetan Plateau: a synthesis. Ecosphere, 8(1), e01656.
  • Malik, Z. A., Pandey, R., & Bhatt, A. B. (2016). Anthropogenic disturbances and their impact on vegetation in Western Himalaya, India. Journal of Mountain Science, 13(1), 69–82.
  • Martin, C., Pohl, M., Alewell, C., Körner, C., & Rixen, C. (2010). Interrill erosion at disturbed alpine sites: Effects of plant functional diversity and vegetation cover. Basic and Applied Ecology, 11(7), 619–626.
  • Martinsen, G. D., Cushman, J. H., & Whitham, T. G. (1990). Impact of pocket gopher disturbance on plant species diversity in a shortgrass prairie community. Oecologia, 83(1), 132–138.
  • McAleece, N., Lambshead, P., Paterson, G., & Gage, J. (1997). BioDiversity Professional: London. Mcintyre, S., Heard, K. M., & Martin, T. G. (2003). The relative importance of cattle grazing in subtropical grasslands: does it reduce or enhance plant biodiversity? Journal of Applied Ecology, 40(3), 445–457.
  • Morrison, J. (2006). Grasslands of the World. Experimental Agriculture, 42(2), 254–255.
  • Özturk, D., Beyazit, I., & Kilic, F. (2015). Spatiotemporal analysis of shoreline changes of the Kizilirmak Delta. Journal of Coastal Research, 31(6), 1389–1402.
  • Peratoner, G., & Pötsch, E. M. (2019). Methods to describe the botanical composition of vegetation in grassland research. Die Bodenkultur: Journal of Land Management, Food and Environment, 70(1), 1–18.
  • Pettit, N. E., Froend, R. H., & Ladd, P. G. (1995). Grazing in remnant woodland vegetation: changes in species composition and life form groups. Journal of Vegetation Science, 6(1), 121–130.
  • Pohl, M., Alig, D., Körner, C., & Rixen, C. (2009). Higher plant diversity enhances soil stability in disturbed alpine ecosystems. Plant and Soil, 324(1–2), 91–102.
  • Pollock, M. M., Naiman, R. J., & Hanley, T. A. (1998). Plant species richness in riparian wetlands-a test of biodiversity theory. Ecology, 79(1), 94.
  • Pueyo, Y., Alados, C. L., & Ferrer-Benimeli, C. (2006). Is the analysis of plant community structure better than common species-diversity indices for assessing the effects of livestock grazing on a Mediterranean arid ecosystem? Journal of Arid Environments, 64(4), 698–712.
  • Ren, H., Schönbach, P., Wan, H., Gierus, M., & Taube, F. (2012). Effects of grazing ıntensity and environmental factors on species composition and diversity in typical steppe of inner Mongolia, China. PLoS ONE, 7(12), e52180.
  • Roder, W., Gratzer, G., & Wangdi, K. (2002). Cattle grazing in the conifer forests of Bhutan. Mountain Research and Development, 22(4), 1–7.
  • Shea, K., Roxburgh, S. H., & Rauschert, E. S. J. (2004). Moving from pattern to process: coexistence mechanisms under intermediate disturbance regimes. Ecology Letters, 7(6), 491–508.
  • Sun, D., & Liddle, M. J. (1993). A survey of trampling effects on vegetation and soil in eight tropical and subtropical sites. Environmental Management, 17(4), 497–510.
  • Sürmen, M., & Kara, E. (2018). Aydın İli ekolojik koşullarında farklı eğimlerdeki mera vejetasyonlarının verim ve kalite özellikleri. Derim, 35(1), 67–72.
  • Sürmen, M., Yavuz, T., Sürmen, B., & Kutbay, H. G. (2015). Determination of the population densities of invasive species in meadows and pastures of Samsun. Türkiye Herboloji Dergisi, 18(3), 9–10.
  • Tälle, M., Deák, B., Poschlod, P., Valkó, O., Westerberg, L., & Milberg, P. (2016). Grazing vs. mowing: A meta-analysis of biodiversity benefits for grassland management. Agriculture, Ecosystems & Environment, 222, 200–212.
  • Tilman, D. (1983). Plant succession and gopher disturbance along an experimental gradient. Oecologia, 60(3), 285–292.
  • Türk, M., Albayrak, S., & Bozkurt, Y. (2015). Otlatmanın Farklı yapay meralarda botanik kompozisyon üzerine etkisi. SDÜ Ziraat Fakültesi Dergisi, 10(1), 17–34.
  • Ünal, S., Mutlu, Z., Mermer, A., Urla, Ö., Ünal, E., Özaydın, K. A., … Aslan, S. (2012). Çankırı ili meralarının mera durumu ve sağlığının belirlenmesi üzerine bir çalışma. Tarım Bilimleri Araştırma Dergisi, 5(2), 131–135.
  • Villnäs, A., Norkko, J., Hietanen, S., Josefson, A. B., Lukkari, K., & Norkko, A. (2013). The role of recurrent disturbances for ecosystem multifunctionality. Ecology, 94(10), 2275–2287.
  • Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A., & Wright, I. J. (2002). Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33(1), 125–159.
  • Wiesmair, M., Otte, A., & Waldhardt, R. (2017). Relationships between plant diversity, vegetation cover, and site conditions: implications for grassland conservation in the Greater Caucasus. Biodiversity and Conservation, 26(2), 273–291.
  • Wilson, S. D., & Tilman, D. (1991). Interactive effects of fertilization and disturbance on community structure and resource availability in an old-field plant community. Oecologia, 88(1), 61–71.
  • Yuan, Z. Y., Jiao, F., Li, Y. H., & Kallenbach, R. L. (2016). Anthropogenic disturbances are key to maintaining the biodiversity of grasslands. Scientific Reports, 6(1), 22132.
  • Zhao, W. Y., Li, J. L., & Qi, J. G. (2007). Changes in vegetation diversity and structure in response to heavy grazing pressure in the northern Tianshan Mountains, China. Journal of Arid Environments, 68(3), 465–479.
  • Zhu, Z.-H., Lundholm, J., Li, Y., & Wang, X. (2008). Response of Polygonum viviparum species and community level to long-term livestock grazing in alpine shrub meadow in Qinghai-Tibet Plateau. Journal of Integrative Plant Biology, 50(6), 659–672.
Toplam 63 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bitki Bilimi
Bölüm Tarla Bitkileri
Yazarlar

Mustafa Sürmen 0000-0001-9748-618X

Tamer Yavuz 0000-0002-7374-7899

Burak Sürmen 0000-0002-4055-613X

Ali İmamoğlu 0000-0001-9197-1029

Proje Numarası 106G017
Yayımlanma Tarihi 21 Aralık 2020
Gönderilme Tarihi 25 Temmuz 2020
Kabul Tarihi 15 Eylül 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Sürmen, M., Yavuz, T., Sürmen, B., İmamoğlu, A. (2020). Samsun İli Çayır ve Meralarında Bitki Çeşitliliğinin Orta Dereceli Tahribat Hipotezine Göre Otlatma ve Erozyon Faktörleri ile Test Edilmesi. Uluslararası Tarım Ve Yaban Hayatı Bilimleri Dergisi, 6(3), 570-581. https://doi.org/10.24180/ijaws.773991

17365   17368      17366     17369    17370              


88x31.png    Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi Creative Commons Attribution 4.0 Generic License a