Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparison of Soil Erodibility of Different Segments of a Slope in Semiarid Climate Conditions

Yıl 2021, , 115 - 125, 20.04.2021
https://doi.org/10.24180/ijaws.778880

Öz

This study was carried out in the Tekneli Village in Uğrak Basin which is 16 km away from Tokat city center. In this study, possible variations in the soil erodibility factors values of five different parts of a complex slope were investigated. Five parts of the complex slope were determined as summit, shoulder, back-slope, foot-slope and toe-slope. A total of 25 topsoil samples were collected from each section of complex slope. Organic matter, texture, very fine sand, hydraulic conductivity, structure type and size were determined, and K factor values were calculated. Soil erodibility values of different parts of the complex slope varied between 0.02 - 0.09 t h ha MJ−1 mm−1 ha−1 and were classified as very slightly erodible soils. There was no statistically significant difference between the soil erodibility of different parts of the slope. Along the slope, the soils erodibility has been quite low and showed a low risk of water erosion. Among the textural fractions, the sand content at the back slope and the clay content at the summit were highest, and the silt content showed close values to each other in each slope segments. Organic matter and aggregate stability contents were close to each other in all slope sections. On the other hand, lime content was wash away from the upper slope sections and accumulated in the toe-slope section.

Kaynakça

  • Borrelli, P., Panagos, P., Ballabio, C., Lugato, E., Weynants, M., & Montanarella, L. (2016). Towards a pan‐European assessment of land susceptibility to wind erosion. Land Degradation & Development, 27(4), 1093-1105.
  • Brevik, E. C. (2009). Soil health and productivity. In W. Verheye (Ed.), Soils, Plant Growth and Crop Production, Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO. EOLSS Publishers, Oxford, UK.
  • Brevik, E. C., Cerdà, A., Mataix-Solera, J., Pereg, L., Quinton, J. N., Six, J., & Van Oost, K. (2015). The interdisciplinary nature of soil. Soil, 1(1), 117-129.
  • Cammeraat, E. L. H., & Imeson, A. C. (1998). Deriving indicators of soil degradation from soil aggregation studies in southeastern Spain and southern France, Geomorphology 23(2), 307–321.
  • Cammeraat, E. L. H. (2002). A review of two strongly contrasting geomorphological systems within the context of scale, Earth Surface Processes and Landforms, 27(11), 1201–1222.
  • Cammeraat, E. L. H. & Risch, A. C. (2008). The impact of ants on mineral soil properties and processes at different spatial scales. Journal of Applied Entomology, 132(4), 285–294.
  • Cerdà, A. (2007). Soil water erosion on road embankments in eastern Spain, Science of The Total Environment, 378, 151–155.
  • Cerdà, A., & Doerr, S. H. (2007). Soil wettability, runoff and erodibility of major dry‐Mediterranean land use types on calcareous soils, Hydrological Processes: An International Journal, 21(17), 2325-2336.
  • Cerdà, A., Giménez, M., & Bodí, M. B. (2009). Soil and water losses from new citrusorchards growing on sloped soils in the Western Mediterranean basin, Earth Surface Processes and Landforms, 34, 1822–1830.
  • Cerdà, A. & Doerr, S. H. (2010). The effect of ant mounds on overland flow and soil erodibility following a wildfire in eastern Spain, Ecohydrology 3, 392–401.
  • Colazo, J. C., & Buschiazzo, D. (2015). The impact of agriculture on soil texture due to wind erosion, Land Degradation & Development, 26, 62–70.
  • Lal, R., Ahmadi, M., & Bajracharya, R. M. (2000). Erosional impacts on soil properties and corn yield on Alfisols in Central Ohio, Land Degradation & Development, 11, 575–585.
  • Li, Z. Y., & Fang, H. Y. (2016). Impacts of climate change on water erosion: a review, Earth-Science Reviews, 163, 94–117.
  • Mulla, D. J., & Mc Bratney, A. B. (2000). Soil spatial variability. In E. Sumner (Ed.), Handbook of Soil Science, (pp. 321-351), Malcolm Crs Pres.
  • Ochoa‐Cueva, P., Fries, A., Montesinos, P., Rodríguez‐Díaz, J. A., & Boll, J. (2015). Spatial estimation of soil erosion risk by land‐cover change in the Andes of southern Ecuador, Land Degradation & Development, 26(6), 565-573.
  • Oğuz, İ., & Noyan, Ö. F. (2000). Soil properties and soil Erodibility changes along a slope, Proceedings of International Symposium on Desertification, Konya, Turkey.
  • Oğuz, İ., & Balçın M. (2004). Tokat Uğrak Havzası yağış ve akım karakteristikleri. Toprak ve Su Kaynakları Araştırma Yıllığı 2003. Köy Hizmetleri Genel Müdürlüğü, APK Daire Başkanlığı, Toprak ve Su Kaynakları Araştırma Şube Müdürlüğü, Ankara.
  • Oğuz, İ., Durak, A., Susam, T., & Güleç, H. (2005). Uğrak Havzası arazisinin toprak etüd, haritalama ve sınıflandırılması, GOÜ. Ziraat Fakültesi Dergisi, 22(2), 95-103.
  • Öztaş, T., Koç, A., & Çomaklı, B., 2003. Changes in vegetation and soil properties along a slope on overgrazed and eroded rangelands, Journal of Arid Environments, 55(1), 93-100.
  • Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shpriz, L., Fitton, L., Saffouri, R., & Blair, R. (1995). Environmental and economiccosts of soil erosion and conservation benefits, Science, 267(5201), 1117–1123.
  • Quinton, J. N., Govers, G., Oost, K. V., & Bardgett, R. D. (2010). The impact of agricultural soil erosion on biogeochemical cycling, Nature Geoscience, 3, 311–314.
  • Saxton, K. E., & Rawls, W. J. (2006). Soil water characteristic estimates by texture and organic matter for hydrologic solutions, Soil Science Society of America Journal, 70, 1569-1578.
  • Soil Survey Staff. (1951). Soil survey, USDA, USA.
  • Sönmez, K. (1994). Toprak Koruma. Atatürk Üniversitesi Ziraat Fakültesi Yayınları, No: 169, Erzurum.
  • Speth, J. G. (1994). Towards an effective and operational international convention on desertification, United Nations, New York.
  • SPSS. (2018). IBM SPSS Statistics 20.0 for Windows. Armonk, NY.
  • Şensoy, H., & Kara, Ö. (2014). Slope shape effect on runoff and soil erosion under natural rainfall conditions, iForest - Biogeosciences and Forestry, 7(2), 110-114.
  • Turanlı, M. & Güriş, S. (2000). Temel İstatistik. Ders Yayınları, 273, İstanbul, 783s.
  • Tüzüner, A. (1990). Toprak ve Su Analiz El Kitabı, Köy Hizmetleri Genel Müdürlüğü, Ankara.
  • Upchurch, D. R., Wilding, L. P. & Hatfield, J. L. (1988). Methods to evaluate spatial variability. In: Hossner, L. R. (Ed) Reclamation of Surface-Mined Lands, CRC Press, Inc. Boca Raton, Florida.
  • Vaezi, A. R., Hasanzadeh, H., & Cerdà, A. (2016). Developing an erodibility triangle for soil textures in semi-arid regions, NW Iran, Catena, 142, 221-232.
  • Wang, B., Zheng, F., Römkens, M. J., & Darboux, F. (2013). Soil erodibility for water erosion: A perspective and Chinese experiences, Geomorphology, 187, 1-10.
  • Wang, G. Q., Wu, B. B., Zhang, L., Jiang, H. & Xu, Z. X. (2014). Role of soil erodibility inaffecting available nitrogen and phosphorus losses under simulated rainfall, Journal of Hydrology, 514, 180–191.
  • Wang, H., Zhang, G. H., Li, N. N., Zhang, B. J., & Yang, H. Y. (2019a). Variation in soil erodibility under five typical land uses in a small watershed on the Loess Plateau, China, Catena, 174, 24-35.
  • Wang, H., Zhang, G. H., Li, N. N., Zhang, B. J., & Yang, H. Y. (2019b). Soil erodibility as impacted by vegetation restoration strategies on the Loess Plateau of China, Earth Surface Processes and Landforms, 44(3), 796-807.
  • Wildıng, L.P., Bouma, J. & Goss, D. V. (1994). Impact of soil spatial variability on interpretative modelling. In R.B. Bryant & R. W. Arnold (Eds), Quantitative Modelling of Soil Forming Processes, SSA special publication number 39, SSA, Inc. Madison Wisconsin, USA.
  • Wischmeier, W. H. & Smith, D. D. (1978). Predicting rainfall erosion losses, Agric. Handbook 537, USDA, 58 pp, Washington, D.C., USA.
  • Young, R. A., & Mutchler, C. K. (1969). Effect of slope shape on erosion and runoff, Transactions of the ASAE, 12(2), 231-0233.
  • Zhang, B. J., Zhang, G. H., Zhu, P. Z., & Yang, H. Y. (2019). Temporal variations in soil erodibility indicators of vegetation-restored steep gully slopes on the Loess Plateau of China. Agriculture, Ecosystems & Environment, 286, 106661.
  • Zhang, G. H., Tang, K. M., & Zhang, X. C. 2009. Temporal variation in soil detachment under different land uses in the Loess Plateau of China, Earth Surface Processes and Landforms, 34, 1302–1309.
  • Zhang, K. L., Shu, A. P., Xu, X. L., Yang, Q. K., & Yu, B. (2008). Soil erodibility and its estimation for agricultural soils in China, Journal of Arid Environment, 72, 1002–1011.
  • Zhang, K. L., Yu, Y., Dong, J. Z., Yang, Q. K., & Xu, X. L. (2019). Adapting & testing use of USLE K factor for agricultural soils in China, Agriculture, Ecosystems & Environment, 269, 148–155.
  • Zhang, Q., Liu, D., Cheng, S., & Huang, X. (2016). Combined effects of runoff and soil erodibility on available nitrogen losses from sloping farmland affected by agricultural practices, Agricultural Water Management, 176, 1-8.
  • Zhao, G. J., Mu, X., Wen, Z. M., Wang, F., & Gao, P. (2013). Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China, Land Degradation & Development, 24, 499–510.
  • Zhao, X., Wu, P., Gao, X., & Persaud, N. (2015). Soil quality indicators in relation to land use and topography in a small catchment on the Loess Plateau of China, Land Degradation & Development, 26, 54–61.
  • Zhu, G., Tang, Z., Shangguan, Z., Peng, C., & Deng, L. (2019). Factors affecting the spatial and temporal variations in soil erodibility of China, Journal of Geophysical Research: Earth Surface, 124(3), 737-749.
  • Ziadat, F. M., & Taimeh, A. Y. 2013. Effect of rainfall intensity, slope and land use and antecedent soil moisture on soil erosion in an arid environment, Land Degradation & Development, 24, 582–590.

Yarı Kurak İklim Koşullarında Eğimin Farklı Bölümlerinin Aşınıma Duyarlılıklarının Karşılaştırılması

Yıl 2021, , 115 - 125, 20.04.2021
https://doi.org/10.24180/ijaws.778880

Öz

Bu çalışma, Tokat il merkezine 16 km mesafede, Uğrak Havzası içerisinde yer alan Tekneli Köyü arazisinde yürütülmüştür. Çalışmada, kompleks bir eğimin beş farklı bölümünün aşınıma duyarlılık faktör değerlerindeki olası değişkenlikler araştırılmıştır. Kompleks eğimin, zirve, dış bükey, doğrusal eğim, iç bükey ve parmak eğim olarak beş bölümü belirlenmiştir. Her bölümden beşer adet olacak şekilde toplam 25 adet toprak örneği alınmıştır. Alınan toprak örneklerinde organik madde, tekstür, çok ince kum, hidrolik iletkenlik, strüktür tipi ve büyüklüğü belirlenerek K faktörü değerleri elde edilmiştir. Eğimin farklı bölümlerine ait toprak aşınıma duyarlılık değerleri 0.02 – 0.09 t h ha MJ−1 mm−1 ha−1 arasında değişmiş, çok az aşınabilir topraklar olarak sınıflandırılmıştır. Eğimin farklı bölümlerinin aşınıma duyarlılık değerleri arasında istatistiksel olarak önemli bir fark bulunmamıştır. Eğim boyunca toprakların aşınıma duyarlılık değeri oldukça az olmuş ve düşük su erozyonu riski göstermiştir. Tekstürel fraksiyonlardan kum içeriği doğrusal eğimde ve kil içeriği zirve eğimde en fazla olmuş, silt içeriği her eğim bölümünde birbirine yakın değerler göstermiştir. Organik madde ve agregat stabilite değerleri tüm eğim bölümlerinde birbirine yakın olmuştur. Kireç ise yukarı eğim bölümlerinden yıkanma suretiyle taşınarak parmak eğim bölümünde birikmiştir.

Kaynakça

  • Borrelli, P., Panagos, P., Ballabio, C., Lugato, E., Weynants, M., & Montanarella, L. (2016). Towards a pan‐European assessment of land susceptibility to wind erosion. Land Degradation & Development, 27(4), 1093-1105.
  • Brevik, E. C. (2009). Soil health and productivity. In W. Verheye (Ed.), Soils, Plant Growth and Crop Production, Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO. EOLSS Publishers, Oxford, UK.
  • Brevik, E. C., Cerdà, A., Mataix-Solera, J., Pereg, L., Quinton, J. N., Six, J., & Van Oost, K. (2015). The interdisciplinary nature of soil. Soil, 1(1), 117-129.
  • Cammeraat, E. L. H., & Imeson, A. C. (1998). Deriving indicators of soil degradation from soil aggregation studies in southeastern Spain and southern France, Geomorphology 23(2), 307–321.
  • Cammeraat, E. L. H. (2002). A review of two strongly contrasting geomorphological systems within the context of scale, Earth Surface Processes and Landforms, 27(11), 1201–1222.
  • Cammeraat, E. L. H. & Risch, A. C. (2008). The impact of ants on mineral soil properties and processes at different spatial scales. Journal of Applied Entomology, 132(4), 285–294.
  • Cerdà, A. (2007). Soil water erosion on road embankments in eastern Spain, Science of The Total Environment, 378, 151–155.
  • Cerdà, A., & Doerr, S. H. (2007). Soil wettability, runoff and erodibility of major dry‐Mediterranean land use types on calcareous soils, Hydrological Processes: An International Journal, 21(17), 2325-2336.
  • Cerdà, A., Giménez, M., & Bodí, M. B. (2009). Soil and water losses from new citrusorchards growing on sloped soils in the Western Mediterranean basin, Earth Surface Processes and Landforms, 34, 1822–1830.
  • Cerdà, A. & Doerr, S. H. (2010). The effect of ant mounds on overland flow and soil erodibility following a wildfire in eastern Spain, Ecohydrology 3, 392–401.
  • Colazo, J. C., & Buschiazzo, D. (2015). The impact of agriculture on soil texture due to wind erosion, Land Degradation & Development, 26, 62–70.
  • Lal, R., Ahmadi, M., & Bajracharya, R. M. (2000). Erosional impacts on soil properties and corn yield on Alfisols in Central Ohio, Land Degradation & Development, 11, 575–585.
  • Li, Z. Y., & Fang, H. Y. (2016). Impacts of climate change on water erosion: a review, Earth-Science Reviews, 163, 94–117.
  • Mulla, D. J., & Mc Bratney, A. B. (2000). Soil spatial variability. In E. Sumner (Ed.), Handbook of Soil Science, (pp. 321-351), Malcolm Crs Pres.
  • Ochoa‐Cueva, P., Fries, A., Montesinos, P., Rodríguez‐Díaz, J. A., & Boll, J. (2015). Spatial estimation of soil erosion risk by land‐cover change in the Andes of southern Ecuador, Land Degradation & Development, 26(6), 565-573.
  • Oğuz, İ., & Noyan, Ö. F. (2000). Soil properties and soil Erodibility changes along a slope, Proceedings of International Symposium on Desertification, Konya, Turkey.
  • Oğuz, İ., & Balçın M. (2004). Tokat Uğrak Havzası yağış ve akım karakteristikleri. Toprak ve Su Kaynakları Araştırma Yıllığı 2003. Köy Hizmetleri Genel Müdürlüğü, APK Daire Başkanlığı, Toprak ve Su Kaynakları Araştırma Şube Müdürlüğü, Ankara.
  • Oğuz, İ., Durak, A., Susam, T., & Güleç, H. (2005). Uğrak Havzası arazisinin toprak etüd, haritalama ve sınıflandırılması, GOÜ. Ziraat Fakültesi Dergisi, 22(2), 95-103.
  • Öztaş, T., Koç, A., & Çomaklı, B., 2003. Changes in vegetation and soil properties along a slope on overgrazed and eroded rangelands, Journal of Arid Environments, 55(1), 93-100.
  • Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shpriz, L., Fitton, L., Saffouri, R., & Blair, R. (1995). Environmental and economiccosts of soil erosion and conservation benefits, Science, 267(5201), 1117–1123.
  • Quinton, J. N., Govers, G., Oost, K. V., & Bardgett, R. D. (2010). The impact of agricultural soil erosion on biogeochemical cycling, Nature Geoscience, 3, 311–314.
  • Saxton, K. E., & Rawls, W. J. (2006). Soil water characteristic estimates by texture and organic matter for hydrologic solutions, Soil Science Society of America Journal, 70, 1569-1578.
  • Soil Survey Staff. (1951). Soil survey, USDA, USA.
  • Sönmez, K. (1994). Toprak Koruma. Atatürk Üniversitesi Ziraat Fakültesi Yayınları, No: 169, Erzurum.
  • Speth, J. G. (1994). Towards an effective and operational international convention on desertification, United Nations, New York.
  • SPSS. (2018). IBM SPSS Statistics 20.0 for Windows. Armonk, NY.
  • Şensoy, H., & Kara, Ö. (2014). Slope shape effect on runoff and soil erosion under natural rainfall conditions, iForest - Biogeosciences and Forestry, 7(2), 110-114.
  • Turanlı, M. & Güriş, S. (2000). Temel İstatistik. Ders Yayınları, 273, İstanbul, 783s.
  • Tüzüner, A. (1990). Toprak ve Su Analiz El Kitabı, Köy Hizmetleri Genel Müdürlüğü, Ankara.
  • Upchurch, D. R., Wilding, L. P. & Hatfield, J. L. (1988). Methods to evaluate spatial variability. In: Hossner, L. R. (Ed) Reclamation of Surface-Mined Lands, CRC Press, Inc. Boca Raton, Florida.
  • Vaezi, A. R., Hasanzadeh, H., & Cerdà, A. (2016). Developing an erodibility triangle for soil textures in semi-arid regions, NW Iran, Catena, 142, 221-232.
  • Wang, B., Zheng, F., Römkens, M. J., & Darboux, F. (2013). Soil erodibility for water erosion: A perspective and Chinese experiences, Geomorphology, 187, 1-10.
  • Wang, G. Q., Wu, B. B., Zhang, L., Jiang, H. & Xu, Z. X. (2014). Role of soil erodibility inaffecting available nitrogen and phosphorus losses under simulated rainfall, Journal of Hydrology, 514, 180–191.
  • Wang, H., Zhang, G. H., Li, N. N., Zhang, B. J., & Yang, H. Y. (2019a). Variation in soil erodibility under five typical land uses in a small watershed on the Loess Plateau, China, Catena, 174, 24-35.
  • Wang, H., Zhang, G. H., Li, N. N., Zhang, B. J., & Yang, H. Y. (2019b). Soil erodibility as impacted by vegetation restoration strategies on the Loess Plateau of China, Earth Surface Processes and Landforms, 44(3), 796-807.
  • Wildıng, L.P., Bouma, J. & Goss, D. V. (1994). Impact of soil spatial variability on interpretative modelling. In R.B. Bryant & R. W. Arnold (Eds), Quantitative Modelling of Soil Forming Processes, SSA special publication number 39, SSA, Inc. Madison Wisconsin, USA.
  • Wischmeier, W. H. & Smith, D. D. (1978). Predicting rainfall erosion losses, Agric. Handbook 537, USDA, 58 pp, Washington, D.C., USA.
  • Young, R. A., & Mutchler, C. K. (1969). Effect of slope shape on erosion and runoff, Transactions of the ASAE, 12(2), 231-0233.
  • Zhang, B. J., Zhang, G. H., Zhu, P. Z., & Yang, H. Y. (2019). Temporal variations in soil erodibility indicators of vegetation-restored steep gully slopes on the Loess Plateau of China. Agriculture, Ecosystems & Environment, 286, 106661.
  • Zhang, G. H., Tang, K. M., & Zhang, X. C. 2009. Temporal variation in soil detachment under different land uses in the Loess Plateau of China, Earth Surface Processes and Landforms, 34, 1302–1309.
  • Zhang, K. L., Shu, A. P., Xu, X. L., Yang, Q. K., & Yu, B. (2008). Soil erodibility and its estimation for agricultural soils in China, Journal of Arid Environment, 72, 1002–1011.
  • Zhang, K. L., Yu, Y., Dong, J. Z., Yang, Q. K., & Xu, X. L. (2019). Adapting & testing use of USLE K factor for agricultural soils in China, Agriculture, Ecosystems & Environment, 269, 148–155.
  • Zhang, Q., Liu, D., Cheng, S., & Huang, X. (2016). Combined effects of runoff and soil erodibility on available nitrogen losses from sloping farmland affected by agricultural practices, Agricultural Water Management, 176, 1-8.
  • Zhao, G. J., Mu, X., Wen, Z. M., Wang, F., & Gao, P. (2013). Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China, Land Degradation & Development, 24, 499–510.
  • Zhao, X., Wu, P., Gao, X., & Persaud, N. (2015). Soil quality indicators in relation to land use and topography in a small catchment on the Loess Plateau of China, Land Degradation & Development, 26, 54–61.
  • Zhu, G., Tang, Z., Shangguan, Z., Peng, C., & Deng, L. (2019). Factors affecting the spatial and temporal variations in soil erodibility of China, Journal of Geophysical Research: Earth Surface, 124(3), 737-749.
  • Ziadat, F. M., & Taimeh, A. Y. 2013. Effect of rainfall intensity, slope and land use and antecedent soil moisture on soil erosion in an arid environment, Land Degradation & Development, 24, 582–590.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Toprak Bilimi ve Ekolojisi
Bölüm Toprak Bilimi ve Bitki Besleme
Yazarlar

Kübra Polat 0000-0002-0942-7815

İrfan Oguz 0000-0002-1576-333X

Rasim Koçyiğit 0000-0002-2615-0707

Yayımlanma Tarihi 20 Nisan 2021
Gönderilme Tarihi 10 Ağustos 2020
Kabul Tarihi 25 Şubat 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Polat, K., Oguz, İ., & Koçyiğit, R. (2021). Yarı Kurak İklim Koşullarında Eğimin Farklı Bölümlerinin Aşınıma Duyarlılıklarının Karşılaştırılması. International Journal of Agricultural and Wildlife Sciences, 7(1), 115-125. https://doi.org/10.24180/ijaws.778880

17365   17368      17366     17369    17370              


88x31.png    Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi Creative Commons Attribution 4.0 Generic License a