Araştırma Makalesi
BibTex RIS Kaynak Göster

Heavy Metal Accumulations in Some Terrestrial Endemic and Non-endemic Plants in Mine Sites (Elazığ/Turkey)

Yıl 2021, , 126 - 136, 20.04.2021
https://doi.org/10.24180/ijaws.807239

Öz

The aim of our study is to determine the hyperaccumulatory properties by examining the heavy metal accumulation (Co, Ni, Fe) in endemic Anchusa leptophlla subsp. tomentosa, Alyssum pateri subsp. pateri, Glaucium acutidentatum and non endemic Erysimum uncinatifolium species collected from a copper mining area in Elazığ Maden district. All species collected are hyperaccumulator according to their Bioconcentration Factor (BCF) values of Co element. According to NiBCF and FeBCF values, A. leptophlla and E. uncinatifolium species were found to be hyperacumulators. According to Transfer Factor (TF) value, it is determined that Co element can be transported upper organs in A. leptophlla, A. pateri species, whereas Ni and Fe elements in A. leptophlla, A. pateri, E. uncinatifolium species. Among the species examined, the CoEF values for A. leptophlla and NiEF values (EF>1) in all species are found to be higher than 1 according to the Enrichment Factor (EF). It can be said that the Ni accumulation capacities of all species are higher. In the study, soils samples taken from sampling area according to the Geo-accumulation index (Igeo) were found to be moderately contaminated in by Co and not so polluted by Fe.

Kaynakça

  • Adriano, D .C. (1986). Trace Elements in the Terrestrial Environment. Springer Verlag.
  • Akgüç, N., Özyiğit, I., Yaşar, U., Leblebici, Z., & Yarcı, C. (2010). Use of Pyracantha coccinea Roem. as a possible biomonitor for the selected heavy metals. International Journal of Environmental Science Technology, 7(3), 427-434.
  • Aktan, M., Çimen, N., & Özçelik, Y. (2017). Madencilik amaçlı orman izinlerinin Türkiye ve dünyadaki mevzuat uygulamalarının karşılaştırılması. Türkiye, 25th International Mining Congress and Exhibition of Turkey. Antalya, Turkey 25, 11-14.
  • Alaribe, F., & Agamuthu, P. (2015). Evaluation of plant wetting potentials of Lantana camara in Pb affected soil with organic waste additives. Ecological Engineering, 83, 513-520.
  • Allen, S. E. (1989). Chemical Analysis of Ecological Materials. 2nd Edition, Blackwell Scientific Publications, Oxford and London.
  • Alloway, B. J. (1995). Cadmium. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 283). Blackie,London.
  • Badr, N., Fawzy, M., & Al Qahtani, K. M. (2012). Phytoremediation: An ecological solution to heavy-metal-polluted soil and evaluation of plant removal ability. WorldApplied Sciences Journal, 16(9), 1292-1301.
  • Baker, A. J. M., & Brooks, R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution ecology and phytochemistry. Biorecovery, 1(2), 81-126.
  • Bakırdede, S., Bölücek, C., & Yaman, M. (2016) Determination of contamination levels of Pb, Cd, Cu, Ni, and Mn caused by former lead mining gallery. Environmental Monitoring and Assessment, 188(3), 132.
  • Becker, M., & Asch, F. (2005). Iron toxicity in rice-conditions and management concepts. Journal of Plant Nutrition and Soil Science, 168(4), 558-573.
  • Blaylock, M. J., Salt, D. E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik Y., & Raskin, I. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science & Technology, 31(3), 860-865.
  • Borand, M. N. (2012). Açık ve kapalı maden işletmeciliğinde çevresel etki. İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, Madencilikte Özel Konular Ders Projesi, 61s.
  • Brooks, R. R. (1972). Geobotany and biogeochemistry in mineral exploration. New York: Harper & Row.
  • Brooks, R. R., & Radford, C. C. (1978). Nickel accumulation by European species of the genus Alyssum. Proceedings of the Royal Society of London, 200, 217-224.
  • Buat Menard, P., & Chesselet, R. (1979). Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth and Planetary Science Letters, 42, 399–411.
  • Cempel, M., & Nikel, G. (2006). Nickel: a review of its sources and environmental toxicology. Polish Journal of Environmental Studies, 15(3), 375–382
  • Çakılcıoğlu, U., & Civelek, S. (2011). Flora of the region between copper mine and Tekevler village (Maden-Elazig/Turkey). Biological Diversity and Conservation, 4(1), 54-66.
  • Çeliktaş, V. (2020). Determination of phytoemediation properties of plants in chrome ore deposits in Aladağ district of Adana province. PhD thesis. Cukurova University, Adana, Turkey.
  • Danh, L. T., Truong, P., Mammucari, R., Tran, T., & Foster, N. (2009). Vetiver grass Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. International Journal of Phytoremediation, 11(8), 664–691.
  • Demir, Ö. (2018). Reflection of Mining Activities in Elazig to the Press of the Republican Era, Hiper Publishing, Istanbul, Turkey.
  • FAO/WHO. (2003). Codex Alimentarius International Food Standards Codex Stan-179,.Codex Alimentarius commission.
  • Fergusson, J. (1990). The heavy elements: Chemistry, environmental impact and health effects. New Zeland: Reader in Chemistry University of Canterbury Pergamon Press.
  • Galal, T. M., & Shehata, H. S. (2015). Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecological Indicators, 48, 244-251.
  • Garbisu, C., Hernandez-Allica, J., Barrutia, O., Alkorta, I., & Becerril J. M. (2002). Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Reviews on environmental health, 17, 75–90. 
  • Guo ,Y. & Marschner, H. (1995). Uptake distribution and binding of cadmium and nickel in different plant species. Journal of Plant Nutrition, 18(12), 2691–2706.
  • Hussain, M. B., Ali, S., Azam, A., Hina, S., Ahsan, M., Farooq, B. A., Bharwana, S. A., & Gill, M. B. (2013). Morphological, physiological and biochemical responses of plants to nickel stress: a review. African Journal of Agricultural Research, 8(17), 1596–1602.
  • Jones,  J. B. (1997). The Handbook of Trace Elements. Boca Raton, Florida: CRC Press.  
  • Kacar B, Katkat V. (2006). Bitki Besleme. 1. Baskı. Nobel Yayın No:849, İstanbul.
  • Kacar, B., & Katkat, V. (2010). Plant nutrition. 5th Edition, Nobel Yayın, Ankara.
  • Kalender, L., & Alçiçek, Ö. N. (2016). Bioaccumulator Characteristics for Uranium and Thorium of Astragalus angustifolius, Artemisia ane Juncus effusus Fırat University, Journal of Engineering Sciences, 28(2), 267-273.
  • Khan M. A. A., & Siddhu, K. G. (2006). Phytotoxic effects of Cadmium (Cd) on Physiology of Urdbean [Vigna mungo (L.) Hepper.]. Advances in Plant Sciences, 19(2), 439-451.
  • Khan M. R., & Khan, M. M. (2010). Effect of varying concentration of nickel and cobalt on the plant growth and yield of chickpea. Australian Journal of Basic and Applied Science, 4(6), 1036-1046.
  • Kırat, G. (2017).  Pb – Zn - Cd Accumulator Plants Grown Around The Görgü Pb – Zn Mıne, Yeşilyurt-Malatya, Turkey. Bulletin of the Mineral Research and Exploration, 13(1), 53-63.
  • Ladislas, S., El-Mufleh, A., Gerente, C., Chazarenc, F., Andres, Y., & Bechet, B. (2012). Potential of aquatic macrophytes as bioindicators of heavy metal pollution in urban stormwater runoff. Water Air and Soil Pollution, 223, 877–888.
  • Malaisse, F., Baker, A. J., & Ruelle, S. (1999). Diversity of plant communities and leaf heavy metal content at Luiswishi copper/cobalt mineralization. Upper Katanga, Democratic Republic of the Congo,127, 3-16.
  • Mcgrath, S. P., Zhao, F. J., & Lombi, E. (2001). Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant and Soil, 232, 207-214.
  • Mellem, J., Baijanth, H., & Odhav, B. (2009). Translocation and accumulation of Cr, Hg, As, Pb, Cu and Ni by Amaranthus dubius (Amaranthaceae) from contaminated sites. Journal of Environmental Science and Health, 44, 568-575.
  • Mingorance, M. D., Valde´S, B., & Oliva, S. R. (2007). Strategies of heavy metal uptake by plants growing under industrial emissions. Environment International, 33, 514–520.
  • Müller, G. (1969). Index of geo-accumulation in sediments of the Rhine River. Geo Journal, 2, 108–118.
  • Nawab, J. Khan, S., Shah, M. T., Khan, K., Huang, Q., & Ali, R. (2015). Quantification of heavy metals in mining affected soil and their bioaccumulation in native plant species. International Journal of Phytoremediation, 17(9), 801-813.
  • Özbek, H., Kaya, Z., Gök, M., & Kaptan, H. (1995). Toprak Bilimi. Çukurova Üniversitesi Ziraat Fakültesi Yayın No: 73, Adana.
  • Özkul, C., Acar, R. U., Köprübaşı, N., Er, A. E., Kızılkaya, H. İ., Metin, M., & Şenel, M. N. (2018). Altıntaş (Kütahya Turkey) plain Investigation of heavy metal pollution in agricultural soil, preliminary studies. Journal of Applied Earth Sciences, 17(1), 13-26 .
  • Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: hyperaccumulation metals in plants. Water, Air and Soil Pollution, 184(1-4), 105-126.
  • Pourret, O., Lange, B., Bonhoure, J., Colinet, G., Decrée, S., Mahy, G., & Faucon, M. P. (2016). Assessment of soil metal distribution and environmental impact of mining in Katanga. Applied Geochemistry, 64, 43-55.
  • Reeves, R. D., Baker, A. J., Jaffré, T., Erskine, P. D., Echevarria, G., & Van der Ent, A. (2018). A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist, 218(2), 407-411.
  • Reeves, R. D., & Brooks, R. R. (1983). Hyperaccumulation of lead and zinc by two metallophytes from mining areas of Central Europe. Environmental pollution series A, Ecological and Biological, 31(4), 277-285.
  • Rose, A. W., Hawkes, H. E., & Webb, J. S. (1979). Geochemistry in Mineral Exploration, second ed., Academic Press, Newyork, 657s .
  • Salt, D. E., & Rauser, W. E. (1995). Mg ATP-Dependent Transport of phytochelatins across the tonoplast of oat roots. Plant Physiology, 107, 1293-1301.
  • Seeliger , T. C. Pernicka,  E.,  Wagner, G. A.,  Begemann,  E.,  Schimitt-Strecker,  S., Eibner, C.,  Oztunali, O., &  Baranyi, I. (1985).  Archaeometry of underground mining works of North and East Anatolia, Turkey. Jahrbuch des Römisch Germanischen Zentralmuseums (in German): Mainz. 
  • Seregin, I. V., & Kozhevnikova, A. D. (2006). Physiological role of nickel and its toxic effects on higher plants. Russian Journal of Plant Physiology, 53(2), 257–277.
  • Seven. T., Can, B., Darende, B. N., & Ocak, S. (2018). Hava ve toprakta ağir metal kirliliği. Ulusal Çevre Bilimleri Araştırma Dergisi, 1(2), 91-103.
  • Shah, M. T., Begum, S., & Khan, S. (2010). Pedo and biogeochemical studies of mafic and ultramfic rocks in the Mingora and Kabal areas, Swat, Pakistan. Environmental Earth Sciences, 60(5), 1091-1102.
  • Sibley, S. F. (2011). Overview of flow studies for recycling metal commodities in the United States (pp. AA1-AA25). Reston, VA: US Department of the Interior, US Geological Survey.
  • Şengün, M. T. (2007). The effect of Keban Dam Lake to Elazığ climate under the last valuations light. Journal of Research of Eastern Anatolia Region, 5, 116-121.
  • Tok, Ç. (1997). Environmental pollution. Anadolu Printing, Istanbul.
  • Van Der Ent, A., Echevarria, G., & Tibbett, M. (2016). Delimiting soil chemistry thresholds for nickel hyperaccumulator plants in Sabah (Malaysia). Chemoecology, 26(2), 67- 82.
  • Yang, X. E., Long, X. X., Ye, H. B., He, Z. L., Calvert, D. V., & Stoffella, P. J. (2004). Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant and Soil, 259(1-2), 181-189.
  • Yanqun, Z., Yuan, L., Jianjun, C., Haiyan, C., Li, Q., & Schvartz, C. (2005). Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead–zinc mining area in Yunnan, China. Environment International, 31(5), 755-762.
  • Yerli C, Çakmakcı T, Şahin Ü, Tüfenkçi Ş. (2020). Ağır metallerin toprak, bitki, su ve insan sağlığına etkileri. Türk Doğa ve Fen Dergisi, 9(Özel Sayı), 103-114.
  • Yıldırım, C., Karavin, N., & Cansaran, A. (2012). Elaeagnus angustifolia L and Pinus brutia Ten in Amasya city center. Determination of the content of some heavy metals in their types. Journal of Biological Sciences Research, 5(2), 7-11.
  • Zayed, A., Lytle, C. M., Qian, J. H., & Terry, N. (1998). Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta, 206(2), 293-299.

Elazığ (Maden) Maden Sahasındaki Bazı Karasal Endemik ve Endemik Olmayan Bitkilerde Ağır Metal (Co, Ni, Fe) Biyoakümülasyonları

Yıl 2021, , 126 - 136, 20.04.2021
https://doi.org/10.24180/ijaws.807239

Öz

Çalışmamızın amacı, Elazığ Maden ilçesinde bir bakır madeni sahasından toplanan endemik Anchusa leptophlla subsp. tomentosa, Alyssum pateri subsp. pateri, Glaucium acutidentatum ve endemik olmayan Erysimum uncinatifolium türlerindeki ağır metal birikimini (Co, Ni, Fe) inceleyerek hiperakümülasyon özelliklerini belirlemektir. Toplanan tüm türler, Co elementinin Biyokonsantrasyon Faktörü (BCF) değerlerine göre hiperakümülatördür. NiBCF ve FeBCF değerlerine göre A. leptophlla ve E. uncinatifolium türlerinin hiperakümülatör olduğu görülmüştür. Transfer Faktör (TF) değerine göre A. leptophlla, A. pateri türlerinde Co elementinin üst organlara, A. leptophlla, A. pateri, E. uncinatifolium türlerinde Ni ve Fe elementlerinin üst organlara taşınabildiği belirlenmiştir. Araştırılan türler arasında zenginleştirme faktörü (EF) değerine göre A. leptophlla'daki CoEF ve tüm türlerde Ni EF değeri (EF> 1) 1'den yüksek bulunmuştur. Tüm türlerin Ni biriktirme kapasitelerinin daha yüksek olduğu söylenebilir. Bu çalışmada, Jeobirikim İndeksi (Igeo)'ne göre örnekleme alanından alınan toprak örneklerinin Co tarafından orta derecede kirlendiği ve Fe ile çok fazla kirlenmediği bulunmuştur.

Kaynakça

  • Adriano, D .C. (1986). Trace Elements in the Terrestrial Environment. Springer Verlag.
  • Akgüç, N., Özyiğit, I., Yaşar, U., Leblebici, Z., & Yarcı, C. (2010). Use of Pyracantha coccinea Roem. as a possible biomonitor for the selected heavy metals. International Journal of Environmental Science Technology, 7(3), 427-434.
  • Aktan, M., Çimen, N., & Özçelik, Y. (2017). Madencilik amaçlı orman izinlerinin Türkiye ve dünyadaki mevzuat uygulamalarının karşılaştırılması. Türkiye, 25th International Mining Congress and Exhibition of Turkey. Antalya, Turkey 25, 11-14.
  • Alaribe, F., & Agamuthu, P. (2015). Evaluation of plant wetting potentials of Lantana camara in Pb affected soil with organic waste additives. Ecological Engineering, 83, 513-520.
  • Allen, S. E. (1989). Chemical Analysis of Ecological Materials. 2nd Edition, Blackwell Scientific Publications, Oxford and London.
  • Alloway, B. J. (1995). Cadmium. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 283). Blackie,London.
  • Badr, N., Fawzy, M., & Al Qahtani, K. M. (2012). Phytoremediation: An ecological solution to heavy-metal-polluted soil and evaluation of plant removal ability. WorldApplied Sciences Journal, 16(9), 1292-1301.
  • Baker, A. J. M., & Brooks, R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution ecology and phytochemistry. Biorecovery, 1(2), 81-126.
  • Bakırdede, S., Bölücek, C., & Yaman, M. (2016) Determination of contamination levels of Pb, Cd, Cu, Ni, and Mn caused by former lead mining gallery. Environmental Monitoring and Assessment, 188(3), 132.
  • Becker, M., & Asch, F. (2005). Iron toxicity in rice-conditions and management concepts. Journal of Plant Nutrition and Soil Science, 168(4), 558-573.
  • Blaylock, M. J., Salt, D. E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik Y., & Raskin, I. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science & Technology, 31(3), 860-865.
  • Borand, M. N. (2012). Açık ve kapalı maden işletmeciliğinde çevresel etki. İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, Madencilikte Özel Konular Ders Projesi, 61s.
  • Brooks, R. R. (1972). Geobotany and biogeochemistry in mineral exploration. New York: Harper & Row.
  • Brooks, R. R., & Radford, C. C. (1978). Nickel accumulation by European species of the genus Alyssum. Proceedings of the Royal Society of London, 200, 217-224.
  • Buat Menard, P., & Chesselet, R. (1979). Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth and Planetary Science Letters, 42, 399–411.
  • Cempel, M., & Nikel, G. (2006). Nickel: a review of its sources and environmental toxicology. Polish Journal of Environmental Studies, 15(3), 375–382
  • Çakılcıoğlu, U., & Civelek, S. (2011). Flora of the region between copper mine and Tekevler village (Maden-Elazig/Turkey). Biological Diversity and Conservation, 4(1), 54-66.
  • Çeliktaş, V. (2020). Determination of phytoemediation properties of plants in chrome ore deposits in Aladağ district of Adana province. PhD thesis. Cukurova University, Adana, Turkey.
  • Danh, L. T., Truong, P., Mammucari, R., Tran, T., & Foster, N. (2009). Vetiver grass Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. International Journal of Phytoremediation, 11(8), 664–691.
  • Demir, Ö. (2018). Reflection of Mining Activities in Elazig to the Press of the Republican Era, Hiper Publishing, Istanbul, Turkey.
  • FAO/WHO. (2003). Codex Alimentarius International Food Standards Codex Stan-179,.Codex Alimentarius commission.
  • Fergusson, J. (1990). The heavy elements: Chemistry, environmental impact and health effects. New Zeland: Reader in Chemistry University of Canterbury Pergamon Press.
  • Galal, T. M., & Shehata, H. S. (2015). Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecological Indicators, 48, 244-251.
  • Garbisu, C., Hernandez-Allica, J., Barrutia, O., Alkorta, I., & Becerril J. M. (2002). Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Reviews on environmental health, 17, 75–90. 
  • Guo ,Y. & Marschner, H. (1995). Uptake distribution and binding of cadmium and nickel in different plant species. Journal of Plant Nutrition, 18(12), 2691–2706.
  • Hussain, M. B., Ali, S., Azam, A., Hina, S., Ahsan, M., Farooq, B. A., Bharwana, S. A., & Gill, M. B. (2013). Morphological, physiological and biochemical responses of plants to nickel stress: a review. African Journal of Agricultural Research, 8(17), 1596–1602.
  • Jones,  J. B. (1997). The Handbook of Trace Elements. Boca Raton, Florida: CRC Press.  
  • Kacar B, Katkat V. (2006). Bitki Besleme. 1. Baskı. Nobel Yayın No:849, İstanbul.
  • Kacar, B., & Katkat, V. (2010). Plant nutrition. 5th Edition, Nobel Yayın, Ankara.
  • Kalender, L., & Alçiçek, Ö. N. (2016). Bioaccumulator Characteristics for Uranium and Thorium of Astragalus angustifolius, Artemisia ane Juncus effusus Fırat University, Journal of Engineering Sciences, 28(2), 267-273.
  • Khan M. A. A., & Siddhu, K. G. (2006). Phytotoxic effects of Cadmium (Cd) on Physiology of Urdbean [Vigna mungo (L.) Hepper.]. Advances in Plant Sciences, 19(2), 439-451.
  • Khan M. R., & Khan, M. M. (2010). Effect of varying concentration of nickel and cobalt on the plant growth and yield of chickpea. Australian Journal of Basic and Applied Science, 4(6), 1036-1046.
  • Kırat, G. (2017).  Pb – Zn - Cd Accumulator Plants Grown Around The Görgü Pb – Zn Mıne, Yeşilyurt-Malatya, Turkey. Bulletin of the Mineral Research and Exploration, 13(1), 53-63.
  • Ladislas, S., El-Mufleh, A., Gerente, C., Chazarenc, F., Andres, Y., & Bechet, B. (2012). Potential of aquatic macrophytes as bioindicators of heavy metal pollution in urban stormwater runoff. Water Air and Soil Pollution, 223, 877–888.
  • Malaisse, F., Baker, A. J., & Ruelle, S. (1999). Diversity of plant communities and leaf heavy metal content at Luiswishi copper/cobalt mineralization. Upper Katanga, Democratic Republic of the Congo,127, 3-16.
  • Mcgrath, S. P., Zhao, F. J., & Lombi, E. (2001). Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant and Soil, 232, 207-214.
  • Mellem, J., Baijanth, H., & Odhav, B. (2009). Translocation and accumulation of Cr, Hg, As, Pb, Cu and Ni by Amaranthus dubius (Amaranthaceae) from contaminated sites. Journal of Environmental Science and Health, 44, 568-575.
  • Mingorance, M. D., Valde´S, B., & Oliva, S. R. (2007). Strategies of heavy metal uptake by plants growing under industrial emissions. Environment International, 33, 514–520.
  • Müller, G. (1969). Index of geo-accumulation in sediments of the Rhine River. Geo Journal, 2, 108–118.
  • Nawab, J. Khan, S., Shah, M. T., Khan, K., Huang, Q., & Ali, R. (2015). Quantification of heavy metals in mining affected soil and their bioaccumulation in native plant species. International Journal of Phytoremediation, 17(9), 801-813.
  • Özbek, H., Kaya, Z., Gök, M., & Kaptan, H. (1995). Toprak Bilimi. Çukurova Üniversitesi Ziraat Fakültesi Yayın No: 73, Adana.
  • Özkul, C., Acar, R. U., Köprübaşı, N., Er, A. E., Kızılkaya, H. İ., Metin, M., & Şenel, M. N. (2018). Altıntaş (Kütahya Turkey) plain Investigation of heavy metal pollution in agricultural soil, preliminary studies. Journal of Applied Earth Sciences, 17(1), 13-26 .
  • Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: hyperaccumulation metals in plants. Water, Air and Soil Pollution, 184(1-4), 105-126.
  • Pourret, O., Lange, B., Bonhoure, J., Colinet, G., Decrée, S., Mahy, G., & Faucon, M. P. (2016). Assessment of soil metal distribution and environmental impact of mining in Katanga. Applied Geochemistry, 64, 43-55.
  • Reeves, R. D., Baker, A. J., Jaffré, T., Erskine, P. D., Echevarria, G., & Van der Ent, A. (2018). A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist, 218(2), 407-411.
  • Reeves, R. D., & Brooks, R. R. (1983). Hyperaccumulation of lead and zinc by two metallophytes from mining areas of Central Europe. Environmental pollution series A, Ecological and Biological, 31(4), 277-285.
  • Rose, A. W., Hawkes, H. E., & Webb, J. S. (1979). Geochemistry in Mineral Exploration, second ed., Academic Press, Newyork, 657s .
  • Salt, D. E., & Rauser, W. E. (1995). Mg ATP-Dependent Transport of phytochelatins across the tonoplast of oat roots. Plant Physiology, 107, 1293-1301.
  • Seeliger , T. C. Pernicka,  E.,  Wagner, G. A.,  Begemann,  E.,  Schimitt-Strecker,  S., Eibner, C.,  Oztunali, O., &  Baranyi, I. (1985).  Archaeometry of underground mining works of North and East Anatolia, Turkey. Jahrbuch des Römisch Germanischen Zentralmuseums (in German): Mainz. 
  • Seregin, I. V., & Kozhevnikova, A. D. (2006). Physiological role of nickel and its toxic effects on higher plants. Russian Journal of Plant Physiology, 53(2), 257–277.
  • Seven. T., Can, B., Darende, B. N., & Ocak, S. (2018). Hava ve toprakta ağir metal kirliliği. Ulusal Çevre Bilimleri Araştırma Dergisi, 1(2), 91-103.
  • Shah, M. T., Begum, S., & Khan, S. (2010). Pedo and biogeochemical studies of mafic and ultramfic rocks in the Mingora and Kabal areas, Swat, Pakistan. Environmental Earth Sciences, 60(5), 1091-1102.
  • Sibley, S. F. (2011). Overview of flow studies for recycling metal commodities in the United States (pp. AA1-AA25). Reston, VA: US Department of the Interior, US Geological Survey.
  • Şengün, M. T. (2007). The effect of Keban Dam Lake to Elazığ climate under the last valuations light. Journal of Research of Eastern Anatolia Region, 5, 116-121.
  • Tok, Ç. (1997). Environmental pollution. Anadolu Printing, Istanbul.
  • Van Der Ent, A., Echevarria, G., & Tibbett, M. (2016). Delimiting soil chemistry thresholds for nickel hyperaccumulator plants in Sabah (Malaysia). Chemoecology, 26(2), 67- 82.
  • Yang, X. E., Long, X. X., Ye, H. B., He, Z. L., Calvert, D. V., & Stoffella, P. J. (2004). Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant and Soil, 259(1-2), 181-189.
  • Yanqun, Z., Yuan, L., Jianjun, C., Haiyan, C., Li, Q., & Schvartz, C. (2005). Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead–zinc mining area in Yunnan, China. Environment International, 31(5), 755-762.
  • Yerli C, Çakmakcı T, Şahin Ü, Tüfenkçi Ş. (2020). Ağır metallerin toprak, bitki, su ve insan sağlığına etkileri. Türk Doğa ve Fen Dergisi, 9(Özel Sayı), 103-114.
  • Yıldırım, C., Karavin, N., & Cansaran, A. (2012). Elaeagnus angustifolia L and Pinus brutia Ten in Amasya city center. Determination of the content of some heavy metals in their types. Journal of Biological Sciences Research, 5(2), 7-11.
  • Zayed, A., Lytle, C. M., Qian, J. H., & Terry, N. (1998). Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta, 206(2), 293-299.
Toplam 61 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Bilimi
Bölüm Toprak Bilimi ve Bitki Besleme
Yazarlar

Prof. Dr. D. Duygu Kılıç 0000-0001-6425-6062

Gülfiye Ortakçı 0000-0002-1519-1773

Yayımlanma Tarihi 20 Nisan 2021
Gönderilme Tarihi 7 Ekim 2020
Kabul Tarihi 10 Şubat 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Kılıç, P. D. D. D., & Ortakçı, G. (2021). Heavy Metal Accumulations in Some Terrestrial Endemic and Non-endemic Plants in Mine Sites (Elazığ/Turkey). International Journal of Agricultural and Wildlife Sciences, 7(1), 126-136. https://doi.org/10.24180/ijaws.807239

17365   17368      17366     17369    17370              


88x31.png    Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi Creative Commons Attribution 4.0 Generic License a