The Allelopathic Effects of Turkish Hulled Wheat Lines on Germination of Amaranthus retroflexus L. and Lolium perenne L. Seeds
Yıl 2021,
, 56 - 62, 20.04.2021
Yasin Emre Kitiş
,
Mehmet Tekin
,
Taner Akar
Öz
The aim of this study was to determine allelopathic effects of some emmer (Triticum dicoccum Schrank) and einkorn (Triticum monococcum L.) wheat lines on germination of redroot pigweed (Amaranthus retroflexus L.) and perennial ryegrass (Lolium perenne L.). For this purpose, fourty-nine emmer and thirty-six einkorn wheat lines with two commercial durum wheat cultivars (cvs. Svevo and Saragolla) were sown in experimental field of Akdeniz University. Leaves of emmer and einkorn lines were cut at the end of tillering stage (Z29) to obtain sufficient plant extracts. Afterwards, germination rates of weed species were recorded by carrying out petri experiments. Many of the emmer and einkorn wheat lines highly inhibited the germination of two weed species compared to durum wheat cultivars but some lines were found very efficient for inhibition of both species. Four lines of emmer and eight lines of einkorn wheat inhibited germination of redroot pigweed over 90% while one emmer line and six lines of einkorn inhibited germination of ryegrass over 80%. According to average germination values, it was revealed that while ten lines of emmer and seventeen lines of einkorn reduced germination of both weed species by more than 50%, effect of commercial wheat cultivars remained at the rate of 35% and 18%, respectively. As a result, there was a clear evidence that some lines of emmer and einkorn wheat had a suppressive effect on germination of two important weed species. This is the first report about the allelopathic potential of the emmer and einkorn wheats. However, further researches are needed to test effectiveness of these wheats on allelopathy under both greenhouse and field conditions in detail.
Destekleyen Kurum
TUBİTAK
Teşekkür
The study was funded by The Scientific and Technological Research Council of Turkey (TUBITAK) with the project number “214O401.” The authors thank to I. Coskun, G. Ozturk and O. Batu for their help in analyses.
Kaynakça
- Arif, M., Cheema, Z. A., Khaliq, A., & Hassan, A. (2015). Organic weed management in wheat through allelopathy. International Journal of Agriculture and Biology, 17, 127-134.
- Aslam, F., Khaliq, A., Matloob, A., Tanveer, A., Hussain, S., & Zahir, Z. A. (2017). Allelopathy in agro-ecosystems: a critical review of wheat allelopathy-concepts and implications. Chemoecology, 27, 1-24.
- Bashir, T., Anum, W., Ali, I., Ghaffar, A., Ali, L., Raza, M.U., Javed, Z., Zafar, A., Mahmood, N., & Shabir, A. (2018). Allelopathic effects of perennial sow thistle (Sonchus arvensis L.) on germination and seedling growth of maize (Zea mays L.). Allelopathy Journal, 43(1), 105-116.
- Bertholdsson, N. O. (2005). Early vigour and allelopathy – two useful traits for enhanced barley and wheat competitiveness against weeds. Weed Research, 45(2), 94-102.
- Coskun, I., Tekin, M., & Akar, T. (2019) Characterization of Turkish diploid and tetraploid hulled wheat lines for some agromorphological traits. International Journal of Agriculture and Wildlife Science, 5(2), 322-334.
- Dong, S. Q., Ma, Y. Q., Wu, H. W., Shui, J. F., Ye, X. X., & An, Y. (2013). Allelopathic stimulatory effects of wheat differing in ploidy levels on Orobanche minor germination. Allelopathy Journal, 31(2), 355-366.
- Inderjit., Olofsdotter, M., & Streibig, J. C. (2001). Wheat (Triticum aestivum) interference with seedling growth of perennial ryegrass (Lolium perenne): influence of density and age. Weed Technology, 15, 807-812.
- Kaplan, M., Akar, T., Kamalak, A., & Bulut, S. (2014). Use of diploid and tetraploid hulled wheat genotypes for animal feeding. Turkish Journal of Agriculture and Forestry, 38, 838-846.
- Kitis, Y. E., Koloren, O., & Uygur, F. N. (2016). Allelopathic effects of common vetch (Vicia sativa L.) on germination and development of some weed species. Journal of Central Research Institute for Field Crops, 25, 100-106 (In Turkish).
- Konvalina, P., Capouchová, I., Stehno, Z., & Moudry Jr, J. (2012). Genetic resources of emmer wheat and their prospective use in organic farming. Lucrări Ştiinţifice, 55(2), 13-18.
- Konvalina, P., Stehno, Z., Capouchová, I., Zechner, E., Berger, S., Grausgruber, H., Janovská, D., & Moudry Sr, J. (2014). Differences in grain/straw ratio, protein content and yield in landraces and modern varieties of different wheat species under organic farming. Euphytica, 199, 31-40.
- Kruse, M., Strandberg, M., & Strandberg, B. (2000). Ecological Effects of Allelopathic Plants- A Review. Ministry of Environment and Energy National Environmental Research Institute (NERI) Technical Report No. 315, Silkeborg, Denmark.
- Li, S. L., You, Z. G., Li, S. R., & Zhang, L. (1996). Allelopathy of wheat extraction to the growth of two weeds. Chinese Journal of Biological Control, 12, 168-170.
- Ma, Y. (2005). Allelopathic studies of common wheat (Triticum aestivum L.). Weed Biology and Management, 5, 93-104.
- Nakhforoosh, A., Grausgruber, H., Kaul, H. P., & Bodner, G. (2014). Wheat root diversity and root functional characterization. Plant Soil, 380, 211-229.
- Nakimichi, N. (2015). Adaptation to the local environment by modifications of the photoperiod response in crops. Plant and Cell Physiology, 56(4), 594-604.
- Narwal, S. S. (2010). Allelopathy in ecological sustainable organic agriculture. Allelopathy Journal, 25(1), 51-72.
Shewry, P. (2018). Do ancient types of wheat have health benefits compared with modern bread wheat?. Journal of Cereal Science, 79, 469-476.
- Tekin, M., Cengiz, M. F., Abbasov, M., Aksoy, A., Canci, H., & Akar, T. (2018). Comparison of some mineral nutrients and vitamins in advanced hulled wheat lines. Cereal Chemistry, 95, 436-444.
- Wu, H., Pratley, J., Lemerle, G., & Haig, T. (2000). Evaluation of seedling allelopathy in 453 wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum) by the equal-compartment-agar method. Australian Journal of Agricultural Research, 51, 937-944.
Türk Kavuzlu Buğday Hatlarının Amaranthus retroflexus L. ve Lolium perenne L. Tohumlarının Çimlenmesi Üzerine Allelopatik Etkileri
Yıl 2021,
, 56 - 62, 20.04.2021
Yasin Emre Kitiş
,
Mehmet Tekin
,
Taner Akar
Öz
Bu çalışma ile bazı gernik (Triticum dicoccum Schrank) ve siyez buğdayı (Triticum monococcum L.) hatlarının horozibiği (Amaranthus retroflexus L.) ve çok yıllık çim (Lolium perenne L.) tohumlarının çimlenmeleri üzerine etkilerinin belirlenmesi amaçlanmıştır. Bu amaçla 49 gernik ve 36 siyez hattı, 2 ticari makarnalık buğday çeşidi (Svevo ve Saragolla) ile birlikte Akdeniz Üniversitesi araştırma alanına ekilmiştir. Gernik ve siyez hatlarının yaprakları kardeşlenme dönemi sonunda (Z29) bitki ekstraktlarını elde etmek amacıyla kesilmiştir. Yürütülen Petri denemeleriyle yabancı ot türlerinin çimlenme oranları kaydedilmiştir. Birçok gernik ve siyez hattı makarnalık buğdaya kıyasla iki yabancı ot türünün çimlenmesini yüksek oranda inhibe etmiştir fakat bazı hatlar inhibisyon konusunda oldukça başarılı bulunmuştur. 1 gernik hattı ile 6 siyez hattı çok yıllık çim türünün tohumlarının çimlenmesini %80’in üzerinde inhibe ederken 4 gernik hattı ile 8 siyez hattı horozibiği tohumlarının çimlenmesini %90’ın üzerinde inhibe etmiştir. Ortalama çimlenme değerlerine göre, 10 gernik hattı ile 17 siyez hattı her iki yabancı ot türünün de çimlenmesini %50’nin üzerinde geriletirken ticari buğday çeşitlerinin etkilerinin sırasıyla %35 ve %18 oranlarında kaldığı belirlenmiştir. Sonuç olarak, bazı gernik ve siyez hatlarının iki önemli yabancı ot türünün çimlenmesi üzerine baskılayıcı bir etki gösterdiği ortadadır. Bu çalışma, gernik ve siyez buğdaylarının allelopatik potansiyellerinin ortaya konduğu ilk rapordur. Fakat bundan sonraki çalışmalarla bu buğday türlerinin sera ve arazi koşullarında allelopati üzerine etkinliğinin daha detaylı bir şekilde araştırılması gereklidir.
Kaynakça
- Arif, M., Cheema, Z. A., Khaliq, A., & Hassan, A. (2015). Organic weed management in wheat through allelopathy. International Journal of Agriculture and Biology, 17, 127-134.
- Aslam, F., Khaliq, A., Matloob, A., Tanveer, A., Hussain, S., & Zahir, Z. A. (2017). Allelopathy in agro-ecosystems: a critical review of wheat allelopathy-concepts and implications. Chemoecology, 27, 1-24.
- Bashir, T., Anum, W., Ali, I., Ghaffar, A., Ali, L., Raza, M.U., Javed, Z., Zafar, A., Mahmood, N., & Shabir, A. (2018). Allelopathic effects of perennial sow thistle (Sonchus arvensis L.) on germination and seedling growth of maize (Zea mays L.). Allelopathy Journal, 43(1), 105-116.
- Bertholdsson, N. O. (2005). Early vigour and allelopathy – two useful traits for enhanced barley and wheat competitiveness against weeds. Weed Research, 45(2), 94-102.
- Coskun, I., Tekin, M., & Akar, T. (2019) Characterization of Turkish diploid and tetraploid hulled wheat lines for some agromorphological traits. International Journal of Agriculture and Wildlife Science, 5(2), 322-334.
- Dong, S. Q., Ma, Y. Q., Wu, H. W., Shui, J. F., Ye, X. X., & An, Y. (2013). Allelopathic stimulatory effects of wheat differing in ploidy levels on Orobanche minor germination. Allelopathy Journal, 31(2), 355-366.
- Inderjit., Olofsdotter, M., & Streibig, J. C. (2001). Wheat (Triticum aestivum) interference with seedling growth of perennial ryegrass (Lolium perenne): influence of density and age. Weed Technology, 15, 807-812.
- Kaplan, M., Akar, T., Kamalak, A., & Bulut, S. (2014). Use of diploid and tetraploid hulled wheat genotypes for animal feeding. Turkish Journal of Agriculture and Forestry, 38, 838-846.
- Kitis, Y. E., Koloren, O., & Uygur, F. N. (2016). Allelopathic effects of common vetch (Vicia sativa L.) on germination and development of some weed species. Journal of Central Research Institute for Field Crops, 25, 100-106 (In Turkish).
- Konvalina, P., Capouchová, I., Stehno, Z., & Moudry Jr, J. (2012). Genetic resources of emmer wheat and their prospective use in organic farming. Lucrări Ştiinţifice, 55(2), 13-18.
- Konvalina, P., Stehno, Z., Capouchová, I., Zechner, E., Berger, S., Grausgruber, H., Janovská, D., & Moudry Sr, J. (2014). Differences in grain/straw ratio, protein content and yield in landraces and modern varieties of different wheat species under organic farming. Euphytica, 199, 31-40.
- Kruse, M., Strandberg, M., & Strandberg, B. (2000). Ecological Effects of Allelopathic Plants- A Review. Ministry of Environment and Energy National Environmental Research Institute (NERI) Technical Report No. 315, Silkeborg, Denmark.
- Li, S. L., You, Z. G., Li, S. R., & Zhang, L. (1996). Allelopathy of wheat extraction to the growth of two weeds. Chinese Journal of Biological Control, 12, 168-170.
- Ma, Y. (2005). Allelopathic studies of common wheat (Triticum aestivum L.). Weed Biology and Management, 5, 93-104.
- Nakhforoosh, A., Grausgruber, H., Kaul, H. P., & Bodner, G. (2014). Wheat root diversity and root functional characterization. Plant Soil, 380, 211-229.
- Nakimichi, N. (2015). Adaptation to the local environment by modifications of the photoperiod response in crops. Plant and Cell Physiology, 56(4), 594-604.
- Narwal, S. S. (2010). Allelopathy in ecological sustainable organic agriculture. Allelopathy Journal, 25(1), 51-72.
Shewry, P. (2018). Do ancient types of wheat have health benefits compared with modern bread wheat?. Journal of Cereal Science, 79, 469-476.
- Tekin, M., Cengiz, M. F., Abbasov, M., Aksoy, A., Canci, H., & Akar, T. (2018). Comparison of some mineral nutrients and vitamins in advanced hulled wheat lines. Cereal Chemistry, 95, 436-444.
- Wu, H., Pratley, J., Lemerle, G., & Haig, T. (2000). Evaluation of seedling allelopathy in 453 wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum) by the equal-compartment-agar method. Australian Journal of Agricultural Research, 51, 937-944.