Araştırma Makalesi
BibTex RIS Kaynak Göster

Exploring the Phenotypic Diversity for Seed Mineral Contents in Turkish Faba Bean Germplasm

Yıl 2021, Cilt: 7 Sayı: 3, 540 - 550, 30.12.2021
https://doi.org/10.24180/ijaws.949496

Öz

Biofortification emerged as a sustainable approach for the improvement of nutritional contents of food crops through the utilization of plant breeding, transgenic techniques, or agronomic practices. Legumes are serving as the primary source of plant-based protein for millions of people all over the world. Faba bean is an important legume crop having high protein, mineral, and vitamin contents beneficial for human health. The present investigation involved the seed mineral profiling of faba bean germplasm collected from 20 provinces of Turkey. A good range of variations were observed for nitrogen (N) (5.19-7.52%), phosphorus (P) (0.102-0.668), potassium (K) (0.63-2.46), calcium (Ca) (0.50-0.64), magnesium (Mg) (0.230-0.363), iron (Fe) (57.047-145.63), zinc (Zn) (28.76-90.10), copper (Cu) (6.23-32.33) and manganese (Mn) (12.93-45.37) were investigated. Analysis of variance revealed highly significant variance for Fe, Zn and Cu. A highly significant and positive correlation was observed between Zn and Fe contents and should be considered as parents for the development of Fe and Zn enriched faba bean cultivars. Scatter plot analysis revealed Malatya3 and Izmir3 landraces rich in Fe and Zn contents. Principal component analysis (PCA) was performed and the first five PCs accounted for 75.80% variations. The constellation plot was constructed and the studied germplasm was divided into two populations based on their Fe contents. Landraces present in population B were found rich in Zn and Fe contents. Present investigation enlighted the seed minerals diversity in faba bean germplasm and it is recommended that studied germplasm should be used for the biofortification of faba bean to minimize the malnutrition problems.

Teşekkür

The author pays his heartiest gratitude to Prof. Tolga Karaköy from the Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey for continuous support while conducting field experimentation and also providing facilities to perform mineral analysis. The author pay his heartiest gratitude to Research Assitant. Yeter Çilesiz for supporting during the mineral analysis.

Kaynakça

  • Andeden, E. E., Baloch, F. S., Derya, M., Kilian, B., & Özkan, H. (2013). iPBS-Retrotransposons-based genetic diversity and relationship among wild annual Cicer species. Journal of Plant Biochemistry and Biotechnology, 22(4), 453-466.
  • Baloch, F. S., Karaköy, T., Demirbaş, A., Toklu, F., Özkan, H., & Hatipoğlu, R. (2014). Variation of some seed mineral contents in open pollinated faba bean (Vicia faba L.) landraces from Turkey. Turkish Journal of Agriculture and Forestry, 38(5), 591-602.
  • Barut, M., Nadeem, M. A., Karaköy, T., & Baloch, F. S. (2020). DNA fingerprinting and genetic diversity analysis of world quinoa germplasm using iPBS-retrotransposon marker system. Turkish Journal of Agriculture and Forestry, 44(5), 479-491.
  • Beaty, R.D. and Kerber, J.D., 1978. Concepts, Instrumentation and Techniques in Atomic Absorption Spectrophotometry USA: Perkin-Elmer.
  • Bouis, H. E., & Saltzman, A. (2017). Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Global Food Security, 12, 49-58.
  • Bremner, J.M. (1965). Total nitrogen. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, 1149-1178.
  • Cabrera, C., Lloris, F., Gimenez, R., Olalla, M., & Lopez, M. C. (2003). Mineral content in legumes and nuts: contribution to the Spanish dietary intake. Science of the Total Environment, 308(1-3), 1-14.
  • De Valença, A. W., Bake, A., Brouwer, I. D., & Giller, K. E. (2017). Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Global Food Security, 12, 8-14.
  • Duc, G., Bao, S., Baum, M., Redden, B., Sadiki, M., Suso, M. J., Vishniakova, M., & Zong, X. (2010). Diversity maintenance and use of Vicia faba L. genetic resources. Field Crops Research, 115(3), 270-278.
  • Karaköy, T., Baloch, F. S., Toklu, F., & Özkan, H. (2014). Variation for selected morphological and quality-related traits among 178 faba bean landraces collected from Turkey. Plant Genetic Resources, 12(1), 5.
  • Karbuz, F., Öztürk, İ. & Savaş, D.O. (2008). Türkiye’de Üretilen Tarım Ürünleri ve Ekonomideki Yeri. İstanbul Ticaret Odası Ekonomik ve Sosyal Araştırmalar Şubesi. İstanbul Ticaret Odası Yayınları, 9129.
  • Karık, Ü., Nadeem, M. A., Habyarimana, E., Ercişli, S., Yildiz, M., Yılmaz, A., Yang, S. H., Chung, G., & Baloch, F. S. (2019). Exploring the genetic diversity and population structure of Turkish laurel germplasm by the iPBS-retrotransposon marker system. Agronomy, 9(10), 647.
  • Kaur, S., Cogan, N. O., Forster, J. W., & Paull, J. G. (2014). Assessment of genetic diversity in faba bean based on single nucleotide polymorphism. Diversity, 6(1), 88-101.
  • Khan, M. A., Ammar, M. H., Migdadi, H. M., El-Harty, E. H., Osman, M. A., Farooq, M., & Alghamdi, S. S. (2015). Comparative nutritional profiles of various faba bean and chickpea genotypes. International Journal of Agriculture and Biology, 17(3).
  • Khazaei, H., & Vandenberg, A. (2020). Seed mineral composition and protein content of faba beans (Vicia faba L.) with contrasting tannin contents. Agronomy, 10(4), 511.
  • Khush, G. S., Lee, S., Cho, J. I., & Jeon, J. S. (2012). Biofortification of crops for reducing malnutrition. Plant Biotechnology Reports, 6(3), 195-202.
  • Labba, I. C. M., Frøkiær, H., & Sandberg, A. S. (2021). Nutritional and antinutritional composition of fava bean (Vicia faba L., var. minor) cultivars. Food Research International, 140, 110038.
  • Lombardo, S., Pandino, G., Pesce, G. R., Anastasi, U., Tuttobene, R., & Mauromicale, G. (2016). Variation in seed mineral elements profile and yield in field bean (Vicia faba L. var. minor) genotypes. Italian Journal of Agronomy, 11(4), 261-267.
  • Mudasir, S., Sofi, P. A., Khan, M. N., Sofi, N. R., & Dar, Z. A. (2012). Genetic diversity, variability and character association in local common Bean (Phaseolus vulgaris L.) germplasm of Kashmir. Electronic Journal of Plant Breeding, 3(3), 883-891.
  • Nadeem, M. A., Çilesiz, Y., Yüce, İ., Baloch, F. S., & Karaköy, T., Macro and micro nutrients diversity in the seeds of field pea germplasm. Pakistan Journel of Botany, 5(3), 53.
  • Nadeem, M. A., Gündoğdu, M., Ercişli, S., Karaköy, T., Saracoğlu, O., Habyarimana, E., Lin, X., Hatipoğlu, R., Nawaz, M. A., Sameeullah, M., & Ahmad, F. (2020). Uncovering phenotypic diversity and DArTseq marker loci associated with antioxidant activity in common bean. Genes, 11(1), 36.
  • Ozer, S., Karaköy, T., Toklu, F., Baloch, F. S., Kilian, B., & Özkan, H. (2010). Nutritional and physicochemical variation in Turkish kabuli chickpea (Cicer arietinum L.) landraces. Euphytica, 175, 237- 249.
  • Roriz, M., Carvalho, S. M., Castro, P. M., & Vasconcelos, M. W. (2020). Legume biofortification and the role of plant growth-promoting bacteria in a sustainable agricultural era. Agronomy, 10(3), 435.
  • Tanno, K. I., & Willcox, G. (2006). The origins of cultivation of Cicer arietinum L. and Vicia faba L: early finds from Tell el-Kerkh, north-west Syria, late 10th millennium BP. Vegetation History and Archaeobotany, 15(3), 197-204.
  • Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108(50), 20260-20264.
  • Tufan, H., & Erdoğan, C. (2017). Genetic diversity in some faba bean (Vicia faba L.) genotypes assessed by simple sequence repeats. Biotechnology & Biotechnological Equipment, 31(1), 29-35.
  • Vilariño, M., Métayer, J. P., Crépon, K., & Duc, G. (2009). Effects of varying vicine, convicine and tannin contents of faba bean seeds (Vicia faba L.) on nutritional values for broiler chicken. Animal Feed Science and Technology, 150(1-2), 114-121.
  • Warsame, A. O., O’Sullivan, D. M., & Tosi, P. (2018). Seed storage proteins of faba bean (Vicia faba L): Current status and prospects for genetic improvement. Journal of Agricultural and Food Chemistry, 66(48), 12617-12626.
  • Yeken, M. Z., Akpolat, H., Karaköy, T., & Çiftçi, V. (2018). Assessment of Mineral Content Variations for Biofortification of the Bean Seed. International Journal of Agricultural and Wildlife Sciences, 4(2), 261-9.
  • Yeken, M. Z., Nadeem, M. A., Karaköy, T., Baloch, F. S. & Çiftçi, V. (2019). Determination of Turkish common bean germplasm for morpho-agronomic and mineral variations for breeding perspectives in Turkey. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 22, 38-50.

Türk Bakla Genetik Kaynaklarının Tohum Mineral İçeriği için Fenotipik Çeşitliliğin Araştırılması

Yıl 2021, Cilt: 7 Sayı: 3, 540 - 550, 30.12.2021
https://doi.org/10.24180/ijaws.949496

Öz

Biyofortifikasyon; bitki ıslahı, transgenik teknikler veya agronomik uygulamalar yoluyla gıda ürünlerinin besin içeriklerinin iyileştirilmesi için sürdürülebilir bir yaklaşım olarak ortaya çıkmıştır. Baklagiller, tüm dünyada milyonlarca insan için bitki bazlı proteinin birincil kaynağı olarak hizmet vermektedir. Bakla, insan sağlığı için faydalı yüksek oranda protein, mineral ve vitamin içeriğine sahip önemli bir baklagil bitkisidir. Bu çalışma, Türkiye'nin 20 ilinden toplanan bakla genetik kaynaklarının tohum mineral profilini içermektedir. Araştırmada aynı şartlarda yetiştirilen bakla tohumlarının; azot (N) (% 5.19-7.52), fosfor (P) (0.102-0.668), potasyum (K) (0.63-2.46), kalsiyum (Ca) (0.50-0.64), magnezyum (Mg) (0.230-0.363), demir (Fe) (57.047-145.63), çinko (Zn) (28.76-90.10), bakır (Cu) (6.23-32.33) ve manganez (Mn) (12.93-45.37) bakımından önemli varyasyon gösterdiği belirlenmiştir. Fe ve Zn içerikleri bakımından anlamlı ve pozitif bir ilişki belirlenmiştir. Fe ve Zn bakımından zenginleştirilmiş bakla çeşitlerinin geliştirilmesinde ebeveyn olarak kullanılabilecek materyaller tespit edilmiştir. Scatter plot analizi, Malatya3 ve Izmir3 yerel türlerinin Fe ve Zn içeriği bakımından zengin olduğunu ortaya çıkarmıştır. Temel bileşen analizi (PCA) sonucunda ilk beş temel bileşen varyasyonun %75.80’nini açıklamıştır. Takımyıldız grafiği, incelenen genetik kaynakları Fe içeriklerine göre iki popülasyona bölmüş ve B popülasyonunda bulunan yerel türlerin Fe ve Zn içerikleri bakımından zengin olduğunu göstermiştir. Araştırma sonucunda, bakla genetik kaynaklarının tohum mineral çeşitliliği aydınlatılmıştır. Yeni geliştirilecek bakla çeşitlerinin bazı mineral içerikleri biyolojik olarak zenginleştirilermek için çalışmada yer alan genetik kaynakların kullanılabileceği ön görülmüştür.

Kaynakça

  • Andeden, E. E., Baloch, F. S., Derya, M., Kilian, B., & Özkan, H. (2013). iPBS-Retrotransposons-based genetic diversity and relationship among wild annual Cicer species. Journal of Plant Biochemistry and Biotechnology, 22(4), 453-466.
  • Baloch, F. S., Karaköy, T., Demirbaş, A., Toklu, F., Özkan, H., & Hatipoğlu, R. (2014). Variation of some seed mineral contents in open pollinated faba bean (Vicia faba L.) landraces from Turkey. Turkish Journal of Agriculture and Forestry, 38(5), 591-602.
  • Barut, M., Nadeem, M. A., Karaköy, T., & Baloch, F. S. (2020). DNA fingerprinting and genetic diversity analysis of world quinoa germplasm using iPBS-retrotransposon marker system. Turkish Journal of Agriculture and Forestry, 44(5), 479-491.
  • Beaty, R.D. and Kerber, J.D., 1978. Concepts, Instrumentation and Techniques in Atomic Absorption Spectrophotometry USA: Perkin-Elmer.
  • Bouis, H. E., & Saltzman, A. (2017). Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Global Food Security, 12, 49-58.
  • Bremner, J.M. (1965). Total nitrogen. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, 1149-1178.
  • Cabrera, C., Lloris, F., Gimenez, R., Olalla, M., & Lopez, M. C. (2003). Mineral content in legumes and nuts: contribution to the Spanish dietary intake. Science of the Total Environment, 308(1-3), 1-14.
  • De Valença, A. W., Bake, A., Brouwer, I. D., & Giller, K. E. (2017). Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Global Food Security, 12, 8-14.
  • Duc, G., Bao, S., Baum, M., Redden, B., Sadiki, M., Suso, M. J., Vishniakova, M., & Zong, X. (2010). Diversity maintenance and use of Vicia faba L. genetic resources. Field Crops Research, 115(3), 270-278.
  • Karaköy, T., Baloch, F. S., Toklu, F., & Özkan, H. (2014). Variation for selected morphological and quality-related traits among 178 faba bean landraces collected from Turkey. Plant Genetic Resources, 12(1), 5.
  • Karbuz, F., Öztürk, İ. & Savaş, D.O. (2008). Türkiye’de Üretilen Tarım Ürünleri ve Ekonomideki Yeri. İstanbul Ticaret Odası Ekonomik ve Sosyal Araştırmalar Şubesi. İstanbul Ticaret Odası Yayınları, 9129.
  • Karık, Ü., Nadeem, M. A., Habyarimana, E., Ercişli, S., Yildiz, M., Yılmaz, A., Yang, S. H., Chung, G., & Baloch, F. S. (2019). Exploring the genetic diversity and population structure of Turkish laurel germplasm by the iPBS-retrotransposon marker system. Agronomy, 9(10), 647.
  • Kaur, S., Cogan, N. O., Forster, J. W., & Paull, J. G. (2014). Assessment of genetic diversity in faba bean based on single nucleotide polymorphism. Diversity, 6(1), 88-101.
  • Khan, M. A., Ammar, M. H., Migdadi, H. M., El-Harty, E. H., Osman, M. A., Farooq, M., & Alghamdi, S. S. (2015). Comparative nutritional profiles of various faba bean and chickpea genotypes. International Journal of Agriculture and Biology, 17(3).
  • Khazaei, H., & Vandenberg, A. (2020). Seed mineral composition and protein content of faba beans (Vicia faba L.) with contrasting tannin contents. Agronomy, 10(4), 511.
  • Khush, G. S., Lee, S., Cho, J. I., & Jeon, J. S. (2012). Biofortification of crops for reducing malnutrition. Plant Biotechnology Reports, 6(3), 195-202.
  • Labba, I. C. M., Frøkiær, H., & Sandberg, A. S. (2021). Nutritional and antinutritional composition of fava bean (Vicia faba L., var. minor) cultivars. Food Research International, 140, 110038.
  • Lombardo, S., Pandino, G., Pesce, G. R., Anastasi, U., Tuttobene, R., & Mauromicale, G. (2016). Variation in seed mineral elements profile and yield in field bean (Vicia faba L. var. minor) genotypes. Italian Journal of Agronomy, 11(4), 261-267.
  • Mudasir, S., Sofi, P. A., Khan, M. N., Sofi, N. R., & Dar, Z. A. (2012). Genetic diversity, variability and character association in local common Bean (Phaseolus vulgaris L.) germplasm of Kashmir. Electronic Journal of Plant Breeding, 3(3), 883-891.
  • Nadeem, M. A., Çilesiz, Y., Yüce, İ., Baloch, F. S., & Karaköy, T., Macro and micro nutrients diversity in the seeds of field pea germplasm. Pakistan Journel of Botany, 5(3), 53.
  • Nadeem, M. A., Gündoğdu, M., Ercişli, S., Karaköy, T., Saracoğlu, O., Habyarimana, E., Lin, X., Hatipoğlu, R., Nawaz, M. A., Sameeullah, M., & Ahmad, F. (2020). Uncovering phenotypic diversity and DArTseq marker loci associated with antioxidant activity in common bean. Genes, 11(1), 36.
  • Ozer, S., Karaköy, T., Toklu, F., Baloch, F. S., Kilian, B., & Özkan, H. (2010). Nutritional and physicochemical variation in Turkish kabuli chickpea (Cicer arietinum L.) landraces. Euphytica, 175, 237- 249.
  • Roriz, M., Carvalho, S. M., Castro, P. M., & Vasconcelos, M. W. (2020). Legume biofortification and the role of plant growth-promoting bacteria in a sustainable agricultural era. Agronomy, 10(3), 435.
  • Tanno, K. I., & Willcox, G. (2006). The origins of cultivation of Cicer arietinum L. and Vicia faba L: early finds from Tell el-Kerkh, north-west Syria, late 10th millennium BP. Vegetation History and Archaeobotany, 15(3), 197-204.
  • Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108(50), 20260-20264.
  • Tufan, H., & Erdoğan, C. (2017). Genetic diversity in some faba bean (Vicia faba L.) genotypes assessed by simple sequence repeats. Biotechnology & Biotechnological Equipment, 31(1), 29-35.
  • Vilariño, M., Métayer, J. P., Crépon, K., & Duc, G. (2009). Effects of varying vicine, convicine and tannin contents of faba bean seeds (Vicia faba L.) on nutritional values for broiler chicken. Animal Feed Science and Technology, 150(1-2), 114-121.
  • Warsame, A. O., O’Sullivan, D. M., & Tosi, P. (2018). Seed storage proteins of faba bean (Vicia faba L): Current status and prospects for genetic improvement. Journal of Agricultural and Food Chemistry, 66(48), 12617-12626.
  • Yeken, M. Z., Akpolat, H., Karaköy, T., & Çiftçi, V. (2018). Assessment of Mineral Content Variations for Biofortification of the Bean Seed. International Journal of Agricultural and Wildlife Sciences, 4(2), 261-9.
  • Yeken, M. Z., Nadeem, M. A., Karaköy, T., Baloch, F. S. & Çiftçi, V. (2019). Determination of Turkish common bean germplasm for morpho-agronomic and mineral variations for breeding perspectives in Turkey. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 22, 38-50.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bitki Bilimi
Bölüm Tarla Bitkileri
Yazarlar

Muhammad Azhar Nadeem 0000-0002-0637-9619

Yayımlanma Tarihi 30 Aralık 2021
Gönderilme Tarihi 8 Haziran 2021
Kabul Tarihi 24 Ekim 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 7 Sayı: 3

Kaynak Göster

APA Nadeem, M. A. (2021). Türk Bakla Genetik Kaynaklarının Tohum Mineral İçeriği için Fenotipik Çeşitliliğin Araştırılması. International Journal of Agricultural and Wildlife Sciences, 7(3), 540-550. https://doi.org/10.24180/ijaws.949496

17365   17368      17366     17369    17370              


88x31.png    Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi Creative Commons Attribution 4.0 Generic License a