Araştırma Makalesi
BibTex RIS Kaynak Göster

Kadmiyum Bulaştırılmış Yetiştirme Ortamda Mısır Fidesinin (Zea mays L.) Gelişimine, Kadmiyum İçeriğine ve Alımına Mikoriza ve Salisilik Asit Uygulamalarının Etkisi

Yıl 2022, Cilt: 8 Sayı: 1, 133 - 141, 15.04.2022
https://doi.org/10.24180/ijaws.1011361

Öz

Kadmiyum (Cd) kirliliği önemli bir sorun günümüz için. Bu çalışmada, Cd gulanmış ortamlarda yetişen mısır (Zea mays L.) fidelerinin bitki boyu, yaş ağıırlık, kuru ağırlık değerleri ile bitkinin Cd içeriği ve alımı üzerine mikoriza (M) ve salisilik asit (SA) uygulamalarının etkileri belirlenmiştir. Bu amaç için salisilik asitin iki dozu (SA1: 1.0 mM ve SA2: 2.0 mM) ile mikoriza uygulanmış ve uygulanmamış olmak üzere 3 kg’lık saksılar kullanılmıştır. Çalışma üç tekerrürlü olarak yürütülmüştür. Yapılan ölçümler sonucunda mikoriza ve Salisilik asit uygulamaları mısır fidelerinin bitki boyunu, yaş ve kuru ağırlıklarını önemli ölçüde artırmıştır. Buna karşılık mikoriza ve Salisilik asit uygulamaları Cd içeriğini ve alımlarını azaltmıştır. Bitki boyunda en düşük değer 26.63 cm, yaprak sayısı 5.6 adet, yaş ağırlık 3.74 gr ve kuru ağırlık 1.63 gr ile mikoriza ve SA uygulanmayan kontrol grubunda belirlenmiştir. En yüksek bitki boyu 56.17 cm, yaprak sayısı 7.50 adet ve taze ağırlık 21.46 g ile mikoriza uygulaması yapılmayan ve 2.0 mM SA uygulamasında elde edilmiştir. En yüksek kuru ağırlık 5.70 g ile mikoriza ve 2.0 mM SA uygulamasında belirlenmiştir. Mısır fidelerinin en yüksek Cd içeriği 3.37 mg kg-1 ve alımı 5.95 mg kg-1 ile kontrolde uygulamasında tespit edilmişken, en düşük Cd içeriği 0.307 mg kg-1 ve alımı 1.48 mg kg-1 olarak mikoriza ile 2.0 mM SA ve 1.0 mM SA uygulamalarında tespit edilmiştir. Çalışmamızin sonuçları irdelendiğinde mikoriza ve SA uygulamalarının Cd ile kirletilmişmiş ortamlarda yetişen mısır fideleri üzerine olumlu etkileri olmuştur. Salisilik asit ve mikorizanın birlikte uygulanmasının ağır metal krililiğine karşı tarımsal üretimde verim ve besin elementi içeriğine önemli katkı sağlayacaktır.

Kaynakça

  • Ahmad, P., Nabi, G., & Ashraf, M. (2011). Cadmium-induced oxidative damage in mustard [Brassica ,juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. South African Journal of Botany, 77, 36–44. https://doi.org/10.1016/j.sajb.2010.5.003.
  • Al-Karaki, G. N. (1997). Barley response to salt stress at varied phosphorus. Journal of Plant Nutrition, 20, 1635–1643. https://doi.org/10.1080/01904169709365362
  • Al-Karaki, G. N. (2000). Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza, 10, 51–54. https://doi.org/10.1007/s005720000055
  • Al-Karaki, G. N., & Clark, R. B. (1998). Growth, mineral acquisition, and water use by mycorrhizal wheat grown under water stress. Journal of Plant Nutrition, 21, 263–276. https://doi.org/10.1080/01904169809365401
  • Al-Karaki, G. N., Hammad, R., & Rusan, M. (2001). Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza, 11, 43–47. https://doi.org/10.1007/s0057201000098
  • Alvarez, M. E. (2000). Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Molecular Biology, 44, 429-442. https://doi.org/10.1023/a:1026561029533
  • Ananieva, E. A., Alexieva, V. S., & Popova, L. P. (2002). Treatment with salicylic acid decreases the effects of paraquat on photosynthesis. Journal of Plant Physiology, 159(7), 685-693. https://doi.org/10.1016/j.jplph.2006.11.014
  • Azcon-Aguiler, C., Azcon, R., &Barea, J. M. (1979). Endomycorrhizal fungi and Rhizobium as biological fertilizers for Medicago sativa in normal cultivation. Nature, 279, 325–327. https://doi.org/10.1038/279325a0
  • Azcon-Aguilar, C., & Barea, J. M. (1997). Phsiological and nutritional responses by Lactuva sativa L. to nitrogen sources and mycorrhizal fungi under drought conditions. Biology and Fertility of Soil, 22, 155-161.
  • Auge, R. M., Schekel, K. A., & Wample, R. L. (1986). Osmotic adjustment in leaves of VA mycorrhizal and non-mycorrhizal rose plants in response to drought stress. Plant Physiology, 82, 765–770. https://doi.org/10.1104/pp.82.3.765
  • Barcelo, J., & Poschenrieder, C. (1990). Plant water relations as affected by heavy metal stress: review. Journal of Plant Nutrition, 13, 1-37. https://doi.org/10.1080/01904169009364057
  • Boussama, N., Quariti, O., Ghorbal, M. H. (1999). Changes in growth and nitrogen assimilation in barley seedlings under cadmium stress. Journal of Plant Nutrition, 22, 731-752. https://doi.org/10.1080/01904169909365668
  • Dixon, R. K., Garg, V. K., & Rao, M. V. (1993). Inoculation of Leucaena and prosopis seedlings with Glomus and Rhizobium species in saline soil: rhizosphere relations and seedlings growth. Arid Soil Research and Rehabilitation, 7, 133–144. https://doi.org/10.1080/15324989309381343
  • Enteshari, S., & Mirzaiyan, F. (2012). The Role of arbuscular mycorrhizal fungi and salicylic acid in success of culturing Ocimum Basilicum L. in aluminum – contaminated lands. Journal of Chemical Health Risks, 2(3), 29-32.
  • Fitz, W.J., & Wenzel, W. (2002). Arsenic transformations in the soil rhizosphere-plant system: Fundamentals and potential application to phytoremediation. Journal of Biotechonolgy, 99(3), 259-278. https://doi.org/10.1016/s0168-1656(02)00218-3
  • Fodor, A., Szabo-Nagy, A., & Erdei, L. (1995). The effects of cadmium on the fluidity and H+ - ATPase activity of plasma membrane from sunflower and wheat roots. Journal of Plant Physiology, 14, 787-792. https://doi.org/10.1016/S0176-1617(11)81418-5
  • Gadallah, M. A. A. (1995). Effects of cadmium and kinetin on chlorophyll content, saccahrides and dry matter accumulation in sunflower plants. Biologia Plantarum, 37, 233-240. https://doi.org/10.1007/BF02913219
  • Giri, B., Kapoor, R., & Mukerji, K. G. (2003). Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biology and Fertility of Soils, 38, 170–175. https://doi.org/10.1007/s00374-003-0636-z
  • Gu, C. S., Yang, Y. H., Shao, Y. F., Wu, K. W., & Liu, Z. L. (2018). The effects of exogenous salicylic acid on alleviating cadmium toxicity in Nymphaea tetragona Georgi. Sotuh African Journal of Botany, 114, 267–271. https://doi.org/10.1016/j.sajb.2017.11.012
  • Güneş, A., İnal, A., Alpaslan, M., Eraslan, F., Bağcı Güneri, E., & Çiçek, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology, 164, 728-736. https://doi.org/10.1016/j.jplph.2005.12.009
  • Harrier, L., & Sawezak, J. (2000). Detection of the 3-phosphoglycerete kinase protein of Glomus mosmossea. Mycorrhiza, 10(2), 81-86. https://doi.org/10.1007/s005720000062
  • Islam, F., Yasmeen, T., Arif, M. S., Riaz, M., Shahzad, S. M., Imran, Q., & Ali, I. (2016). Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants. Plant Physiology and Biochemistry, 108, 456–467. https://doi.org/10.1016/j.plaphy.2016.08.014
  • Jamalabad, K. H., & Khara, J. (2008). The effect of arbuscular mycorrhizal fungi Glomus intraradices on some growth and physiological parameters in wheat (cv. AZAR2) plants under cadmium toxicity. Iranian Journal of Biology, 21(2), 216-230.
  • Juniper, S., & Abbott, L. K. (1993). Vasicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza, 4, 45-57. https://doi.org/10.1007/BF00204058
  • Kacar, B., & İnal, A. (2008). Bitki Analizleri. Nobel Yayın No:1241.
  • Kacar, B. (1994). Bitki ve Toprağın Kimyasal Analizleri: III. Toprak Analizleri. Ankara Üniversitesi Ziraat Vakfı, Yayın No:3.
  • Krantev, A., Yordanova, R., Janda, T., Szalai, G., & Popova, L. (2008). Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Journal of Plant Physiology, 165(9), 920-931. https://doi.org/10.1016/j.jplph.2006.11.014
  • Krupa, Z., & Baszynski, T. (1995). Some aspects of heavy metals toxicity towards photosynthetic apparatus – direct and indirect effects on light and dark reactions: a review. Acta Physiologiae Plantarum, 17, 177-190.
  • Lagriffoul, A., Mocquot, B., Mench, M., & Vangronsveld, J. (1998). Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L.). Plant and Soil, 200(2), 241-250. https://doi.org/10.1023/A:1004346905592
  • Li, X. L., & Christie, P. (2001). Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. Chemosphere, 42, 201–207. https://doi.org/10.1016/s0045-6535(00)00126-0
  • Liu, D. H., Jiang, W. S., & Hou, W. Q. (2001). Uptake and accumulation of copper by roots and shoots of maize (Zea mays L.). Journal of Environmental Science, 13, 228-232. https://doi.org/10.1007/s11356-015-4496-5
  • Liu, D. H., Jiang, W. S., & Gao, X. Z. (2003). Effects of cadmium on root growth, cell division and nucleoli in root tip cells of garlic. Biologia Plantarum, 47, 79-83. https://doi.org/0.1023/a:1027384932338
  • Malcova, R., Vosatka, M., & Gryndler, M. (2003). Effects of inoculation with Glomus intraradices on lead uptake by Zea mays L. and Agrostiscapillaris L. Applied Soil Ecology, 23(1), 255-267. https://doi.org/10.1016/S0929-1393(02)00160-9
  • Metwally, A., Finkemeier, I., Georgi, M., & Dietz, K.J. (2003). Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiology, 132(1), 272-281. https://doi.org/10.1104/pp.102.018457
  • Mishra, A., & Choudri, M. A., (1999). Effect of salicylic acid on heavy metal- induced membrane deterioration mediated by lipoxygenase in rice. Biologia Plantarum, 42, 409-415. https://doi.org/10.1023/A:1002469303670
  • Mosse, B. (1977). Plant growth responses to vascular arbuscular mycorrhiza. X: Responses of stylosanthes and maize to inoculation in unsterile soils. New Phytologist, 7, 277-288. https://doi.org/10.1111/j.1469-8137.1977.tb04831.x
  • Moussa, H. R. (2005). Effect of cadmium on growth and oxidative metabolism of faba bean plants. Acta Agronomica Hungarica, 52, 269-276. doi:org/10.1556/AAgr.52.2004.3.8
  • Moussa, H. R., & El-Gamal, M. S. (2010). Role of salicylic acid regulation of cadmium toxicity in wheat (Triticum aestivum L.). Journal of Plant Nutrition, 33, 1460-1471. https://doi.org/10.1080/01904167.2010.489984
  • MSTAT, (1988). MSTAT microcomputer statistical program. Michigan State University, East Lansing, MI. Pal, M., Szalai, G., Horvath, E., Janda, T., & Paldi, E. (2002). Effect of salicylic acid during heavy metal stress. Proceedings of the 7th Hungarian Congress on Plant Phsiology. Acta Biologica Szegediensis, 46(3-4), 119-120.
  • Pal, M., Horvath, E., Janda, T., Paldi, E., & Szalai, G. (2005). Cadmium stimulates the accumulation of salicylic acid and its putative precursors in maize (Zea mays L) plants. Physiologia Plantarum, 125, 356- 364. https://doi.org/10.1111/j.1399-3054.2005.00545.x
  • Popova, L. P., Maslenkova, L. T., Ivanova, A., & Stoınova, Z. (2012). Role of salicylic acid in alleviating heavy metal stress. In Environmental adaptations and stress tolerance of plants in the era of climate change. Springer: New York, NY, USA.
  • Popova, L. P., Maslenkova, L. T., Yordanova, R. Y., Ivanova, A. P., Urantev, A. P., Szalai, G., & Janda, T. (2009). Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiology of Biochemistry, 47, 224-231. https://doi.org/10.1016/j.plaphy.2008.11.007
  • Quariti, O., Baussama, N., Zarrouk, M., Cherif, A., & Ghorbal, M. H. (1997). Cadmium and cooper induced changes in tomato membrane lipids. Phytochemistry, 45, 1343-1350. https://doi.org/10.1016/s0031-9422(97)00159-3
  • Rabie, G. H. (2005). Contribution of arbuscular mycorrhizal fungus tor ed kidney and wheat plants tolerance grown in heavy metal polluted soil. African Journal of Biotechonology, 4(4), 332-345.
  • Ramanujam, M. P., Jaleel, V. A., & Kumaravelu, G. (1998). Effects of salicylic acid on nodulation, nitrogenous compounds and related enzymes of Vigna mungo. Biologia Plantarum, 41, 307-311.
  • Rivas-San Vicente, M., & Plasencia, J. (2011). Salicylic acid beyond defence: Its role in plant growth and development. Journal of Experimental Botany, 62, 3321–3338. https://doi.org/10.1093/jxb/err031
  • Rosendahl, C. N., & Rosendahl, S. (1991). Influence of vesicular arbuscular mycorrhizal fungi (Glomus sp.) on the response of cucumber (Cucumis sativus) to salt stress. Environmental and Experimental Botany, 31, 313–318.
  • Rufyikiri, G., Declerck, S., Dufey, J. E., & Delvaux, B. (2000). Arbuscular mycorrhizal fungi might alleviate aluminium toxicity in banana plants. New Phytology, 148(2), 343- 352. https://doi.org/10.1046/j.1469-8137.2000.00761.x
  • Sandalio, L. M., Dalurzo, H. C., Gomes, M., Romero-Puertas, M. C., & del Rio, L. A. (2001). Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 52, 2115-2126. https://doi.org/ 10.1093/jexbot/52.364.2115
  • Shi, G., Cai, Q., Liu, Q., & Wu, L. (2009). Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes. Acta Physiologiae Plantarum, 31, 969–977. https://doi.org/10.1007/s11738-009-0312-5
  • Smith, S. E., & Read, D. M. (1997). Mycorrhizal Symbiosis. 2nd Edn. Acad Press, London. Stoyanova, D. P., & Tchakalova, E. S. (1997). Cadmium-induced ultrastructural changes in chloroplasts in the leaves and stems parenchyma in Myriophyllum spicatim L. Photosynthetica, 34(2), 241-248. https://doi.org/10.1007/978-1-4614-0815-4_21
  • Stoyanova, D.P., & Merakchiiska-Nikolova, M.G. (1992). Influence of cadmium on the formation of the internal structure of chloroplasts during illumination of etiolated bean plants (Phaseolus vulgaris L.). Compound Renda Academia Bulgarian Science, 45(2), 71-74. https://doi.org/10.1007/s11120-014-0047-z
  • Talanova, V. V., Titov, A. F., & Boeva, N. P. (2001). Effect of increasing concentrations of heavy metals on growth of barley and wheat seedlings. Russian Journal of Plant Physiology, 48(1), 100-103. https://doi.org/10.1023/A:1009062901460
  • Türkyılmaz, B., Aktaş, L. Y., & Güven, A. (2005). Phaseolus vulgaris L.’de salisilik asit uyarımlı bazı fizyolojik ve biyokimyasal değişimler. Fırat Üniviversitesi Fen ve Mühendislik Bilimleri Dergisi, 17, 319-326.
  • Weissenhorn, I., Glashoff, A., Leyval, C., & Berthelin, J. (1994). Differential tolerance to Cd and Zn of arbuscular mycorrhizal (AM) fungal spores isolated from heavy metal polluted and unpolluted soils. Plant and Soil, 167, 189–196. https://doi.org/10.1007/BF00007944
  • Weissenhorn, I., Leyval, C., & Berthelin, J. (1993). Cd-tolerant arbuscular mycorrhizal (AM) fungi from heavy metal-polluted soils. Plant and Soil, 157, 247–256.
  • Yu, X., Cheng, J., & Wong, M. H. (2004). Earthworm-mycorrhiza interaction on Cd uptake and growth of ryegrass. Soil Biology Biochemistry, 37, 1–7. https://doi.org/10.1016/j.soilbio.2004.07.029
  • Zhou, Z. K., Guo, K., Elbaz, A. A., & Yang, Z. M. (2009). Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environmental and Experimental Botany, 65, 27-34. https://doi.org/10.1016/j.envexpbot.2008.06.001

Effects of Mycorrhizae and Salicylic Acid on Growth, Cadmium Content and Uptake of Maize (Zea mays L.) Seedlings in Cadmium Contaminated Media

Yıl 2022, Cilt: 8 Sayı: 1, 133 - 141, 15.04.2022
https://doi.org/10.24180/ijaws.1011361

Öz

Cadmium (Cd) pollution is an important problem today. In this study, the effects of mycorrhiza (M) and salicylic acid (SA) applications on plant height, fresh weight, dry weight, number of leaves, and Cd content and uptake of maize (Zea mays L.) seedlings grown in Cd treated environments were determined. For this purpose, 3 kg pots with and without mycorrhizae were used with two doses of salicylic acid (SA1: 1.0 mM and SA2: 2.0 mM). The study was carried out in three replications. As a result of the measurements, mycorrhiza and Salicylic acid applications significantly increased plant height, fresh and dry weight of corn seedlings. On the other hand, mycorrhiza and Salicylic acid applications decreased Cd content and uptake. The lowest plant height was 26.63 cm, the number of leaves was 5.6, the fresh weight was 3.74 g and the dry weight was 1.63 g in the control group, which was not treated with mycorrhiza and SA. The highest plant height was 56.17 cm, the number of leaves was 7.50, and the fresh weight was 21.46 g, with 2.0 mM SA application without mycorrhiza treatment. The highest dry weight was determined with 5.70 g in mycorrhiza and 2.0 mM SA application. While the highest Cd content of corn seedlings was 3.37 mg kg-1 and its uptake was 5.95 mg kg-1 in the control application, the lowest Cd content was 0.307 mg kg-1 and uptake were 1.48 mg kg-1 with mycorrhiza with 2.0 mM SA and 1.0 mM SA. detected in applications. When the results of our study were examined, mycorrhiza and SA applications had positive effects on corn seedlings grown in Cd-contaminated environments. The combined application of salicylic acid and mycorrhiza will contribute significantly to yield and nutrient content in agricultural production against heavy metal pollution.

Kaynakça

  • Ahmad, P., Nabi, G., & Ashraf, M. (2011). Cadmium-induced oxidative damage in mustard [Brassica ,juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. South African Journal of Botany, 77, 36–44. https://doi.org/10.1016/j.sajb.2010.5.003.
  • Al-Karaki, G. N. (1997). Barley response to salt stress at varied phosphorus. Journal of Plant Nutrition, 20, 1635–1643. https://doi.org/10.1080/01904169709365362
  • Al-Karaki, G. N. (2000). Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza, 10, 51–54. https://doi.org/10.1007/s005720000055
  • Al-Karaki, G. N., & Clark, R. B. (1998). Growth, mineral acquisition, and water use by mycorrhizal wheat grown under water stress. Journal of Plant Nutrition, 21, 263–276. https://doi.org/10.1080/01904169809365401
  • Al-Karaki, G. N., Hammad, R., & Rusan, M. (2001). Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza, 11, 43–47. https://doi.org/10.1007/s0057201000098
  • Alvarez, M. E. (2000). Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Molecular Biology, 44, 429-442. https://doi.org/10.1023/a:1026561029533
  • Ananieva, E. A., Alexieva, V. S., & Popova, L. P. (2002). Treatment with salicylic acid decreases the effects of paraquat on photosynthesis. Journal of Plant Physiology, 159(7), 685-693. https://doi.org/10.1016/j.jplph.2006.11.014
  • Azcon-Aguiler, C., Azcon, R., &Barea, J. M. (1979). Endomycorrhizal fungi and Rhizobium as biological fertilizers for Medicago sativa in normal cultivation. Nature, 279, 325–327. https://doi.org/10.1038/279325a0
  • Azcon-Aguilar, C., & Barea, J. M. (1997). Phsiological and nutritional responses by Lactuva sativa L. to nitrogen sources and mycorrhizal fungi under drought conditions. Biology and Fertility of Soil, 22, 155-161.
  • Auge, R. M., Schekel, K. A., & Wample, R. L. (1986). Osmotic adjustment in leaves of VA mycorrhizal and non-mycorrhizal rose plants in response to drought stress. Plant Physiology, 82, 765–770. https://doi.org/10.1104/pp.82.3.765
  • Barcelo, J., & Poschenrieder, C. (1990). Plant water relations as affected by heavy metal stress: review. Journal of Plant Nutrition, 13, 1-37. https://doi.org/10.1080/01904169009364057
  • Boussama, N., Quariti, O., Ghorbal, M. H. (1999). Changes in growth and nitrogen assimilation in barley seedlings under cadmium stress. Journal of Plant Nutrition, 22, 731-752. https://doi.org/10.1080/01904169909365668
  • Dixon, R. K., Garg, V. K., & Rao, M. V. (1993). Inoculation of Leucaena and prosopis seedlings with Glomus and Rhizobium species in saline soil: rhizosphere relations and seedlings growth. Arid Soil Research and Rehabilitation, 7, 133–144. https://doi.org/10.1080/15324989309381343
  • Enteshari, S., & Mirzaiyan, F. (2012). The Role of arbuscular mycorrhizal fungi and salicylic acid in success of culturing Ocimum Basilicum L. in aluminum – contaminated lands. Journal of Chemical Health Risks, 2(3), 29-32.
  • Fitz, W.J., & Wenzel, W. (2002). Arsenic transformations in the soil rhizosphere-plant system: Fundamentals and potential application to phytoremediation. Journal of Biotechonolgy, 99(3), 259-278. https://doi.org/10.1016/s0168-1656(02)00218-3
  • Fodor, A., Szabo-Nagy, A., & Erdei, L. (1995). The effects of cadmium on the fluidity and H+ - ATPase activity of plasma membrane from sunflower and wheat roots. Journal of Plant Physiology, 14, 787-792. https://doi.org/10.1016/S0176-1617(11)81418-5
  • Gadallah, M. A. A. (1995). Effects of cadmium and kinetin on chlorophyll content, saccahrides and dry matter accumulation in sunflower plants. Biologia Plantarum, 37, 233-240. https://doi.org/10.1007/BF02913219
  • Giri, B., Kapoor, R., & Mukerji, K. G. (2003). Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biology and Fertility of Soils, 38, 170–175. https://doi.org/10.1007/s00374-003-0636-z
  • Gu, C. S., Yang, Y. H., Shao, Y. F., Wu, K. W., & Liu, Z. L. (2018). The effects of exogenous salicylic acid on alleviating cadmium toxicity in Nymphaea tetragona Georgi. Sotuh African Journal of Botany, 114, 267–271. https://doi.org/10.1016/j.sajb.2017.11.012
  • Güneş, A., İnal, A., Alpaslan, M., Eraslan, F., Bağcı Güneri, E., & Çiçek, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology, 164, 728-736. https://doi.org/10.1016/j.jplph.2005.12.009
  • Harrier, L., & Sawezak, J. (2000). Detection of the 3-phosphoglycerete kinase protein of Glomus mosmossea. Mycorrhiza, 10(2), 81-86. https://doi.org/10.1007/s005720000062
  • Islam, F., Yasmeen, T., Arif, M. S., Riaz, M., Shahzad, S. M., Imran, Q., & Ali, I. (2016). Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants. Plant Physiology and Biochemistry, 108, 456–467. https://doi.org/10.1016/j.plaphy.2016.08.014
  • Jamalabad, K. H., & Khara, J. (2008). The effect of arbuscular mycorrhizal fungi Glomus intraradices on some growth and physiological parameters in wheat (cv. AZAR2) plants under cadmium toxicity. Iranian Journal of Biology, 21(2), 216-230.
  • Juniper, S., & Abbott, L. K. (1993). Vasicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza, 4, 45-57. https://doi.org/10.1007/BF00204058
  • Kacar, B., & İnal, A. (2008). Bitki Analizleri. Nobel Yayın No:1241.
  • Kacar, B. (1994). Bitki ve Toprağın Kimyasal Analizleri: III. Toprak Analizleri. Ankara Üniversitesi Ziraat Vakfı, Yayın No:3.
  • Krantev, A., Yordanova, R., Janda, T., Szalai, G., & Popova, L. (2008). Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Journal of Plant Physiology, 165(9), 920-931. https://doi.org/10.1016/j.jplph.2006.11.014
  • Krupa, Z., & Baszynski, T. (1995). Some aspects of heavy metals toxicity towards photosynthetic apparatus – direct and indirect effects on light and dark reactions: a review. Acta Physiologiae Plantarum, 17, 177-190.
  • Lagriffoul, A., Mocquot, B., Mench, M., & Vangronsveld, J. (1998). Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L.). Plant and Soil, 200(2), 241-250. https://doi.org/10.1023/A:1004346905592
  • Li, X. L., & Christie, P. (2001). Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. Chemosphere, 42, 201–207. https://doi.org/10.1016/s0045-6535(00)00126-0
  • Liu, D. H., Jiang, W. S., & Hou, W. Q. (2001). Uptake and accumulation of copper by roots and shoots of maize (Zea mays L.). Journal of Environmental Science, 13, 228-232. https://doi.org/10.1007/s11356-015-4496-5
  • Liu, D. H., Jiang, W. S., & Gao, X. Z. (2003). Effects of cadmium on root growth, cell division and nucleoli in root tip cells of garlic. Biologia Plantarum, 47, 79-83. https://doi.org/0.1023/a:1027384932338
  • Malcova, R., Vosatka, M., & Gryndler, M. (2003). Effects of inoculation with Glomus intraradices on lead uptake by Zea mays L. and Agrostiscapillaris L. Applied Soil Ecology, 23(1), 255-267. https://doi.org/10.1016/S0929-1393(02)00160-9
  • Metwally, A., Finkemeier, I., Georgi, M., & Dietz, K.J. (2003). Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiology, 132(1), 272-281. https://doi.org/10.1104/pp.102.018457
  • Mishra, A., & Choudri, M. A., (1999). Effect of salicylic acid on heavy metal- induced membrane deterioration mediated by lipoxygenase in rice. Biologia Plantarum, 42, 409-415. https://doi.org/10.1023/A:1002469303670
  • Mosse, B. (1977). Plant growth responses to vascular arbuscular mycorrhiza. X: Responses of stylosanthes and maize to inoculation in unsterile soils. New Phytologist, 7, 277-288. https://doi.org/10.1111/j.1469-8137.1977.tb04831.x
  • Moussa, H. R. (2005). Effect of cadmium on growth and oxidative metabolism of faba bean plants. Acta Agronomica Hungarica, 52, 269-276. doi:org/10.1556/AAgr.52.2004.3.8
  • Moussa, H. R., & El-Gamal, M. S. (2010). Role of salicylic acid regulation of cadmium toxicity in wheat (Triticum aestivum L.). Journal of Plant Nutrition, 33, 1460-1471. https://doi.org/10.1080/01904167.2010.489984
  • MSTAT, (1988). MSTAT microcomputer statistical program. Michigan State University, East Lansing, MI. Pal, M., Szalai, G., Horvath, E., Janda, T., & Paldi, E. (2002). Effect of salicylic acid during heavy metal stress. Proceedings of the 7th Hungarian Congress on Plant Phsiology. Acta Biologica Szegediensis, 46(3-4), 119-120.
  • Pal, M., Horvath, E., Janda, T., Paldi, E., & Szalai, G. (2005). Cadmium stimulates the accumulation of salicylic acid and its putative precursors in maize (Zea mays L) plants. Physiologia Plantarum, 125, 356- 364. https://doi.org/10.1111/j.1399-3054.2005.00545.x
  • Popova, L. P., Maslenkova, L. T., Ivanova, A., & Stoınova, Z. (2012). Role of salicylic acid in alleviating heavy metal stress. In Environmental adaptations and stress tolerance of plants in the era of climate change. Springer: New York, NY, USA.
  • Popova, L. P., Maslenkova, L. T., Yordanova, R. Y., Ivanova, A. P., Urantev, A. P., Szalai, G., & Janda, T. (2009). Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiology of Biochemistry, 47, 224-231. https://doi.org/10.1016/j.plaphy.2008.11.007
  • Quariti, O., Baussama, N., Zarrouk, M., Cherif, A., & Ghorbal, M. H. (1997). Cadmium and cooper induced changes in tomato membrane lipids. Phytochemistry, 45, 1343-1350. https://doi.org/10.1016/s0031-9422(97)00159-3
  • Rabie, G. H. (2005). Contribution of arbuscular mycorrhizal fungus tor ed kidney and wheat plants tolerance grown in heavy metal polluted soil. African Journal of Biotechonology, 4(4), 332-345.
  • Ramanujam, M. P., Jaleel, V. A., & Kumaravelu, G. (1998). Effects of salicylic acid on nodulation, nitrogenous compounds and related enzymes of Vigna mungo. Biologia Plantarum, 41, 307-311.
  • Rivas-San Vicente, M., & Plasencia, J. (2011). Salicylic acid beyond defence: Its role in plant growth and development. Journal of Experimental Botany, 62, 3321–3338. https://doi.org/10.1093/jxb/err031
  • Rosendahl, C. N., & Rosendahl, S. (1991). Influence of vesicular arbuscular mycorrhizal fungi (Glomus sp.) on the response of cucumber (Cucumis sativus) to salt stress. Environmental and Experimental Botany, 31, 313–318.
  • Rufyikiri, G., Declerck, S., Dufey, J. E., & Delvaux, B. (2000). Arbuscular mycorrhizal fungi might alleviate aluminium toxicity in banana plants. New Phytology, 148(2), 343- 352. https://doi.org/10.1046/j.1469-8137.2000.00761.x
  • Sandalio, L. M., Dalurzo, H. C., Gomes, M., Romero-Puertas, M. C., & del Rio, L. A. (2001). Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 52, 2115-2126. https://doi.org/ 10.1093/jexbot/52.364.2115
  • Shi, G., Cai, Q., Liu, Q., & Wu, L. (2009). Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes. Acta Physiologiae Plantarum, 31, 969–977. https://doi.org/10.1007/s11738-009-0312-5
  • Smith, S. E., & Read, D. M. (1997). Mycorrhizal Symbiosis. 2nd Edn. Acad Press, London. Stoyanova, D. P., & Tchakalova, E. S. (1997). Cadmium-induced ultrastructural changes in chloroplasts in the leaves and stems parenchyma in Myriophyllum spicatim L. Photosynthetica, 34(2), 241-248. https://doi.org/10.1007/978-1-4614-0815-4_21
  • Stoyanova, D.P., & Merakchiiska-Nikolova, M.G. (1992). Influence of cadmium on the formation of the internal structure of chloroplasts during illumination of etiolated bean plants (Phaseolus vulgaris L.). Compound Renda Academia Bulgarian Science, 45(2), 71-74. https://doi.org/10.1007/s11120-014-0047-z
  • Talanova, V. V., Titov, A. F., & Boeva, N. P. (2001). Effect of increasing concentrations of heavy metals on growth of barley and wheat seedlings. Russian Journal of Plant Physiology, 48(1), 100-103. https://doi.org/10.1023/A:1009062901460
  • Türkyılmaz, B., Aktaş, L. Y., & Güven, A. (2005). Phaseolus vulgaris L.’de salisilik asit uyarımlı bazı fizyolojik ve biyokimyasal değişimler. Fırat Üniviversitesi Fen ve Mühendislik Bilimleri Dergisi, 17, 319-326.
  • Weissenhorn, I., Glashoff, A., Leyval, C., & Berthelin, J. (1994). Differential tolerance to Cd and Zn of arbuscular mycorrhizal (AM) fungal spores isolated from heavy metal polluted and unpolluted soils. Plant and Soil, 167, 189–196. https://doi.org/10.1007/BF00007944
  • Weissenhorn, I., Leyval, C., & Berthelin, J. (1993). Cd-tolerant arbuscular mycorrhizal (AM) fungi from heavy metal-polluted soils. Plant and Soil, 157, 247–256.
  • Yu, X., Cheng, J., & Wong, M. H. (2004). Earthworm-mycorrhiza interaction on Cd uptake and growth of ryegrass. Soil Biology Biochemistry, 37, 1–7. https://doi.org/10.1016/j.soilbio.2004.07.029
  • Zhou, Z. K., Guo, K., Elbaz, A. A., & Yang, Z. M. (2009). Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environmental and Experimental Botany, 65, 27-34. https://doi.org/10.1016/j.envexpbot.2008.06.001
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Toprak Bilimi ve Ekolojisi
Bölüm Toprak Bilimi ve Bitki Besleme
Yazarlar

Füsun Gülser 0000-0002-9495-8839

Ferit Sönmez 0000-0003-1437-4081

Yayımlanma Tarihi 15 Nisan 2022
Gönderilme Tarihi 18 Ekim 2021
Kabul Tarihi 4 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 8 Sayı: 1

Kaynak Göster

APA Gülser, F., & Sönmez, F. (2022). Effects of Mycorrhizae and Salicylic Acid on Growth, Cadmium Content and Uptake of Maize (Zea mays L.) Seedlings in Cadmium Contaminated Media. International Journal of Agricultural and Wildlife Sciences, 8(1), 133-141. https://doi.org/10.24180/ijaws.1011361

17365   17368      17366     17369    17370              


88x31.png    Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi Creative Commons Attribution 4.0 Generic License a