Araştırma Makalesi
BibTex RIS Kaynak Göster

Muz Atıkları Kompostunun Toprağın Azot ve Fosfor ile İlişkili Enzimatik Aktiviteleri Üzerine Kısa Süreli Etkisinin İzlenmesi

Yıl 2022, Cilt: 8 Sayı: 2, 328 - 339, 22.08.2022
https://doi.org/10.24180/ijaws.1103908

Öz

Muz üretim alanlarında her yıl yapılan muz bakımı sonrası çok miktarda bitki budama atığı ortaya çıkmaktadır. Bu atık malzeme önemli miktarlarda organik madde ve besin içermektedir. Bu çalışmada, muz atıkları kompostlandıktan (MAK) sonra hem tek başına hem de leonardit (LT) ve melas kompostu (MK) ile karıştırılarak toprağa uygulanmıştır. Yapılan uygulamalar şunlardır: Kontrol (K), tek başına muz atığı kompostu (MAK-2: 2 t da-1; MAK-4: 4 t da-1; MAK-8: 8 t da-1), tek başına leonardit (LT: tavsiye edilen doz), muz atığı kompostu ile leonardit (MAK-2+LT; MAK-4+LT; MAK-8+LT), tek başına melas kompostu (MK), muz atığı kompostu ile melas kompostu (MAK-2+MK; MAK-4+MK; MAK-8+MK). Sonrasında azot (NH4+NO3) ve fosfor (alınabilir P) ile ilişkili enzimlerin (üreaz ve alkali fosfataz) aktivitelerindeki değişimler belirli günlerde (0., 10., 20., 40., 80.) alınan toprak örneklerinde yapılan analizler vasıtasıyla izlenmiştir. Bu sürede toprağın pH ve EC değerleri de ölçülmüştür. Elde edilen sonuçlara göre; leonardit ile kombine edilen muz atığı kompostunun genel olarak toprağın pH, EC, değişebilir NH4-NO3, alınabilir P, üreaz ve alkali fosfataz aktivitesini diğer uygulamalara göre olumlu yönde etkilediği belirlenmiştir. Bu bağlamda, kontrole göre toprağın üreaz aktivitesi % 875, alkali fosfataz aktivitesi % 149, değişebilir NH4+NO3 kapsamı % 188, alınabilir P kapsamı % 83, EC değeri % 100 oranında artmıştır. pH değeri ise yaklaşık % 5 oranında azalmıştır. Sonuçta, leonardit ile kombine edilen muz atığı kompostunun toprak iyileştiricisi olarak en az 4 t da-1 olacak şekilde uygulanmasının ekonomik olacağı ve bu uygulamadan 10 ila 20 gün sonra toprakta azot, fosfor yarayışlılığının artacağı ifade edilebilir.

Kaynakça

  • Adugna, G. (2016). A review on impact of compost on soil properties, water use and crop productivity. Academic Research Journal of Agricultural Science and Research, 4(3), 93-104. https://doi.org/10.14662/ARJASR2016.010
  • Alzate Acevedo, S., Carrillo, A. J. D., Flórez-López, E., & Carlos D. Grande-Tovar, C. D. (2021). Recovery of banana waste-loss from production and processing: A contribution to a circular economy. Molecules, 26(17), 5282. https://doi.org/10.3390/molecules26175282
  • Assefa, S., & Tadessa, S. (2019). The principal role of organic fertilizer on soil properties and agricultural productivity - A review. Agricultural Research & Technology: Open Access Journal, 22(2), 556192. https://doi.org/10.19080/ARTOAJ.2019.22.556192.
  • Black, C. A. (1965). Methods of soil analysis. Part 2. Wilconsin, USA: American Society of Agronomy Inc., Publisher Madisson.
  • Bouyoucos, G. J. (1951). A recalibration of hydrometer method for making mechanical analysis of soils. Agronomy Journal, 43(9), 434–438. https://doi.org/10.2134/agronj1951.00021962004300090005x
  • Bremner, J. M. (1965). Total nitrogen. In C. A. Black (Eds.), Methods of soil analysis (pp. 1149-1178). Part 2 Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America, Madison, Wisconsin.
  • Cabugao, K. G., Timm, C. M., Carrell, A. A., Childs, J., Lu, T-YS., Pelletier, D. A., Weston, D. J., & Norby, R. J. (2017). Root and rhizosphere bacterial phosphatase activity varies with tree species and soil phosphorus availability in Puerto Rico Tropical Forest. Frontiers in Plant Science, 8, 1834. https://doi.org/10.3389/fpls.2017.01834.
  • Çağlar, K. O. (1949). Toprak bilgisi. Ankara Üniversitesi Ziraat Fakültesi Yayınları. No: 10, Ankara.
  • Datta, R., Anand, S., Moulick, A., Baraniya, D., Imran Pathan, S., Rejsek, K., Vranová, V., Sharma, M., Sharma, D., Kelkar, A., & Formánek, P. (2017). How enzymes are adsorbed on soil solid phase and factors limiting its activity: A Review. International Agrophysics, 31(2), 287-302. https://doi.org/10.1515/intag-2016-0049
  • Ece, A., Saltalı, K., Eryiǧit, N., & Uysal, F. (2007). The effects of leonardite applications on climbing bean (Phaseolus vulgaris L.) yield and the some soil properties. Journal of Agronomy, 6, 480–483. https://doi.org/10.3923/ja.2007.480.483.
  • FAO. (1990). Macronutrient and Micronutrient. Assessment at the Country Level: An International Study. FAO Soil Bulletin by Sillanpaa. Rome.
  • Goss, M. J., Tubeileh, A., & Goorahoo, D. (2013). A review of the use of organic amendments and the risk to human health. Advances in Agronomy, 120, 275–379. https://doi.org/10.1016/B978-0-12-407686-0.00005-1
  • Hoffman, G., & Teicher, K. (1961). Ein kolorimetrisches Verfabren zur Bestimmung der Urease aktivitat in Boden. Zeitschrift Fur Pflanzenernahrung Dungung Bodenkunde 95, 55–63.
  • Jackson, M. L. (1967). Soil chemical analysis. New Delhi: Prentice Hall of India Private Limited.
  • Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. (2017). The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions. Frontiers in Plant Science, 19(8), 1617. https://doi.org/10.3389/fpls.2017.01617
  • Jakubus, M. (2016) Estimation of phosphorus bioavailability from composted organic wastes. Chemical Speciation & Bioavailability, 28(1-4), 189-198. https://doi.org/10.1080/09542299.2016.1227687
  • Kacar, B. (1990). Gübre analizleri. Ankara Üniversitesi Ziraat Fakültesi Eğitim, Araştırma ve Geliştirme Vakfı Yayınları. Ankara.
  • Kacar, B. (1995). Bitki ve toprağin kimyasal analizleri. Ankara Üniversitesi Ziraat Fakültesi Eğitim, Araştırma ve Geliştirme Vakfı Yayınları. No: 3, Ankara.
  • Kacar, B., & İnal, A. (2008). Bitki analizleri. Nobel Yayınları No: 1241, Ankara.
  • Kome, G., Enang, R., Tabi, F., & Yerima, B. (2019) Influence of clay minerals on some soil fertility attributes: A review. Open Journal of Soil Science, 9, 155-188. https://doi.org/10.4236/ojss.2019.99010
  • Lakhdar, A., Rabhi, M., Ghnaya, T., Montemurro, F., Jedidi, N., & Abdelly, C. (2009). Effectiveness of compost use in salt-affected soil. Journal of Hazardous Materials, 171, 29–37. https://doi.org/10.1016/j.jhazmat.2009.05.132
  • Lanno, M., Kriipsalu, M., Shanskiy, M., Silm, M., & Kisand, A. (2021). Distribution of phosphorus forms depends on compost source material. Resources, 10(10), 102. https://doi.org/10.3390/resources10100102
  • Machado, R. M. A., & Serralheiro, R. P. (2017). Soil salinity: Effect on vegetable crop growth. management practices to prevent and mitigate soil salinization. Horticulturae, 3(2), 30. https://doi.org/10.3390/horticulturae3020030.
  • Margalef, O., Sardans, J., Fernández-Martínez, M. R. Molowny-Horas, I. A., Janssens, P., Ciais, D., Goll, A., Richter, M., Obersteiner, D., Asensio A., & Peñuelas J. (2017). Global patterns of phosphatase activity in natural soils. Scientific Reports, 7, 1337. https://doi.org/10.1038/s41598-017-01418-8
  • Materechera, S., & Morutse, H. (2009). Response of maize to phosphorus from fertilizer and chicken manure in a semi-arid environment of South Africa. Experimental Agriculture, 45(3), 261-273. https://doi.org/10.1017/S0014479709007868.
  • Myszura, M., Żukowska, G., Kobyłka, A., & Mazurkiewicz, J. (2021). Enzymatic activity of soils forming on an afforested heap from an opencast sulphur mine. Forests, 12(11), 1469. https://doi.org/10.3390/f12111469
  • Nawaz, M.F., Bourrié, G. & Trolard, F. (2013). Soil compaction impact and modelling. A review. Agronomy for Sustainable Development, 33, 291–309. https://doi.org/10.1007/s13593-011-0071-8
  • Neina, D. (2019). The Role of Soil pH in Plant Nutrition and Soil Remediation. Applied and Environmental Soil Science, 2019, 5794869. https://doi.org/10.1155/2019/5794869. https://doi.org/10.1155/2019/5794869
  • Noroozisharaf, A., & Kaviani, M. (2018). Effect of soil application of humic acid on nutrients uptake, essential oil and chemical compositions of garden thyme (Thymus vulgaris L.) under greenhouse conditions. Physiology and Molecular Biology of Plants, 24(3), 423-431. https://doi.org/10.1007/s12298-018-0510-y
  • Olsen, S. R., & Sommers, L. E. (1982). Phosphorus. In A. L. Page (Eds.), Methods of Soil Analysis (pp. 403-430) Part 2 Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America, Madison, Wisconsin.
  • Padam, B. S., Tin, H. S., Chye, F. Y., & Abdullah, M. I. (2014). Banana by-products: an under-utilized renewable food biomass with great potential. Journal of food science and technology, 51(12), 3527–3545. https://doi.org/10.1007/s13197-012-0861-2.
  • Piotrowska-Długosz, A., Długosz, J., Gryta, A., & Frac, M. (2022). Responses of N-cycling enzyme activities and functional diversity of soil microorganisms to soil depth, pedogenic processes and cultivated plants. Agronomy, 12(2), 264. https://doi.org/10.3390/agronomy12020264.
  • Różyło, K., & Bohacz, J. (2020). Microbial and enzyme analysis of soil after the agricultural utilization of biogas digestate and mineral mining waste. International Journal of Environmental Science and Technology, 17, 1051–1062. https://doi.org/10.1007/s13762-019-02522-0.
  • Santos, A., Fangueiro, D., Moral, R., & Bernal, M. P. (2018). Composts produced from pig slurry solids: Nutrient efficiency and N-leaching risks in amended soils. Frontiers in Sustainable Food Systems, 2, 8. https://doi.org/10.3389/fsufs.2018.00008.
  • Shahid, S. A., Zaman, M., & Heng, L. (2018). Introduction to soil salinity, sodicity and diagnostics techniques. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-96190-3_1.
  • Shang, L., Wan, L., Zhou, X., Li, S., & Li, X. (2020). Effects of organic fertilizer on soil nutrient status, enzyme activity, and bacterial community diversity in Leymus chinensis steppe in Inner Mongolia, China. PLoS ONE, 15(10), e0240559. https://doi.org/10.1371/journal.pone.0240559.
  • SPSS. (2008). SPSS Statistics for Windows. (version 17.0) SPSS Inc., Chicago, USA.
  • Szostek, M., Szpunar-Krok, E., Pawlak, R., Stanek-Tarkowska, J., & Ilek, A. (2022). Effect of different tillage systems on soil organic carbon and enzymatic activity. Agronomy, 12, 208. https://doi.org/10.3390/agronomy12010208.
  • Tabatabai, M. A. & Bremner, J. M. (1969). Use of p-nitrophenol phosphate for the assay of soil phosphatase activity. Soil Biology Biochemistry, 1, 301-307. https://doi.org/10.1016/0038-0717(69)90012-1.
  • Teixeira, L., Heck, D., Nomura, E., Vieira, H., & Dita, M. (2021). Soil attributes, plant nutrition, and Fusarium wilt of banana in São Paulo, Brazil. Tropical Plant Pathology, 46, 443–454. https://doi.org/10.1007/s40858-021-00428-2.
  • Torres-Climent, A., Gomis, P., Martín-Mata, J., Bustamante, M. A., Marhuenda-Egea, F. C., Pérez-Murcia, M. D., Perez-Espinosa, A., Paredes, C., & Moral, R. (2015). Chemical, thermal and spectroscopic methods to assess biodegradation of winery-distillery wastes during composting. PLoS ONE, 10(9), e0138925. https://doi.org/10.1371/journal.pone.0138925.
  • TSE. (2003). TS 5869 ISO 5073, Kahverengi Kömürler ve Linyitler-Hümik Asitlerin Tayini, Ankara.
  • Turan, C. (1967). Antalya sahil bölgesi topraklarının azot durumu ve bu topraklarda kültür bitkilerinin faydalanacağı azot miktarının tayininde kullanılacak en uygun metodun seçilmesi üzerinde bir araştırma. [Doktora Tezi]. A. Ü. Z. F. Yayınları, SİS Bilimsel Araştırma ve İncelemeler, 297.
  • Wang, L.K., Wang, M. S., Cardenas Jr., R. R., Md Sabiani, N. H., Yusoff, M. S., Hassan, S. H., Kamaruddin, M. A., George, F. O., & Hung, Y-T (2021). Composting processes for disposal of municipal and agricultural solid wastes. In L. K. Wang, M. H. S. Wang, Y. T. Hung (Eds.), Solid Waste Engineering and Management. Handbook of Environmental Engineering, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-84180-5.
  • Whalen, J. K. Chang, C., Clayton, G. W., & Carefoot, J. P. (2000). Cattle manure amendments can increase the pH of acid soils. Soil Science Society of America Journal, 64(3), 962-966. https://doi.org/10.2136/sssaj2000.643962x.

Monitoring the Short-Term Effect of Banana Waste Compost on the Enzymatic Activities of Soil Associated with Nitrogen and Phosphorus

Yıl 2022, Cilt: 8 Sayı: 2, 328 - 339, 22.08.2022
https://doi.org/10.24180/ijaws.1103908

Öz

A large amount of plant pruning waste occurs after annual care in banana production areas. This waste material contains significant amounts of organic substances and nutrients. In this study, banana waste compost (BWC) was applied to the soil both alone and in mixture with leonardite (LT) and vinasse compost (VC). Treatments include: control (CL), banana waste compost alone (BWC-2: 2 t da-1; BWC-4: 4 t da-1; BWC-8: 8 t da-1), leonardite alone (LT: the recommended application rate), leonardite with banana waste compost (BWC-2+LT; BWC-4+LT; BWC-8+LT), vinasse compost alone (VC: the recommended application rate), vinasse compost with banana waste compost (BWC-2+VC; BWC-4+VC; BWC-8+VC). Afterwards, the changes in the activities of nitrogen (NH4+NO3) and phosphorus (available P) related enzymes (urease and alkaline phosphatase) were monitored through analyzes made on soil samples taken on certain days (0th, 10th, 20th, 40th, 80th). During this period, the pH and EC values of the soil were also measured. According to the results obtained; it was determined that banana waste compost combined with leonardite generally positively affects the pH, EC, exchangeable NH4-NO3 and, available P of the soil, as well as the activity of urease and alkaline phosphatase compared to other treatments. In this regard, according to the control, the urease activity of the soil increased by 875%, the alkaline phosphatase activity by 149%, the exchangeable NH4+NO3 by 188%, available P by 83%, and the EC value by 100%. However, the pH value decreased by about 5%. As a result, it can be stated that the application of banana waste compost combined with leonardite as a soil conditioner at least 4 t da-1 will be economical and 10 to 20 days after this application, nitrogen and phosphorus availability will increase in the soil.

Kaynakça

  • Adugna, G. (2016). A review on impact of compost on soil properties, water use and crop productivity. Academic Research Journal of Agricultural Science and Research, 4(3), 93-104. https://doi.org/10.14662/ARJASR2016.010
  • Alzate Acevedo, S., Carrillo, A. J. D., Flórez-López, E., & Carlos D. Grande-Tovar, C. D. (2021). Recovery of banana waste-loss from production and processing: A contribution to a circular economy. Molecules, 26(17), 5282. https://doi.org/10.3390/molecules26175282
  • Assefa, S., & Tadessa, S. (2019). The principal role of organic fertilizer on soil properties and agricultural productivity - A review. Agricultural Research & Technology: Open Access Journal, 22(2), 556192. https://doi.org/10.19080/ARTOAJ.2019.22.556192.
  • Black, C. A. (1965). Methods of soil analysis. Part 2. Wilconsin, USA: American Society of Agronomy Inc., Publisher Madisson.
  • Bouyoucos, G. J. (1951). A recalibration of hydrometer method for making mechanical analysis of soils. Agronomy Journal, 43(9), 434–438. https://doi.org/10.2134/agronj1951.00021962004300090005x
  • Bremner, J. M. (1965). Total nitrogen. In C. A. Black (Eds.), Methods of soil analysis (pp. 1149-1178). Part 2 Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America, Madison, Wisconsin.
  • Cabugao, K. G., Timm, C. M., Carrell, A. A., Childs, J., Lu, T-YS., Pelletier, D. A., Weston, D. J., & Norby, R. J. (2017). Root and rhizosphere bacterial phosphatase activity varies with tree species and soil phosphorus availability in Puerto Rico Tropical Forest. Frontiers in Plant Science, 8, 1834. https://doi.org/10.3389/fpls.2017.01834.
  • Çağlar, K. O. (1949). Toprak bilgisi. Ankara Üniversitesi Ziraat Fakültesi Yayınları. No: 10, Ankara.
  • Datta, R., Anand, S., Moulick, A., Baraniya, D., Imran Pathan, S., Rejsek, K., Vranová, V., Sharma, M., Sharma, D., Kelkar, A., & Formánek, P. (2017). How enzymes are adsorbed on soil solid phase and factors limiting its activity: A Review. International Agrophysics, 31(2), 287-302. https://doi.org/10.1515/intag-2016-0049
  • Ece, A., Saltalı, K., Eryiǧit, N., & Uysal, F. (2007). The effects of leonardite applications on climbing bean (Phaseolus vulgaris L.) yield and the some soil properties. Journal of Agronomy, 6, 480–483. https://doi.org/10.3923/ja.2007.480.483.
  • FAO. (1990). Macronutrient and Micronutrient. Assessment at the Country Level: An International Study. FAO Soil Bulletin by Sillanpaa. Rome.
  • Goss, M. J., Tubeileh, A., & Goorahoo, D. (2013). A review of the use of organic amendments and the risk to human health. Advances in Agronomy, 120, 275–379. https://doi.org/10.1016/B978-0-12-407686-0.00005-1
  • Hoffman, G., & Teicher, K. (1961). Ein kolorimetrisches Verfabren zur Bestimmung der Urease aktivitat in Boden. Zeitschrift Fur Pflanzenernahrung Dungung Bodenkunde 95, 55–63.
  • Jackson, M. L. (1967). Soil chemical analysis. New Delhi: Prentice Hall of India Private Limited.
  • Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. (2017). The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions. Frontiers in Plant Science, 19(8), 1617. https://doi.org/10.3389/fpls.2017.01617
  • Jakubus, M. (2016) Estimation of phosphorus bioavailability from composted organic wastes. Chemical Speciation & Bioavailability, 28(1-4), 189-198. https://doi.org/10.1080/09542299.2016.1227687
  • Kacar, B. (1990). Gübre analizleri. Ankara Üniversitesi Ziraat Fakültesi Eğitim, Araştırma ve Geliştirme Vakfı Yayınları. Ankara.
  • Kacar, B. (1995). Bitki ve toprağin kimyasal analizleri. Ankara Üniversitesi Ziraat Fakültesi Eğitim, Araştırma ve Geliştirme Vakfı Yayınları. No: 3, Ankara.
  • Kacar, B., & İnal, A. (2008). Bitki analizleri. Nobel Yayınları No: 1241, Ankara.
  • Kome, G., Enang, R., Tabi, F., & Yerima, B. (2019) Influence of clay minerals on some soil fertility attributes: A review. Open Journal of Soil Science, 9, 155-188. https://doi.org/10.4236/ojss.2019.99010
  • Lakhdar, A., Rabhi, M., Ghnaya, T., Montemurro, F., Jedidi, N., & Abdelly, C. (2009). Effectiveness of compost use in salt-affected soil. Journal of Hazardous Materials, 171, 29–37. https://doi.org/10.1016/j.jhazmat.2009.05.132
  • Lanno, M., Kriipsalu, M., Shanskiy, M., Silm, M., & Kisand, A. (2021). Distribution of phosphorus forms depends on compost source material. Resources, 10(10), 102. https://doi.org/10.3390/resources10100102
  • Machado, R. M. A., & Serralheiro, R. P. (2017). Soil salinity: Effect on vegetable crop growth. management practices to prevent and mitigate soil salinization. Horticulturae, 3(2), 30. https://doi.org/10.3390/horticulturae3020030.
  • Margalef, O., Sardans, J., Fernández-Martínez, M. R. Molowny-Horas, I. A., Janssens, P., Ciais, D., Goll, A., Richter, M., Obersteiner, D., Asensio A., & Peñuelas J. (2017). Global patterns of phosphatase activity in natural soils. Scientific Reports, 7, 1337. https://doi.org/10.1038/s41598-017-01418-8
  • Materechera, S., & Morutse, H. (2009). Response of maize to phosphorus from fertilizer and chicken manure in a semi-arid environment of South Africa. Experimental Agriculture, 45(3), 261-273. https://doi.org/10.1017/S0014479709007868.
  • Myszura, M., Żukowska, G., Kobyłka, A., & Mazurkiewicz, J. (2021). Enzymatic activity of soils forming on an afforested heap from an opencast sulphur mine. Forests, 12(11), 1469. https://doi.org/10.3390/f12111469
  • Nawaz, M.F., Bourrié, G. & Trolard, F. (2013). Soil compaction impact and modelling. A review. Agronomy for Sustainable Development, 33, 291–309. https://doi.org/10.1007/s13593-011-0071-8
  • Neina, D. (2019). The Role of Soil pH in Plant Nutrition and Soil Remediation. Applied and Environmental Soil Science, 2019, 5794869. https://doi.org/10.1155/2019/5794869. https://doi.org/10.1155/2019/5794869
  • Noroozisharaf, A., & Kaviani, M. (2018). Effect of soil application of humic acid on nutrients uptake, essential oil and chemical compositions of garden thyme (Thymus vulgaris L.) under greenhouse conditions. Physiology and Molecular Biology of Plants, 24(3), 423-431. https://doi.org/10.1007/s12298-018-0510-y
  • Olsen, S. R., & Sommers, L. E. (1982). Phosphorus. In A. L. Page (Eds.), Methods of Soil Analysis (pp. 403-430) Part 2 Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America, Madison, Wisconsin.
  • Padam, B. S., Tin, H. S., Chye, F. Y., & Abdullah, M. I. (2014). Banana by-products: an under-utilized renewable food biomass with great potential. Journal of food science and technology, 51(12), 3527–3545. https://doi.org/10.1007/s13197-012-0861-2.
  • Piotrowska-Długosz, A., Długosz, J., Gryta, A., & Frac, M. (2022). Responses of N-cycling enzyme activities and functional diversity of soil microorganisms to soil depth, pedogenic processes and cultivated plants. Agronomy, 12(2), 264. https://doi.org/10.3390/agronomy12020264.
  • Różyło, K., & Bohacz, J. (2020). Microbial and enzyme analysis of soil after the agricultural utilization of biogas digestate and mineral mining waste. International Journal of Environmental Science and Technology, 17, 1051–1062. https://doi.org/10.1007/s13762-019-02522-0.
  • Santos, A., Fangueiro, D., Moral, R., & Bernal, M. P. (2018). Composts produced from pig slurry solids: Nutrient efficiency and N-leaching risks in amended soils. Frontiers in Sustainable Food Systems, 2, 8. https://doi.org/10.3389/fsufs.2018.00008.
  • Shahid, S. A., Zaman, M., & Heng, L. (2018). Introduction to soil salinity, sodicity and diagnostics techniques. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-96190-3_1.
  • Shang, L., Wan, L., Zhou, X., Li, S., & Li, X. (2020). Effects of organic fertilizer on soil nutrient status, enzyme activity, and bacterial community diversity in Leymus chinensis steppe in Inner Mongolia, China. PLoS ONE, 15(10), e0240559. https://doi.org/10.1371/journal.pone.0240559.
  • SPSS. (2008). SPSS Statistics for Windows. (version 17.0) SPSS Inc., Chicago, USA.
  • Szostek, M., Szpunar-Krok, E., Pawlak, R., Stanek-Tarkowska, J., & Ilek, A. (2022). Effect of different tillage systems on soil organic carbon and enzymatic activity. Agronomy, 12, 208. https://doi.org/10.3390/agronomy12010208.
  • Tabatabai, M. A. & Bremner, J. M. (1969). Use of p-nitrophenol phosphate for the assay of soil phosphatase activity. Soil Biology Biochemistry, 1, 301-307. https://doi.org/10.1016/0038-0717(69)90012-1.
  • Teixeira, L., Heck, D., Nomura, E., Vieira, H., & Dita, M. (2021). Soil attributes, plant nutrition, and Fusarium wilt of banana in São Paulo, Brazil. Tropical Plant Pathology, 46, 443–454. https://doi.org/10.1007/s40858-021-00428-2.
  • Torres-Climent, A., Gomis, P., Martín-Mata, J., Bustamante, M. A., Marhuenda-Egea, F. C., Pérez-Murcia, M. D., Perez-Espinosa, A., Paredes, C., & Moral, R. (2015). Chemical, thermal and spectroscopic methods to assess biodegradation of winery-distillery wastes during composting. PLoS ONE, 10(9), e0138925. https://doi.org/10.1371/journal.pone.0138925.
  • TSE. (2003). TS 5869 ISO 5073, Kahverengi Kömürler ve Linyitler-Hümik Asitlerin Tayini, Ankara.
  • Turan, C. (1967). Antalya sahil bölgesi topraklarının azot durumu ve bu topraklarda kültür bitkilerinin faydalanacağı azot miktarının tayininde kullanılacak en uygun metodun seçilmesi üzerinde bir araştırma. [Doktora Tezi]. A. Ü. Z. F. Yayınları, SİS Bilimsel Araştırma ve İncelemeler, 297.
  • Wang, L.K., Wang, M. S., Cardenas Jr., R. R., Md Sabiani, N. H., Yusoff, M. S., Hassan, S. H., Kamaruddin, M. A., George, F. O., & Hung, Y-T (2021). Composting processes for disposal of municipal and agricultural solid wastes. In L. K. Wang, M. H. S. Wang, Y. T. Hung (Eds.), Solid Waste Engineering and Management. Handbook of Environmental Engineering, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-84180-5.
  • Whalen, J. K. Chang, C., Clayton, G. W., & Carefoot, J. P. (2000). Cattle manure amendments can increase the pH of acid soils. Soil Science Society of America Journal, 64(3), 962-966. https://doi.org/10.2136/sssaj2000.643962x.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Toprak Bilimi ve Ekolojisi
Bölüm Toprak Bilimi ve Bitki Besleme
Yazarlar

İsmail Emrah Tavalı 0000-0003-0083-194X

Yayımlanma Tarihi 22 Ağustos 2022
Gönderilme Tarihi 15 Nisan 2022
Kabul Tarihi 6 Temmuz 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 8 Sayı: 2

Kaynak Göster

APA Tavalı, İ. E. (2022). Monitoring the Short-Term Effect of Banana Waste Compost on the Enzymatic Activities of Soil Associated with Nitrogen and Phosphorus. Uluslararası Tarım Ve Yaban Hayatı Bilimleri Dergisi, 8(2), 328-339. https://doi.org/10.24180/ijaws.1103908

17365   17368      17366     17369    17370              


88x31.png    Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi Creative Commons Attribution 4.0 Generic License a