Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of Clonostachys Species as Biocontrol Agents Against Verticillium dahliae on Strawberry

Yıl 2022, Cilt: 8 Sayı: 3, 462 - 474, 15.12.2022
https://doi.org/10.24180/ijaws.1140271

Öz

This study was conducted to test Clonostachys isolates in the biological control of wilt diseases caused by Verticillium dahliae on strawberry plants. As a result of the isolations made from strawberry plants, 32 Clonostachys isolates were obtained. Cultural, morphological and molecular characterization were used for the identification of these isolates. The isolates were identified as Clonostachys rosea f. rosea (18 isolates) and Clonostachys rosea f. catenulata (14 isolates). It was determined that the inhibition rates were not make a significant difference between the two species in the comparison of the pathogen with C. rosea f. rosea and C. rosea f. catenulata isolates, and the isolates of biocontrol agents had different percentage of effects in inhibiting the mycelial growth of the pathogen in in vitro condition. When the inhibition rates obtained as a result of the study were evaluated, it was determined that the most effective isolate was C. rosea f. rosea Gr13 (48.95%) and C. rosea f. rosea Gr4 (44.75%), respectively.

Kaynakça

  • Agrios, G. N. (2005). Plant pathology (5th ed.). Elsevier Academic Press.
  • Alström, S. (2000). Root‐colonizing fungi from oilseed rape and their ınhibition of Verticillium dahliae. Journal of Phytopathology, 148(7-8), 417-423. https://doi.org/10.1046/j.1439-0434.2000.00511.x
  • Alström, S. (2001). Characteristics of bacteria from oilseed rape in relation to their biocontrol activity against Verticillium dahliae. Journal of Phytopathology, 149, 57–64. https://doi.org/10.1046/j.1439-0434.2001.00585.x
  • Berg, G. (2007). Biological control of fungal soilborne pathogens in strawberries. In Biological Control of Plant Diseases. Birghamton: The Haworth Press, Inc.
  • Capote, N., Pastrana, A. M., Aguado, A., & Sánchez-Torres, P. (2012). Molecular tools for detection of plant pathogenic fungi and fungicide resistance. Plant pathology, https://doi.org/10.5772/38011
  • Chatterton, S.,& Punja, Z. K. (2009). Chitinase and β-1, 3-glucanase enzyme production by the mycoparasite Clonostachys rosea f. catenulata against fungal plant pathogens. Canadian Journal of Microbiology, 55(4), 356-367. https://doi.org/10.1139/w08-156
  • Carroll, C. L., Carter, C. A., Goodhue, R. E., Lawell, C. Y. C. L., & Subbarao, K. V. (2018). A review of control options and externalities for Verticillium wilts. Phytopathology, 108(2), 160-171. https://doi.org/10.1094/PHYTO-03-17-0083-RVW
  • Deketelaere, S., Tyvaert, L., França, S. C., & Höfte, M. (2017). Desirable traits of a good biocontrol agent against Verticillium wilt. Frontiers in Microbiology, 8, 1186. https://doi.org/10.3389/fmicb.2017.01186
  • Demir, S., Şensoy, S., Ocak, E., Tüfenkci, Ş., Durak, E. D., Erdinc, C., & Ünsal, H. (2015). Effects of arbuscular mycorrhizal fungus, humic acid, and whey on wilt disease caused by Verticillium dahliae Kleb. in three solanaceous crops. Turkish Journal of Agriculture and Forestry, 39(2), 300-309. https://doi.org/10.3906/tar-1403-39
  • Diehl, K., Rebensburg, P., & Lentzsch, P. (2013). Field application of non-pathogenic Verticillium dahliae genotypes for regulation of wilt in strawberry plants. American Journal of Plant Sciences, 4, 24-32. https://doi.org/10.4236/ajps.2013.47A2004
  • Easa, S. M., & Youssef, K. A. (2011). Biological control of wilt and stem-canker of potato by antagonism. Egyptian Journal of Biological Pest Control, 21(1).
  • Fatema, U., Broberg, A., Jensen, D. F., Karlsson, M., & Dubey, M. (2018). Functional analysis of polyketide synthase genes in the biocontrol fungus Clonostachys rosea. Scientific Reports, 8(1), https://doi.org/10.1038/s41598-018-33391-1
  • Fradin, E. F., & Thomma, B. P. (2006). Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo‐atrum. Molecular Plant Pathology, 7(2), 71-86. https://doi.org/10.1111/j.1364-3703.2006.00323.x
  • Gan, Z., Yang, J., Tao, N., Yu, Z., & Zhang, K. Q. (2007). Cloning and expression analysis of a chitinase gene Crchi1 from the mycoparasitic fungus Clonostachys rosea (syn. Gliocladium roseum). Journal of Microbiology, 45(5), 422-430.
  • Grunden, E., Chen, W. D., & Crane, J. L. (2001). Fungi colonizing microsclerotia of Verticillium dahliae in urban environments. Fungal Diversity, 8, 129-141.
  • Gourley, C. O., & MacNab, A. A. (1964). Verticillium dahliae and Gliocladium roseum isolation from strawberries in Nova Scotia. Canadian Journal of Plant Science, 44(6), 544-549. https://doi.org/10.4141/cjps64-107
  • Hasenekoğlu, İ. (1991).Toprak Mikrofungusları. Atatürk Üniversitesi Yayınları.
  • Hu, X., Bai, Y., Chen, T., Hu, D., Yang, J., & Xu, X. (2013). An optimized method for in vitro production of Verticillium dahliae microsclerotia. European Journal of Plant Pathology, 136(2), 225-229. https://doi.org/10.1007/s10658-013-0170-2
  • Huang, H. C. (1978). Gliocladium catenulatum: hyperparasite of Sclerotinia sclerotiorum and Fusarium species. Canadian Journal of Botany, 56(18), 2243-2246. https://doi.org/10.1139/b78-270
  • Inderbitzin, P., Bostock, R. M., Davis, R. M., Usami, T., Platt, H. W., & Subbarao, K. V. (2011). Phylogenetics and taxonomy of the fungal vascular wilt pathogen Verticillium, with the descriptions of five new species. PloS one, 6(12), e28341. https://doi.org/doi: 10.1371/journal.pone.0028341
  • Jabnoun-Khiareddine, H., Daami-Remadi, M., Ayed, F., & El Mahjoub, M. (2009). Biological control of tomato Verticillium wilt by using indigenous Trichoderma spp. The African Journal of Plant Science and Biotechnology, 3(1), 26-36.
  • Keinath, A. P., Fravel, D. R., & Papavizas, G. C. (1991). Potential of Gliocladium roseum for biocontrol of Verticillium dahliae. Phytopathology, 81(6), 644-648. https://doi.org/10.1094/Phyto-81-644.
  • Köhl, J., & Ravensberg, W. (2021). Microbial bioprotectants for plant disease management. Burleigh Dodds Science Publishing.
  • Kesimci, TG., & Demirci, E. (2020). Vegetative compatibility groups and pathogenicity of Verticillium dahliae isolates from strawberry plants in Erzurum and Erzincan provinces, Turkey. Fresenius Environmental Bulletin, 29(1), 454-462.
  • Kowalska, B. (2021). Management of the soil-borne fungal pathogen–Verticillium dahliae Kleb. causing vascular wilt diseases. Journal of Plant Pathology, 103(4), 1185-1194. https://doi.org/10.1007/s42161-021-00937-8
  • Madi, L., Katan, T., Katan, J., & Henis, Y. (1997). Biological control of Sclerotium rolfsii andVerticillium dahliae by Talaromyces flavus is mediated by different mechanisms. Phytopathology, 87(10),1054-1060. https://doi.org/10.1094/PHYTO.1997.87.10.1054
  • Meszka, B., & Bielenin, A. (2009). Bioproducts in control of strawberry Verticillium wilt. Phytopathologia, 52, 21-27.
  • Moreira, G. M., Abreu, L. M., Carvalho, V. G., Schroers, H. J., & Pfenning, L. H. (2016). Multilocus phylogeny of Clonostachys subgenus Bionectria from Brazil and description of Clonostachys chloroleuca sp. nov. Mycological Progress, 15(10), 1031-1039. https://doi.org/10.1007/s11557-016-1224-6
  • Mirmajlessi, S. M., Mand, M., Najdabbasi, N., Larena, I., & Loit, E. (2016). Screening of native Trichoderma harzianum isolates for their ability to control Verticillium wilt of strawberry. Zemdirbyste-Agriculture, 103(4), 397‒404. https://doi .org/10.13080/z-a.2016.103.051
  • Mulero-Aparicio, A., Varo, A., Agustí-Brisach, C., López-Escudero, F. J., & Trapero, A. (2020). Biological control of Verticillium wilt of olive in the field. Crop Protection, 128, 104993. https://doi.org/10.1016/j.cropro.2019.104993
  • Naraghi, L., Heydari, A., Rezaee, S., Razavi, M., & Afshari-Azad, H. (2010). Biological control of Verticillium wilt of greenhouse cucumber by Talaromyces flavus. Phytopathologia Mediterranea, 49(3), 321-329. https://doi.org/10.2478/v10045-010-0061-x
  • Palacıoğlu, G., Ö, Göksel., & Bayraktar, H. (2021). Bitki patojeni fungusların tespitinde polimeraz zincir reaksiyonu’na dayalı bazı moleküler teknikler. Journal of the Institute of Science and Technology, 11(3), 1831-1845. https://doi.org/10.21597/jist.826047
  • Panth, M., Hassler, S. C., & Baysal-Gurel, F. (2020). Methods for management of soilborne diseases in crop production. Agriculture, 10(1), 16. https://doi.org/10.3390/agriculture10010016
  • Papavizas, G. C. (1985). Trichoderma and Gliocladium: biology, ecology, and potential for biocontrol. Annual Review of Phytopathology, 23(1), 23-54. https://doi.org/10.1146/annurev.py.23.090185.000323
  • Pegg, G. F., & Brady, B. L. (2002). Verticillium wilts. CABI.
  • Pratella, G. C., & Mari, M. (1993). Effectiveness of Trichoderma, Gliocladium and Paecilomyces in postharvest fruit protection. Postharvest Biology and Technology, 3(1), 49-56. https://doi.org/10.1016/0925-5214(93)90026-Y
  • Punja, Z. K., Rose, S., & Yip, R. (2002, October 1-5). Biological control of root diseases. In Proceedings of the Canadian greenhouse conference.
  • Puri, K. D., Hu, X., Gurung, S., Short, D. P., Sandoya, G. V., Schild, M., & Subbarao, K. V. (2021). Verticillium klebahnii and V. isaacii isolates exhibit host-dependent biological control of Verticillium wilt caused by V. dahliae. PhytoFrontiers, 1, 276-290. https://doi.org/10.1094/PHYTOFR-01-21-0001-R
  • Raffle, S., & O’Neill, Tim. (2006). The control of Verticillium wilt in strawberry. Horticultural Development Council.
  • Rekanovic, E., Milijasevic, S., Todorovic, B., & Potocnik, I. (2007). Possibilities of biological and chemical control of Verticillium wilt in pepper. Phytoparasitica, 35(5), 436-441. https://doi:10.1007/BF03020601
  • Rodriguez, M. A., Cabrera, G., Gozzo, F. C., Eberlin, M. N., & Godeas, A. (2011). Clonostachys rosea BAFC3874 as a Sclerotinia sclerotiorum antagonist: mechanisms involved and potential as a biocontrol agent. Journal of Applied Microbiology, 110(5), 1177-1186. https://doi.org/10.1111/j.1365-2672.2011.04970.x
  • Royse, D. J., & Ries, S. M. (1978). The influence of fungi isolated from peach twigs on the pathogenicity of Cytospora cincta. Phytopathology, 68(4), 603-607. https://doi.org/10.1094/Phyto-68-603
  • Schroers, H. J. (2001). A monograph of Bionectria (Ascomycota, Hypocreales, Bionectriaceae) and its Clonostachys anamorphs. Studies in Mycology, 46, 1-214. https://doi.org/10.1017/s0269-915x(03)27217-7
  • Schroers, H. J., Samuels, G. J., Seifert, K. A., & Gams, W. (1999). Classification of the mycoparasite Gliocladium roseum in Clonostachys as C. rosea, its relationship to Bionectria ochroleuca, and notes on other Gliocladium-like fungi. Mycologia, 91(2), 365-385. https://doi.org/10.1080/00275514.1999.12061028
  • Song, R., Li, J., Xie, C., Jian, W., & Yang, X. (2020). An overview of the molecular genetics of plant resistance to the Verticillium wilt pathogen Verticillium dahliae. International Journal of Molecular Sciences, 21(3), 1120. https://doi.org/10.3390/ijms21031120
  • Sun, Z. B., Li, S. D., Ren, Q., Xu, J. L., Lu, X., & Sun, M. H. (2020). Biology and applications of Clonostachys rosea. Journal of Applied Microbiology, 129(3), 486-495. https://doi.org/10.1111/jam.14625
  • Thambugala, K. M., Daranagama, D. A., Phillips, A. J., Kannangara, S. D., & Promputtha, I. (2020). Fungi vs. fungi in biocontrol: An overview of fungal antagonists applied against fungal plant pathogens. Frontiers in Cellular and Infection Microbiology. https://doi.org/10.3389/fcimb.2020.604923
  • Tjamos, E. C., & Jiménez-Díaz, R.M. (1998). A compendium of Verticillium wilts in tree species. CPRO.
  • Vallad, G. E., & Subbarao, K. V. (2008). Colonization of resistant and susceptible lettuce cultivars by a green fluorescent protein-tagged isolate of Verticillium dahliae. Phytopathology, 98(8), 871-885. https://doi.org/10.1094/PHYTO-98-8-0871
  • Varo, A., Raya‐Ortega, M. C., & Trapero, A. (2016). Selection and evaluation of micro‐organisms for biocontrol of Verticillium dahliae in olive. Journal of Applied Microbiology, 121(3), 767-777. https://doi.org/10.1111/jam.13199
  • Veloso, J. F. C. A., & Díaz, J. (2012). Fusarium oxysporum Fo47 confers protection to pepper plants against Verticillium dahliae and Phytophthora capsici, and induces the expression of defence genes. Plant Pathology,61(2), 281-288. https://doi.org/10.1111/j.1365-3059.2011.02516.x
  • Zhu, H. Q., Feng, Z. L., Li, Z. F., Shi, Y. Q., Zhao, L. H., & Yang, J. R. (2013). Characterization of two fungal isolates from cotton and evaluation of their potential for biocontrol of Verticillium wilt of cotton. Journal of Phytopathology, 161(2), 70-77. https://doi.org/10.1111/jph.12027
  • Wang, Q., Chen, X., Chai, X., Xue, D., Zheng, W., Shi, Y., & Wang, A. (2019). The involvement of jasmonic acid, ethylene, and salicylic acid in the signaling pathway of Clonostachys rosea-induced resistance to gray mold disease in tomato. Phytopathology, 109(7), 1102-1114. https://doi.org/10.1094/PHYTO-01-19-0025-R
  • Watanabe, N. (1993). Antagonistic activity of Gliocladium spp. against soilborne plant pathogens in vitro. Bulletin of the Faculty of Agriculture-Meiji University (Japan).

Çilekte Verticillium dahliae’ya Karşı Biyoetmen Olarak Clonostachys Türlerinin Etkileri

Yıl 2022, Cilt: 8 Sayı: 3, 462 - 474, 15.12.2022
https://doi.org/10.24180/ijaws.1140271

Öz

Çilek bitkilerinde solgunluk hastalığına neden olan Verticillium dahliae’nın biyolojik mücadelesinde Clonostachys izolatlarının test edilmesi bu çalışmanın amacını oluşturmuştur. Çalışma kapsamında çilek bitkilerinden yapılan izolasyonlar neticesinde 32 adet Clonostachys izolatı elde edilmiştir. Kültürel, morfolojik ve moleküler olarak tanıları yapılan bu izolatların Clonostachys rosea f. rosea (18 izolat) ve Clonostachys rosea f. catenulata (14 izolat) alt türlerine ait olduğu belirlenmiştir. In vitro koşullarda patojen ile C. rosea f. rosea ve C. rosea f. catenulata izolatları arasında yapılan karşılaştırma sonucunda engelleme oranlarının iki tür arasında önemli bir fark oluşturmadığı ve biyoetmenlere ait izolatların patojenin misel gelişimini engellemede farklı oranlarda etkiye sahip olduğu tespit edilmiştir. Çalışma sonucunda elde edilen engelleme oranları değerlendirildiğinde en etkili izolatın %48.95 oranı ile C. rosea f. rosea Gr13 olduğu, bu izolatı %44.75 oranı ile C. rosea f. rosea Gr4’ün takip ettiği belirlenmiştir.

Kaynakça

  • Agrios, G. N. (2005). Plant pathology (5th ed.). Elsevier Academic Press.
  • Alström, S. (2000). Root‐colonizing fungi from oilseed rape and their ınhibition of Verticillium dahliae. Journal of Phytopathology, 148(7-8), 417-423. https://doi.org/10.1046/j.1439-0434.2000.00511.x
  • Alström, S. (2001). Characteristics of bacteria from oilseed rape in relation to their biocontrol activity against Verticillium dahliae. Journal of Phytopathology, 149, 57–64. https://doi.org/10.1046/j.1439-0434.2001.00585.x
  • Berg, G. (2007). Biological control of fungal soilborne pathogens in strawberries. In Biological Control of Plant Diseases. Birghamton: The Haworth Press, Inc.
  • Capote, N., Pastrana, A. M., Aguado, A., & Sánchez-Torres, P. (2012). Molecular tools for detection of plant pathogenic fungi and fungicide resistance. Plant pathology, https://doi.org/10.5772/38011
  • Chatterton, S.,& Punja, Z. K. (2009). Chitinase and β-1, 3-glucanase enzyme production by the mycoparasite Clonostachys rosea f. catenulata against fungal plant pathogens. Canadian Journal of Microbiology, 55(4), 356-367. https://doi.org/10.1139/w08-156
  • Carroll, C. L., Carter, C. A., Goodhue, R. E., Lawell, C. Y. C. L., & Subbarao, K. V. (2018). A review of control options and externalities for Verticillium wilts. Phytopathology, 108(2), 160-171. https://doi.org/10.1094/PHYTO-03-17-0083-RVW
  • Deketelaere, S., Tyvaert, L., França, S. C., & Höfte, M. (2017). Desirable traits of a good biocontrol agent against Verticillium wilt. Frontiers in Microbiology, 8, 1186. https://doi.org/10.3389/fmicb.2017.01186
  • Demir, S., Şensoy, S., Ocak, E., Tüfenkci, Ş., Durak, E. D., Erdinc, C., & Ünsal, H. (2015). Effects of arbuscular mycorrhizal fungus, humic acid, and whey on wilt disease caused by Verticillium dahliae Kleb. in three solanaceous crops. Turkish Journal of Agriculture and Forestry, 39(2), 300-309. https://doi.org/10.3906/tar-1403-39
  • Diehl, K., Rebensburg, P., & Lentzsch, P. (2013). Field application of non-pathogenic Verticillium dahliae genotypes for regulation of wilt in strawberry plants. American Journal of Plant Sciences, 4, 24-32. https://doi.org/10.4236/ajps.2013.47A2004
  • Easa, S. M., & Youssef, K. A. (2011). Biological control of wilt and stem-canker of potato by antagonism. Egyptian Journal of Biological Pest Control, 21(1).
  • Fatema, U., Broberg, A., Jensen, D. F., Karlsson, M., & Dubey, M. (2018). Functional analysis of polyketide synthase genes in the biocontrol fungus Clonostachys rosea. Scientific Reports, 8(1), https://doi.org/10.1038/s41598-018-33391-1
  • Fradin, E. F., & Thomma, B. P. (2006). Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo‐atrum. Molecular Plant Pathology, 7(2), 71-86. https://doi.org/10.1111/j.1364-3703.2006.00323.x
  • Gan, Z., Yang, J., Tao, N., Yu, Z., & Zhang, K. Q. (2007). Cloning and expression analysis of a chitinase gene Crchi1 from the mycoparasitic fungus Clonostachys rosea (syn. Gliocladium roseum). Journal of Microbiology, 45(5), 422-430.
  • Grunden, E., Chen, W. D., & Crane, J. L. (2001). Fungi colonizing microsclerotia of Verticillium dahliae in urban environments. Fungal Diversity, 8, 129-141.
  • Gourley, C. O., & MacNab, A. A. (1964). Verticillium dahliae and Gliocladium roseum isolation from strawberries in Nova Scotia. Canadian Journal of Plant Science, 44(6), 544-549. https://doi.org/10.4141/cjps64-107
  • Hasenekoğlu, İ. (1991).Toprak Mikrofungusları. Atatürk Üniversitesi Yayınları.
  • Hu, X., Bai, Y., Chen, T., Hu, D., Yang, J., & Xu, X. (2013). An optimized method for in vitro production of Verticillium dahliae microsclerotia. European Journal of Plant Pathology, 136(2), 225-229. https://doi.org/10.1007/s10658-013-0170-2
  • Huang, H. C. (1978). Gliocladium catenulatum: hyperparasite of Sclerotinia sclerotiorum and Fusarium species. Canadian Journal of Botany, 56(18), 2243-2246. https://doi.org/10.1139/b78-270
  • Inderbitzin, P., Bostock, R. M., Davis, R. M., Usami, T., Platt, H. W., & Subbarao, K. V. (2011). Phylogenetics and taxonomy of the fungal vascular wilt pathogen Verticillium, with the descriptions of five new species. PloS one, 6(12), e28341. https://doi.org/doi: 10.1371/journal.pone.0028341
  • Jabnoun-Khiareddine, H., Daami-Remadi, M., Ayed, F., & El Mahjoub, M. (2009). Biological control of tomato Verticillium wilt by using indigenous Trichoderma spp. The African Journal of Plant Science and Biotechnology, 3(1), 26-36.
  • Keinath, A. P., Fravel, D. R., & Papavizas, G. C. (1991). Potential of Gliocladium roseum for biocontrol of Verticillium dahliae. Phytopathology, 81(6), 644-648. https://doi.org/10.1094/Phyto-81-644.
  • Köhl, J., & Ravensberg, W. (2021). Microbial bioprotectants for plant disease management. Burleigh Dodds Science Publishing.
  • Kesimci, TG., & Demirci, E. (2020). Vegetative compatibility groups and pathogenicity of Verticillium dahliae isolates from strawberry plants in Erzurum and Erzincan provinces, Turkey. Fresenius Environmental Bulletin, 29(1), 454-462.
  • Kowalska, B. (2021). Management of the soil-borne fungal pathogen–Verticillium dahliae Kleb. causing vascular wilt diseases. Journal of Plant Pathology, 103(4), 1185-1194. https://doi.org/10.1007/s42161-021-00937-8
  • Madi, L., Katan, T., Katan, J., & Henis, Y. (1997). Biological control of Sclerotium rolfsii andVerticillium dahliae by Talaromyces flavus is mediated by different mechanisms. Phytopathology, 87(10),1054-1060. https://doi.org/10.1094/PHYTO.1997.87.10.1054
  • Meszka, B., & Bielenin, A. (2009). Bioproducts in control of strawberry Verticillium wilt. Phytopathologia, 52, 21-27.
  • Moreira, G. M., Abreu, L. M., Carvalho, V. G., Schroers, H. J., & Pfenning, L. H. (2016). Multilocus phylogeny of Clonostachys subgenus Bionectria from Brazil and description of Clonostachys chloroleuca sp. nov. Mycological Progress, 15(10), 1031-1039. https://doi.org/10.1007/s11557-016-1224-6
  • Mirmajlessi, S. M., Mand, M., Najdabbasi, N., Larena, I., & Loit, E. (2016). Screening of native Trichoderma harzianum isolates for their ability to control Verticillium wilt of strawberry. Zemdirbyste-Agriculture, 103(4), 397‒404. https://doi .org/10.13080/z-a.2016.103.051
  • Mulero-Aparicio, A., Varo, A., Agustí-Brisach, C., López-Escudero, F. J., & Trapero, A. (2020). Biological control of Verticillium wilt of olive in the field. Crop Protection, 128, 104993. https://doi.org/10.1016/j.cropro.2019.104993
  • Naraghi, L., Heydari, A., Rezaee, S., Razavi, M., & Afshari-Azad, H. (2010). Biological control of Verticillium wilt of greenhouse cucumber by Talaromyces flavus. Phytopathologia Mediterranea, 49(3), 321-329. https://doi.org/10.2478/v10045-010-0061-x
  • Palacıoğlu, G., Ö, Göksel., & Bayraktar, H. (2021). Bitki patojeni fungusların tespitinde polimeraz zincir reaksiyonu’na dayalı bazı moleküler teknikler. Journal of the Institute of Science and Technology, 11(3), 1831-1845. https://doi.org/10.21597/jist.826047
  • Panth, M., Hassler, S. C., & Baysal-Gurel, F. (2020). Methods for management of soilborne diseases in crop production. Agriculture, 10(1), 16. https://doi.org/10.3390/agriculture10010016
  • Papavizas, G. C. (1985). Trichoderma and Gliocladium: biology, ecology, and potential for biocontrol. Annual Review of Phytopathology, 23(1), 23-54. https://doi.org/10.1146/annurev.py.23.090185.000323
  • Pegg, G. F., & Brady, B. L. (2002). Verticillium wilts. CABI.
  • Pratella, G. C., & Mari, M. (1993). Effectiveness of Trichoderma, Gliocladium and Paecilomyces in postharvest fruit protection. Postharvest Biology and Technology, 3(1), 49-56. https://doi.org/10.1016/0925-5214(93)90026-Y
  • Punja, Z. K., Rose, S., & Yip, R. (2002, October 1-5). Biological control of root diseases. In Proceedings of the Canadian greenhouse conference.
  • Puri, K. D., Hu, X., Gurung, S., Short, D. P., Sandoya, G. V., Schild, M., & Subbarao, K. V. (2021). Verticillium klebahnii and V. isaacii isolates exhibit host-dependent biological control of Verticillium wilt caused by V. dahliae. PhytoFrontiers, 1, 276-290. https://doi.org/10.1094/PHYTOFR-01-21-0001-R
  • Raffle, S., & O’Neill, Tim. (2006). The control of Verticillium wilt in strawberry. Horticultural Development Council.
  • Rekanovic, E., Milijasevic, S., Todorovic, B., & Potocnik, I. (2007). Possibilities of biological and chemical control of Verticillium wilt in pepper. Phytoparasitica, 35(5), 436-441. https://doi:10.1007/BF03020601
  • Rodriguez, M. A., Cabrera, G., Gozzo, F. C., Eberlin, M. N., & Godeas, A. (2011). Clonostachys rosea BAFC3874 as a Sclerotinia sclerotiorum antagonist: mechanisms involved and potential as a biocontrol agent. Journal of Applied Microbiology, 110(5), 1177-1186. https://doi.org/10.1111/j.1365-2672.2011.04970.x
  • Royse, D. J., & Ries, S. M. (1978). The influence of fungi isolated from peach twigs on the pathogenicity of Cytospora cincta. Phytopathology, 68(4), 603-607. https://doi.org/10.1094/Phyto-68-603
  • Schroers, H. J. (2001). A monograph of Bionectria (Ascomycota, Hypocreales, Bionectriaceae) and its Clonostachys anamorphs. Studies in Mycology, 46, 1-214. https://doi.org/10.1017/s0269-915x(03)27217-7
  • Schroers, H. J., Samuels, G. J., Seifert, K. A., & Gams, W. (1999). Classification of the mycoparasite Gliocladium roseum in Clonostachys as C. rosea, its relationship to Bionectria ochroleuca, and notes on other Gliocladium-like fungi. Mycologia, 91(2), 365-385. https://doi.org/10.1080/00275514.1999.12061028
  • Song, R., Li, J., Xie, C., Jian, W., & Yang, X. (2020). An overview of the molecular genetics of plant resistance to the Verticillium wilt pathogen Verticillium dahliae. International Journal of Molecular Sciences, 21(3), 1120. https://doi.org/10.3390/ijms21031120
  • Sun, Z. B., Li, S. D., Ren, Q., Xu, J. L., Lu, X., & Sun, M. H. (2020). Biology and applications of Clonostachys rosea. Journal of Applied Microbiology, 129(3), 486-495. https://doi.org/10.1111/jam.14625
  • Thambugala, K. M., Daranagama, D. A., Phillips, A. J., Kannangara, S. D., & Promputtha, I. (2020). Fungi vs. fungi in biocontrol: An overview of fungal antagonists applied against fungal plant pathogens. Frontiers in Cellular and Infection Microbiology. https://doi.org/10.3389/fcimb.2020.604923
  • Tjamos, E. C., & Jiménez-Díaz, R.M. (1998). A compendium of Verticillium wilts in tree species. CPRO.
  • Vallad, G. E., & Subbarao, K. V. (2008). Colonization of resistant and susceptible lettuce cultivars by a green fluorescent protein-tagged isolate of Verticillium dahliae. Phytopathology, 98(8), 871-885. https://doi.org/10.1094/PHYTO-98-8-0871
  • Varo, A., Raya‐Ortega, M. C., & Trapero, A. (2016). Selection and evaluation of micro‐organisms for biocontrol of Verticillium dahliae in olive. Journal of Applied Microbiology, 121(3), 767-777. https://doi.org/10.1111/jam.13199
  • Veloso, J. F. C. A., & Díaz, J. (2012). Fusarium oxysporum Fo47 confers protection to pepper plants against Verticillium dahliae and Phytophthora capsici, and induces the expression of defence genes. Plant Pathology,61(2), 281-288. https://doi.org/10.1111/j.1365-3059.2011.02516.x
  • Zhu, H. Q., Feng, Z. L., Li, Z. F., Shi, Y. Q., Zhao, L. H., & Yang, J. R. (2013). Characterization of two fungal isolates from cotton and evaluation of their potential for biocontrol of Verticillium wilt of cotton. Journal of Phytopathology, 161(2), 70-77. https://doi.org/10.1111/jph.12027
  • Wang, Q., Chen, X., Chai, X., Xue, D., Zheng, W., Shi, Y., & Wang, A. (2019). The involvement of jasmonic acid, ethylene, and salicylic acid in the signaling pathway of Clonostachys rosea-induced resistance to gray mold disease in tomato. Phytopathology, 109(7), 1102-1114. https://doi.org/10.1094/PHYTO-01-19-0025-R
  • Watanabe, N. (1993). Antagonistic activity of Gliocladium spp. against soilborne plant pathogens in vitro. Bulletin of the Faculty of Agriculture-Meiji University (Japan).
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat, Veterinerlik ve Gıda Bilimleri
Bölüm Bitki Koruma
Yazarlar

Tuba Genç Kesimci 0000-0003-2022-0193

Erkol Demirci 0000-0002-7176-1654

Erken Görünüm Tarihi 15 Aralık 2022
Yayımlanma Tarihi 15 Aralık 2022
Gönderilme Tarihi 4 Temmuz 2022
Kabul Tarihi 19 Ekim 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 8 Sayı: 3

Kaynak Göster

APA Genç Kesimci, T., & Demirci, E. (2022). Çilekte Verticillium dahliae’ya Karşı Biyoetmen Olarak Clonostachys Türlerinin Etkileri. International Journal of Agricultural and Wildlife Sciences, 8(3), 462-474. https://doi.org/10.24180/ijaws.1140271

17365   17368      17366     17369    17370              


88x31.png    Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi Creative Commons Attribution 4.0 Generic License a