Loading [a11y]/accessibility-menu.js
Araştırma Makalesi
BibTex RIS Kaynak Göster

Physical and Physiological Properties and Mineral Content of Curly Lettuce Grown by Applying Different Rates of Biochar to the Soil with Varying Irrigation Water Levels

Yıl 2023, Cilt: 9 Sayı: 2, 205 - 217, 21.08.2023
https://doi.org/10.24180/ijaws.1255958

Öz

The crisis experienced from the water supply causes food production to be adversely affected in the agriculture sector, which is the biggest consumer of water. The deficit irrigation strategy ensures the continuity of food production as well as using water effectively. However, since the plant grown in this strategy is exposed to abiotic stress, it experiences significant yield and quality losses. For this reason, it is necessary to develop approaches to improve yield and quality losses of the plant grown with deficit irrigation. In this study, the physical and physiological properties and mineral content of curly lettuce (Lactuca sativa L. var. Crispa) grown by applying different rates of biochar to the soil (0%, 1%, 2%, 3%) with varying irrigation water levels (100%, 67%, 33%) researched. The study determined that decreasing irrigation water level decreased plant height, stem diameter, number of leaves, root wet and dry weights, plant weight, chlorophyll and leaf relative water contents, stomatal conductivity and N, P, K, Ca, Mg, Na, Fe, Cu, Mn and Zn contents of curly lettuce, while increasing the membrane damage index, but the physical and physiological properties and mineral content affecting the yield and quality of curly lettuce improved with increasing biochar rates. In the study, as a result of the emergence of the highest stress factor in irrigation at 33% level, it was observed that physical and physiological properties and mineral content of curly lettuce were affected at the highest level, and the dose of biochar, which managed the stress most effectively, was 3%. As a result, considering that biochar has an important potential to improve yield and quality losses of curly lettuce grown under deficit irrigation conditions, the use of biochar in the deficit irrigation regime were found to be recommendable.

Kaynakça

  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19-33. https://doi.org/10.1016/j.chemosphere.2013.10.071.
  • Akhtar, S. S., Andersen, M. N., & Liu, F. (2015). Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agricultural Water Management, 158, 61-68. https://doi.org/10.1016/j.agwat.2015.04.010.
  • Al-Bayatı, Y. F. A., & Sahin, M. (2018). Determination of water-yield parameters of lettuce plantin Konya open field conditions. Soil Water Journal, 7(2), 38-45. https://doi.org/10.21657/topraksu.460725.
  • AOAC. (2005). Official methods of analysis of the association of official analytical chemists. Association of Official Analytical Chemists (AOAC).
  • Bauerle, W. L., Weston, D. J., Bowden, J. D., Dudley, J. B., & Toler, J. E. (2004). Leaf absorptance of photosynthetically active radiation in relation to chlorophyll meter estimates among woody plant species. Scientia Horticulturae, 101(1-2), 169-178. https://doi.org/10.1016/j.scienta.2003.09.010.
  • Bojović, B., & Marković, A. (2009). Correlation between nitrogen and chlorophyll content in wheat (Triticum aestivum L.). Kragujevac Journal of Science, 31(5827), 69-74.
  • Bolat, I., & Kara, O. (2017). Plant nutrients: sources, functions, deficiencies and redundancy. Journal of Bartin Faculty of Forestry, 19(1), 218-228. https://doi.org/10.24011/barofd.2513133.
  • Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen total 1. In: A. L. Page, M. H. Miller & D. R. Keeney (Eds.), Methods of soil analysis (pp. 903-948). America and Soil Science Society, Madison.
  • Camoglu, G., & Demirel, K. (2015). The effects on yield and some physio–morphological traits of different salinity and potassium treatments in lettuce. COMU Journal of Agriculture Faculty, 3(1), 89-97.
  • Camoglu, G., Demirel, K., Akcal, A., & Genc, L. (2019). The effects of water stress on the yield and physiological properties of table tomato. Journal of Agricultural Faculty of Bursa Uludag University, 33(1), 15-29.
  • Chaganti, V. N., Crohn, D. M., & Simunek, J. (2015). Leaching and reclamation of a biochar and compost amended saline-sodic soil with moderate SAR reclaimed water. Agricultural Water Management, 158, 255-265. https://doi.org/10.1016/j.agwat.2015.05.016.
  • Chai, Q., Gan, Y., Turner, N. C., Zhang, R. Z., Yang, C., Niu, Y., & Siddique, K. H. (2014). Water-saving innovations Chinese agriculture. Advances in Agronomy, 126, 149-201. https://doi.org/10.1016/B978-0-12-800132-5.00002-X.
  • Chai, Q., Gan, Y., Zhao, C., Xu, H. L., Waskom, R. M., Niu, Y., & Siddique, K. H. (2016). Regulated deficit irrigation for crop production under drought stress. A review. Agronomy for Sustainable Development, 36, 1-21. https://doi.org/10.1007/s13593-015-0338-6.
  • Cornelissen, G., Martinsen, V., Shitumbanuma, V., Alling, V., Breedveld, G. D., Rutherford, D. W., Sparrevik, M., Hale, S. E., Obia, A., & Mulder, J. (2013). Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia. Agronomy, 3(2), 256-274. https://doi.org/10.3390/agronomy3020256.
  • Corwin, D. L., & Rhoades, J. D. (1984). Measurement of inverted electrical conductivity profiles using electromagnetic induction. Soil Science Society of America Journal, 48(2), 288-291. https://doi.org/10.2136/sssaj1984.03615995004800020011x.
  • Demir, H., Kaman, H., Sonmez, I., Mohamoud, S. S., Polat, E., & Ucok, Z. (2022). Yield, quality and plant nutrient contents of lettuce under different deficit irrigation conditions. Acta Scientiarum Polonorum Hortorum Cultus, 21(1), 115-129. https://doi.org/10.24326/asphc.2022.1.10.
  • Egamberdieva, D., Reckling, M., & Wirth, S. (2017). Biochar-based Bradyrhizobium inoculum improves growth of lupin (Lupinus angustifolius L.) under drought stress. European Journal of Soil Biology, 78, 38-42. https://doi.org/10.1016/j.ejsobi.2016.11.007.
  • Gee, G. W., & Bauder, J. W., (1986). Particle size analysis. In: A. L. Page, M. H. Miller & D. R. Keeney (Eds.), Methods of soil analysis (pp. 338-411). America and Soil Science Society, Madison.
  • Girones, R., Ferrús, M. A., Alonso, J. L., Rodriguez-Manzano, J., Calgua, B., de Abreu Corrêa, A., Hundesa, A., Carratala, A., & Bofill-Mas, S. (2010). Molecular detection of pathogens in water–the pros and cons of molecular techniques. Water Research, 44(15), 4325-4339. https://doi.org/10.1016/j.watres.2010.06.030.
  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science, 327(5967), 812-818. https://doi.org/10.1126/science.1185383.
  • Gul, S., & Whalen, J. K. (2016). Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biology and Biochemistry, 103, 1-15. https://doi.org/10.1016/j.soilbio.2016.08.001.
  • Hossain, M. Z., Bahar, M. M., Sarkar, B., Donne, S. W., Ok, Y. S., Palansooriya, K. N., Kirkham, M. B., Chowdhury, S., & Bolan, N. (2020). Biochar and its importance on nutrient dynamics in soil and plant. Biochar, 2, 379-420. https://doi.org/10.1007/s42773-020-00065-z.
  • Jamei, R., Heidari, R., Khara, J., & Zare, S. (2009). Hypoxia induced changes in the lipid peroxidation, membrane permeability, reactive oxygen species generation, and antioxidative response systems Zea mays leaves. Turkish Journal of Biology, 33(1), 45-52. https://doi.org/10.3906/biy-0807-14.
  • Kalra, Y. (1997). Handbook of reference methods for plant analysis. CRC press.
  • Kang, S., Hao, X., Du, T., Tong, L., Su, X., Lu, H., Li, X., Huo, Z., Li, S., & Ding, R. (2017). Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice. Agricultural Water Management, 179, 5-17. https://doi.org/10.1016/j.agwat.2016.05.007.
  • Karabay, U., Toptas, A., Yanik, J., & Aktas, L. (2021). Does biochar alleviate salt stress impact on growth of salt-sensitive crop common bean. Communications in Soil Science and Plant Analysis, 52(5), 456-469. https://doi.org/10.1080/00103624.2020.1862146.
  • Karipcin, M. Z., & Satir, N. Y. (2016). Effect of arbuscular mycorrhizal fungi (AMF) on growth and nutrient uptake of lettuce (Lactuca sativa) under water stress. Yuzuncu Yil University Journal of Agricultural Sciences, 26(3), 406-413.
  • Katerji, N., Van Hoorn, J. W., Hamdy, A., & Mastrorilli, M. (2004). Comparison of corn yield response to plant water stress caused by salinity and by drought. Agricultural Water Management, 65(2), 95-101. https://doi.org/10.1016/j.agwat.2003.08.001.
  • Kiran, S., Ozkay, F., Ellialtioglu, S., & Kusvuran, S. (2014). Studies on some physiological changes of drought stress applied melon genotypes. Soil Water Journal, 3(1), 53-58. https://doi.org/10.21657/tsd.67125.
  • Laghari, M., Naidu, R., Xiao, B., Hu, Z., Mirjat, M. S., Hu, M., Kandhro, M. N., Chen, Z., Guo, D., Jogi, Q., Abudi, Z. N. & Fazal, S. (2016). Recent developments in biochar as an effective tool for agricultural soil management: a review. Journal of the Science of Food and Agriculture, 96(15), 4840-4849. https://doi.org/10.1002/jsfa.7753.
  • Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y., & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere, 178, 466-478. https://doi.org/10.1016/j.chemosphere.2017.03.072.
  • Lyu, S., Du, G., Liu, Z., Zhao, L., & Lyu, D. (2016). Effects of biochar on photosystem function and activities of protective enzymes in Pyrus ussuriensis Maxim. under drought stress. Acta Physiologiae Plantarum, 38, 1-10. https://doi.org/10.1007/s11738-016-2236-1.
  • Mancosu, N., Snyder, R. L., Kyriakakıs, G., & Spano, D. (2015). Water scarcity and future challenges for food production. Water, 7, 975-992. https://doi.org/10.3390/w7030975.
  • Mandal, S., Pu, S., Adhikari, S., Ma, H., Kim, D. H., Bai, Y., & Hou, D. (2021). Progress and future prospects in biochar composites: Application and reflection in the soil environment. Critical Reviews Environmental Science and Technology, 51(3), 219-271. https://doi.org/10.1080/10643389.2020.1713030.
  • Marcińska, I., Czyczyło-Mysza, I., Skrzypek, E., Filek, M., Grzesiak, S., Grzesiak, M. T., Janowiak, F., Hura, T., Dziurka, M., Dziurka, K., Nowakowska, A., & Quarrie, S. A. (2013). Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes. Acta Physiologiae Plantarum, 35, 451-461. https://doi.org/10.1007/s11738-012-1088-6.
  • McLean, E. O. (1982). Soil pH and lime requirement. In: A. L. Page, M. H. Miller & D. R. Keeney (Eds.), Methods of soil analysis (pp. 199-224). America and Soil Science Society, Madison.
  • Montenegro, M., Silva, A. Z., & Pedraza, R. O. (2011). Effect of water availability on physiological performance and lettuce crop yield (Lactuca sativa). Ciencia E Investigación Agraria, 38(1), 65-74.
  • Muller, B., Pantin, F., Génard, M., Turc, O., Freixes, S., Piques, M., & Gibon, Y. (2011). Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. Journal of Experimental Botany, 62(6), 1715-1729. https://doi.org/10.1093/jxb/erq438.
  • Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. In: A. L. Page, M. H. Miller & D. R. Keeney (Eds.), Methods of soil analysis (pp. 539-577). America and Soil Science Society, Madison.
  • Nguyen, T. T. N., Xu, C. Y., Tahmasbian, I., Che, R., Xu, Z., Zhou, X., Wallace, H. M., & Bai, S. H. (2017). Effects of biochar on soil available inorganic nitrogen: a review and meta-analysis. Geoderma, 288, 79-96. https://doi.org/10.1016/j.geoderma.2016.11.004.
  • Ors, S., & Ekinci, M. (2015). Drought stress and plant physiology. Derim, 32(2), 237-250.
  • Oukaltouma, K., El Moukhtari, A., Lahrizi, Y., Makoudi, B., Mouradi, M., Farissi, M., Willems, A., Qaddoury, A., Bekkaoui, F., & Ghoulam, C. (2022). Physiological, biochemical and morphological tolerance mechanisms of faba bean (Vicia faba L.) to the combined stress of water deficit and phosphorus limitation. Journal of Soil Science and Plant Nutrition, 22(2), 1632-1646. https://doi.org/10.1007/s42729-022-00759-2.
  • Purakayastha, T. J., Bera, T., Bhaduri, D., Sarkar, B., Mandal, S., Wade, P., Kumari, S., Biswas, S., Menon, M., Pathak, H., & Tsang, D. C. (2019). A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security. Chemosphere, 227, 345-365. https://doi.org/10.1016/j.chemosphere.2019.03.170.
  • Pushnik, J. C., Miller, G. W., & Manwaring, J. H. (1984). The role of iron in higher plant chlorophyll biosynthesis, maintenance and chloroplast biogenesis. Journal of Plant Nutrition, 7(1-5), 733-758. https://doi.org/10.1080/01904168409363238.
  • Qianqian, M., Haider, F. U., Farooq, M., Adeel, M., Shakoor, N., Jun, W., Jiaying X., Wang, X. W., Panjun, L., & Cai, L. (2022). Selenium treated Foliage and biochar treated soil for improved lettuce (Lactuca sativa L.) growth in Cd-polluted soil. Journal of Cleaner Production, 335, 130267. https://doi.org/10.1016/j.jclepro.2021.130267.
  • Razzaghi, F., Obour, P. B., & Arthur, E. (2020). Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma, 361, 114055. https://doi.org/10.1016/j.geoderma.2019.114055.
  • Sabatino, L., Iapichino, G., Mauro, R. P., Consentino, B. B., & De Pasquale, C. (2020). Poplar biochar as an alternative substrate for curly endive cultivated in a soilless system. Applied Sciences, 10(4), 1258. https://doi.org/10.3390/app10041258.
  • Schiermeier, Q. (2014). Water on tap. Nature, 510, 326-328. https://doi.org/10.1038/510326a.
  • Semida, W. M., Beheiry, H. R., Sétamou, M., Simpson, C. R., Abd El-Mageed, T. A., Rady, M. M., & Nelson, S. D. (2019). Biochar implications for sustainable agriculture and environment: A review. South African Journal of Botany, 127, 333-347. https://doi.org/10.1016/j.sajb.2019.11.015.
  • Senyigit, U., & Kaplan, D. (2013). Impact of different irrigation water levels on yield and some quality parameters of lettuce (Lactuca sativa L. var. Longifolia cv.) under unheated greenhouse condition. Infrastructure and Ecology of Rural Areas, 2, 97-107.
  • Smart, R. E., & Barrs, H. D. (1973). The effect of environment and irrigation interval on leaf water potential of four horticultural species. Agricultural Meteorology, 12, 337-346. https://doi.org/10.1016/0002-1571(73)90030-7.
  • Tanure, M. M. C., da Costa, L. M., Huiz, H. A., Fernandes, R. B. A., Cecon, P. R., Junior, J. D. P., & da Luz, J. M. R. (2019). Soil water retention, physiological characteristics, and growth of maize plants in response to biochar application to soil. Soil and Tillage Research, 192, 164-173. https://doi.org/10.1016/j.still.2019.05.007.
  • TUIK. (2023). Agriculture Statistics. https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111&dil=1 [Access date: February 5, 2023].
  • Yang, A., Akhtar, S. S., Li, L., Fu, Q., Li, Q., Naeem, M. A., He, X., Zhang, Z., & Jacobsen, S. E. (2020). Biochar mitigates combined effects of drought and salinity stress in quinoa. Agronomy, 10(6), 912. https://doi.org/10.3390/agronomy10060912.
  • Yazdic, M., & Degirmenci, H. (2018). Effect on leaf water potential and chlorophyll value of different irrigation levels in cotton. KSU Journal of Agriculture and Nature, 21(4), 511-519.
  • Yazgan, S., Ayas, S., Demirtas, C., Buyuukcangaz, H., & Candogan, B. N. (2008). Deficit irrigation effects on lettuce (Lactuca sativa var. Olenka) yield in unheated greenhouse condition. Journal of Food Agriculture and Environment, 6, 357-361.
  • Yildirim, E., Ekinci, M., & Turan, M. (2021). Impact of biochar in mitigating the negative effect of drought stress on cabbage seedlings. Journal of Soil Science and Plant Nutrition, 21(3), 2297-2309. https://doi.org/10.1007/s42729-021-00522-z.
  • Yildirim, E., Ekinci, M., Turan, M., Agar, G., Ors, S., Dursun, A., Kul, R., & Akgul, G. (2022). Physiological and biochemical changes of pepper cultivars under combined salt and drought stress. Gesunde Pflanzen, 74(3), 675-683. https://doi.org/10.1007/s10343-022-00642-1.
  • Yue, Y., Guo, W. N., Lin, Q. M., Li, G. T., & Zhao, X. R. (2016). Improving salt leaching in a simulated saline soil column by three biochars derived from rice straw (Oryza sativa L.), sunflower straw (Helianthus annuus), and cow manure. Journal of Soil and Water Conservation, 71(6), 467-475. https://doi.org/10.2489/jswc.71.6.467.
  • Zhu, X., Chen, B., Zhu, L., & Xing, B. (2017). Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review. Environmental Pollution, 227, 98-115. https://doi.org/10.1016/j.envpol.2017.04.032.

Değişen Sulama Suyu Seviyeleriyle Toprağa Farklı Oranlarda Biyoçar Uygulanarak Yetiştirilen Kıvırcık Marulun Fiziksel ve Fizyolojik Özellikleri ile Mineral Madde İçeriği

Yıl 2023, Cilt: 9 Sayı: 2, 205 - 217, 21.08.2023
https://doi.org/10.24180/ijaws.1255958

Öz

Su arzından yaşanan kriz suyun en büyük tüketicisi olan tarım sektöründe gıda üretiminin olumsuz etkilenmesine neden olmaktadır. Kısıntılı sulama stratejisi suyu etkin kullanmanın yanı sıra gıda üretiminin sürekliliğini de sağlamaktadır. Ancak bu stratejide yetişen bitki abiyotik strese maruz kaldığı için önemli verim ve kalite kayıpları yaşamaktadır. Bu nedenle kısıntılı sulamayla yetiştirilen bitkinin verim ve kalite kayıplarını iyileştirmeye yönelik yaklaşımların geliştirilmesi gerekmektedir. Bu çalışmada değişen sulama suyu seviyeleriyle (% 100, % 67 ve % 33) toprağa farklı oranlarda biyoçar uygulanarak (% 0, % 1, % 2 ve % 3) kıvırcık marulun (Lactuca sativa L. var. Crispa) fiziksel ve fizyolojik özellikleri ile mineral madde içeriği araştırılmıştır. Çalışma azalan sulama suyu seviyesinin kıvırcık marulun bitki boyunu, gövde çapını, yaprak sayısını, kök yaş ve kuru ağırlıklarını ve bitki ağırlığını, klorofil ve yaprak bağıl su içeriklerini, stoma iletkenliğini ve N, P, K, Ca, Mg, Na, Fe, Cu, Mn ve Zn içeriklerini azaltırken membran zararlanma indeksini artırdığını ancak kıvırcık marulun verim ve kalitesini etkileyen fiziksel ve fizyolojik özellikleri ile mineral madde içeriğinin artan biyoçar oranlarıyla gelişim gösterdiğini belirlemiştir. Çalışmada % 33 seviyesinde sulamada en yüksek stres faktörünün ortaya çıkması sonucunda kıvırcık marulun fiziksel ve fizyolojik özellikleri ile mineral madde içeriğinin en yüksek seviyede etkilendiği ve stresi en etkili yöneten biyoçar dozunun ise % 3 oranında gerçekleştiği görülmüştür. Sonuç olarak kısıntılı sulama koşullarında yetiştirilen kıvırcık marulun verim ve kalite kayıplarını iyileştirmeye yönelik biyoçarın önemli bir potansiyelinin olduğu dikkate alınarak kısıntılı sulama rejiminde biyoçarın kullanımı önerilebilir olarak bulunmuştur.

Kaynakça

  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19-33. https://doi.org/10.1016/j.chemosphere.2013.10.071.
  • Akhtar, S. S., Andersen, M. N., & Liu, F. (2015). Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agricultural Water Management, 158, 61-68. https://doi.org/10.1016/j.agwat.2015.04.010.
  • Al-Bayatı, Y. F. A., & Sahin, M. (2018). Determination of water-yield parameters of lettuce plantin Konya open field conditions. Soil Water Journal, 7(2), 38-45. https://doi.org/10.21657/topraksu.460725.
  • AOAC. (2005). Official methods of analysis of the association of official analytical chemists. Association of Official Analytical Chemists (AOAC).
  • Bauerle, W. L., Weston, D. J., Bowden, J. D., Dudley, J. B., & Toler, J. E. (2004). Leaf absorptance of photosynthetically active radiation in relation to chlorophyll meter estimates among woody plant species. Scientia Horticulturae, 101(1-2), 169-178. https://doi.org/10.1016/j.scienta.2003.09.010.
  • Bojović, B., & Marković, A. (2009). Correlation between nitrogen and chlorophyll content in wheat (Triticum aestivum L.). Kragujevac Journal of Science, 31(5827), 69-74.
  • Bolat, I., & Kara, O. (2017). Plant nutrients: sources, functions, deficiencies and redundancy. Journal of Bartin Faculty of Forestry, 19(1), 218-228. https://doi.org/10.24011/barofd.2513133.
  • Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen total 1. In: A. L. Page, M. H. Miller & D. R. Keeney (Eds.), Methods of soil analysis (pp. 903-948). America and Soil Science Society, Madison.
  • Camoglu, G., & Demirel, K. (2015). The effects on yield and some physio–morphological traits of different salinity and potassium treatments in lettuce. COMU Journal of Agriculture Faculty, 3(1), 89-97.
  • Camoglu, G., Demirel, K., Akcal, A., & Genc, L. (2019). The effects of water stress on the yield and physiological properties of table tomato. Journal of Agricultural Faculty of Bursa Uludag University, 33(1), 15-29.
  • Chaganti, V. N., Crohn, D. M., & Simunek, J. (2015). Leaching and reclamation of a biochar and compost amended saline-sodic soil with moderate SAR reclaimed water. Agricultural Water Management, 158, 255-265. https://doi.org/10.1016/j.agwat.2015.05.016.
  • Chai, Q., Gan, Y., Turner, N. C., Zhang, R. Z., Yang, C., Niu, Y., & Siddique, K. H. (2014). Water-saving innovations Chinese agriculture. Advances in Agronomy, 126, 149-201. https://doi.org/10.1016/B978-0-12-800132-5.00002-X.
  • Chai, Q., Gan, Y., Zhao, C., Xu, H. L., Waskom, R. M., Niu, Y., & Siddique, K. H. (2016). Regulated deficit irrigation for crop production under drought stress. A review. Agronomy for Sustainable Development, 36, 1-21. https://doi.org/10.1007/s13593-015-0338-6.
  • Cornelissen, G., Martinsen, V., Shitumbanuma, V., Alling, V., Breedveld, G. D., Rutherford, D. W., Sparrevik, M., Hale, S. E., Obia, A., & Mulder, J. (2013). Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia. Agronomy, 3(2), 256-274. https://doi.org/10.3390/agronomy3020256.
  • Corwin, D. L., & Rhoades, J. D. (1984). Measurement of inverted electrical conductivity profiles using electromagnetic induction. Soil Science Society of America Journal, 48(2), 288-291. https://doi.org/10.2136/sssaj1984.03615995004800020011x.
  • Demir, H., Kaman, H., Sonmez, I., Mohamoud, S. S., Polat, E., & Ucok, Z. (2022). Yield, quality and plant nutrient contents of lettuce under different deficit irrigation conditions. Acta Scientiarum Polonorum Hortorum Cultus, 21(1), 115-129. https://doi.org/10.24326/asphc.2022.1.10.
  • Egamberdieva, D., Reckling, M., & Wirth, S. (2017). Biochar-based Bradyrhizobium inoculum improves growth of lupin (Lupinus angustifolius L.) under drought stress. European Journal of Soil Biology, 78, 38-42. https://doi.org/10.1016/j.ejsobi.2016.11.007.
  • Gee, G. W., & Bauder, J. W., (1986). Particle size analysis. In: A. L. Page, M. H. Miller & D. R. Keeney (Eds.), Methods of soil analysis (pp. 338-411). America and Soil Science Society, Madison.
  • Girones, R., Ferrús, M. A., Alonso, J. L., Rodriguez-Manzano, J., Calgua, B., de Abreu Corrêa, A., Hundesa, A., Carratala, A., & Bofill-Mas, S. (2010). Molecular detection of pathogens in water–the pros and cons of molecular techniques. Water Research, 44(15), 4325-4339. https://doi.org/10.1016/j.watres.2010.06.030.
  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science, 327(5967), 812-818. https://doi.org/10.1126/science.1185383.
  • Gul, S., & Whalen, J. K. (2016). Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biology and Biochemistry, 103, 1-15. https://doi.org/10.1016/j.soilbio.2016.08.001.
  • Hossain, M. Z., Bahar, M. M., Sarkar, B., Donne, S. W., Ok, Y. S., Palansooriya, K. N., Kirkham, M. B., Chowdhury, S., & Bolan, N. (2020). Biochar and its importance on nutrient dynamics in soil and plant. Biochar, 2, 379-420. https://doi.org/10.1007/s42773-020-00065-z.
  • Jamei, R., Heidari, R., Khara, J., & Zare, S. (2009). Hypoxia induced changes in the lipid peroxidation, membrane permeability, reactive oxygen species generation, and antioxidative response systems Zea mays leaves. Turkish Journal of Biology, 33(1), 45-52. https://doi.org/10.3906/biy-0807-14.
  • Kalra, Y. (1997). Handbook of reference methods for plant analysis. CRC press.
  • Kang, S., Hao, X., Du, T., Tong, L., Su, X., Lu, H., Li, X., Huo, Z., Li, S., & Ding, R. (2017). Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice. Agricultural Water Management, 179, 5-17. https://doi.org/10.1016/j.agwat.2016.05.007.
  • Karabay, U., Toptas, A., Yanik, J., & Aktas, L. (2021). Does biochar alleviate salt stress impact on growth of salt-sensitive crop common bean. Communications in Soil Science and Plant Analysis, 52(5), 456-469. https://doi.org/10.1080/00103624.2020.1862146.
  • Karipcin, M. Z., & Satir, N. Y. (2016). Effect of arbuscular mycorrhizal fungi (AMF) on growth and nutrient uptake of lettuce (Lactuca sativa) under water stress. Yuzuncu Yil University Journal of Agricultural Sciences, 26(3), 406-413.
  • Katerji, N., Van Hoorn, J. W., Hamdy, A., & Mastrorilli, M. (2004). Comparison of corn yield response to plant water stress caused by salinity and by drought. Agricultural Water Management, 65(2), 95-101. https://doi.org/10.1016/j.agwat.2003.08.001.
  • Kiran, S., Ozkay, F., Ellialtioglu, S., & Kusvuran, S. (2014). Studies on some physiological changes of drought stress applied melon genotypes. Soil Water Journal, 3(1), 53-58. https://doi.org/10.21657/tsd.67125.
  • Laghari, M., Naidu, R., Xiao, B., Hu, Z., Mirjat, M. S., Hu, M., Kandhro, M. N., Chen, Z., Guo, D., Jogi, Q., Abudi, Z. N. & Fazal, S. (2016). Recent developments in biochar as an effective tool for agricultural soil management: a review. Journal of the Science of Food and Agriculture, 96(15), 4840-4849. https://doi.org/10.1002/jsfa.7753.
  • Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y., & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere, 178, 466-478. https://doi.org/10.1016/j.chemosphere.2017.03.072.
  • Lyu, S., Du, G., Liu, Z., Zhao, L., & Lyu, D. (2016). Effects of biochar on photosystem function and activities of protective enzymes in Pyrus ussuriensis Maxim. under drought stress. Acta Physiologiae Plantarum, 38, 1-10. https://doi.org/10.1007/s11738-016-2236-1.
  • Mancosu, N., Snyder, R. L., Kyriakakıs, G., & Spano, D. (2015). Water scarcity and future challenges for food production. Water, 7, 975-992. https://doi.org/10.3390/w7030975.
  • Mandal, S., Pu, S., Adhikari, S., Ma, H., Kim, D. H., Bai, Y., & Hou, D. (2021). Progress and future prospects in biochar composites: Application and reflection in the soil environment. Critical Reviews Environmental Science and Technology, 51(3), 219-271. https://doi.org/10.1080/10643389.2020.1713030.
  • Marcińska, I., Czyczyło-Mysza, I., Skrzypek, E., Filek, M., Grzesiak, S., Grzesiak, M. T., Janowiak, F., Hura, T., Dziurka, M., Dziurka, K., Nowakowska, A., & Quarrie, S. A. (2013). Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes. Acta Physiologiae Plantarum, 35, 451-461. https://doi.org/10.1007/s11738-012-1088-6.
  • McLean, E. O. (1982). Soil pH and lime requirement. In: A. L. Page, M. H. Miller & D. R. Keeney (Eds.), Methods of soil analysis (pp. 199-224). America and Soil Science Society, Madison.
  • Montenegro, M., Silva, A. Z., & Pedraza, R. O. (2011). Effect of water availability on physiological performance and lettuce crop yield (Lactuca sativa). Ciencia E Investigación Agraria, 38(1), 65-74.
  • Muller, B., Pantin, F., Génard, M., Turc, O., Freixes, S., Piques, M., & Gibon, Y. (2011). Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. Journal of Experimental Botany, 62(6), 1715-1729. https://doi.org/10.1093/jxb/erq438.
  • Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. In: A. L. Page, M. H. Miller & D. R. Keeney (Eds.), Methods of soil analysis (pp. 539-577). America and Soil Science Society, Madison.
  • Nguyen, T. T. N., Xu, C. Y., Tahmasbian, I., Che, R., Xu, Z., Zhou, X., Wallace, H. M., & Bai, S. H. (2017). Effects of biochar on soil available inorganic nitrogen: a review and meta-analysis. Geoderma, 288, 79-96. https://doi.org/10.1016/j.geoderma.2016.11.004.
  • Ors, S., & Ekinci, M. (2015). Drought stress and plant physiology. Derim, 32(2), 237-250.
  • Oukaltouma, K., El Moukhtari, A., Lahrizi, Y., Makoudi, B., Mouradi, M., Farissi, M., Willems, A., Qaddoury, A., Bekkaoui, F., & Ghoulam, C. (2022). Physiological, biochemical and morphological tolerance mechanisms of faba bean (Vicia faba L.) to the combined stress of water deficit and phosphorus limitation. Journal of Soil Science and Plant Nutrition, 22(2), 1632-1646. https://doi.org/10.1007/s42729-022-00759-2.
  • Purakayastha, T. J., Bera, T., Bhaduri, D., Sarkar, B., Mandal, S., Wade, P., Kumari, S., Biswas, S., Menon, M., Pathak, H., & Tsang, D. C. (2019). A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security. Chemosphere, 227, 345-365. https://doi.org/10.1016/j.chemosphere.2019.03.170.
  • Pushnik, J. C., Miller, G. W., & Manwaring, J. H. (1984). The role of iron in higher plant chlorophyll biosynthesis, maintenance and chloroplast biogenesis. Journal of Plant Nutrition, 7(1-5), 733-758. https://doi.org/10.1080/01904168409363238.
  • Qianqian, M., Haider, F. U., Farooq, M., Adeel, M., Shakoor, N., Jun, W., Jiaying X., Wang, X. W., Panjun, L., & Cai, L. (2022). Selenium treated Foliage and biochar treated soil for improved lettuce (Lactuca sativa L.) growth in Cd-polluted soil. Journal of Cleaner Production, 335, 130267. https://doi.org/10.1016/j.jclepro.2021.130267.
  • Razzaghi, F., Obour, P. B., & Arthur, E. (2020). Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma, 361, 114055. https://doi.org/10.1016/j.geoderma.2019.114055.
  • Sabatino, L., Iapichino, G., Mauro, R. P., Consentino, B. B., & De Pasquale, C. (2020). Poplar biochar as an alternative substrate for curly endive cultivated in a soilless system. Applied Sciences, 10(4), 1258. https://doi.org/10.3390/app10041258.
  • Schiermeier, Q. (2014). Water on tap. Nature, 510, 326-328. https://doi.org/10.1038/510326a.
  • Semida, W. M., Beheiry, H. R., Sétamou, M., Simpson, C. R., Abd El-Mageed, T. A., Rady, M. M., & Nelson, S. D. (2019). Biochar implications for sustainable agriculture and environment: A review. South African Journal of Botany, 127, 333-347. https://doi.org/10.1016/j.sajb.2019.11.015.
  • Senyigit, U., & Kaplan, D. (2013). Impact of different irrigation water levels on yield and some quality parameters of lettuce (Lactuca sativa L. var. Longifolia cv.) under unheated greenhouse condition. Infrastructure and Ecology of Rural Areas, 2, 97-107.
  • Smart, R. E., & Barrs, H. D. (1973). The effect of environment and irrigation interval on leaf water potential of four horticultural species. Agricultural Meteorology, 12, 337-346. https://doi.org/10.1016/0002-1571(73)90030-7.
  • Tanure, M. M. C., da Costa, L. M., Huiz, H. A., Fernandes, R. B. A., Cecon, P. R., Junior, J. D. P., & da Luz, J. M. R. (2019). Soil water retention, physiological characteristics, and growth of maize plants in response to biochar application to soil. Soil and Tillage Research, 192, 164-173. https://doi.org/10.1016/j.still.2019.05.007.
  • TUIK. (2023). Agriculture Statistics. https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111&dil=1 [Access date: February 5, 2023].
  • Yang, A., Akhtar, S. S., Li, L., Fu, Q., Li, Q., Naeem, M. A., He, X., Zhang, Z., & Jacobsen, S. E. (2020). Biochar mitigates combined effects of drought and salinity stress in quinoa. Agronomy, 10(6), 912. https://doi.org/10.3390/agronomy10060912.
  • Yazdic, M., & Degirmenci, H. (2018). Effect on leaf water potential and chlorophyll value of different irrigation levels in cotton. KSU Journal of Agriculture and Nature, 21(4), 511-519.
  • Yazgan, S., Ayas, S., Demirtas, C., Buyuukcangaz, H., & Candogan, B. N. (2008). Deficit irrigation effects on lettuce (Lactuca sativa var. Olenka) yield in unheated greenhouse condition. Journal of Food Agriculture and Environment, 6, 357-361.
  • Yildirim, E., Ekinci, M., & Turan, M. (2021). Impact of biochar in mitigating the negative effect of drought stress on cabbage seedlings. Journal of Soil Science and Plant Nutrition, 21(3), 2297-2309. https://doi.org/10.1007/s42729-021-00522-z.
  • Yildirim, E., Ekinci, M., Turan, M., Agar, G., Ors, S., Dursun, A., Kul, R., & Akgul, G. (2022). Physiological and biochemical changes of pepper cultivars under combined salt and drought stress. Gesunde Pflanzen, 74(3), 675-683. https://doi.org/10.1007/s10343-022-00642-1.
  • Yue, Y., Guo, W. N., Lin, Q. M., Li, G. T., & Zhao, X. R. (2016). Improving salt leaching in a simulated saline soil column by three biochars derived from rice straw (Oryza sativa L.), sunflower straw (Helianthus annuus), and cow manure. Journal of Soil and Water Conservation, 71(6), 467-475. https://doi.org/10.2489/jswc.71.6.467.
  • Zhu, X., Chen, B., Zhu, L., & Xing, B. (2017). Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review. Environmental Pollution, 227, 98-115. https://doi.org/10.1016/j.envpol.2017.04.032.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat, Veterinerlik ve Gıda Bilimleri
Bölüm Tarımsal Yapılar ve Sulama
Yazarlar

Şefik Tüfenkçi 0000-0002-3350-1085

Caner Yerli 0000-0002-8601-8791

Erken Görünüm Tarihi 14 Ağustos 2023
Yayımlanma Tarihi 21 Ağustos 2023
Gönderilme Tarihi 24 Şubat 2023
Kabul Tarihi 28 Mart 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 9 Sayı: 2

Kaynak Göster

APA Tüfenkçi, Ş., & Yerli, C. (2023). Physical and Physiological Properties and Mineral Content of Curly Lettuce Grown by Applying Different Rates of Biochar to the Soil with Varying Irrigation Water Levels. International Journal of Agricultural and Wildlife Sciences, 9(2), 205-217. https://doi.org/10.24180/ijaws.1255958

17365   17368      17366     17369    17370              


88x31.png    Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi Creative Commons Attribution 4.0 Generic License a