Araştırma Makalesi
BibTex RIS Kaynak Göster

Durum Wheat Breeding for Enhanced Safety and Nutritional Value: A GWAS Approach to Tackling Aluminum Uptake

Yıl 2023, Cilt: 9 Sayı: 2, 262 - 277, 21.08.2023
https://doi.org/10.24180/ijaws.1284491

Öz

The importance of producing safe and high-quality food is on the rise, and developing durum wheat varieties with low aluminum content is crucial in meeting this demand. Breeders can achieve this goal by developing new varieties that are more resistant to aluminum uptake. To reach this purpose, aluminum levels in a diverse collection of durum wheat genotypes were evaluated, including Turkish-released cultivars and local landraces, by using inductively coupled plasma mass spectrometry was used. The results revealed that genotypes ranged from 0.9 to 24.6 mg kg-1, with an average of 3.31 mg kg-1, while 93.1% of them had a low content of ≤ 5 mg kg-1. A genome-wide association study is a robust method for uncovering genetic variations linked to specific traits. In this study, two marker-trait associations were identified on chromosomes 2A and 3A, which explained a phenotypic variation of 14 and 71%. These findings highlight the need for continued monitoring to ensure safe and healthy food for consumers and suggest that collaborative genome-wide association studies and marker-assisted selection can accelerate the development of new durum wheat varieties with reduced aluminum levels. However, further research is necessary to confirm and validate the genetic factors contributing to aluminum content variation among different durum wheat genotypes, although the study's methodology was robust.

Destekleyen Kurum

Scientific Research Projects Unit of Yozgat Bozok University in Yozgat, Türkiye

Proje Numarası

6602c-BİLTEM/19-323

Teşekkür

The author acknowledges the Scientific Research Projects Unit of Yozgat Bozok University in Yozgat, Türkiye for their generous financial support through Project No. 6602c-BİLTEM/19-323.

Kaynakça

  • ATSDR (2008). Toxicological profile for aluminum. In U.S. Department of Health and Human Services (Ed.), Agency for Toxic Substances and Disease Registry –ATSDR’s toxicological profiles. Washington, D.C. http://dx.doi.org/10.1201/9781420061888_ch29.
  • Alsaleh, A. (2022c). SSR-based genome-wide association study in Turkish durum wheat germplasms revealed novel QTL of accumulated platinum. Molecular Biology Reports. 49, pages 11289–11300. https://doi.org/10.1007/s11033-022-07720-7.
  • Alsaleh, A., Baloch, F. S., Sesiz, U., Nadeem, M. A., Hatipoglu, R., Erbakan, M., & Özkan, H. (2022b). Marker-assisted selection and validation of DNA markers associated with cadmium content in durum wheat germplasm, Crop and pasture science, 73(7–8), 943–956. doi:10.1071/CP21484.
  • Alsaleh, A., Baloch, F. S., Azrak, M., Hamwieh, A., Cömertpay, G., Hatipoğlu, R., Nachit, M., & Özkan, H. (2019). Identification of chromosomal regions in the genetic control of quality traits in durum wheat (Triticum turgidum L.) from the Fertile Crescent. Turkish Journal of Agriculture and Forestry, 43,(3), 334–350. doi:https://doi.org/10.3906/tar-1807-83.
  • Alsaleh, A., Bektas, H., Baloch, F. S., Nadeem, M. A., & Özkan, H. (2022a). Turkish durum wheat conserved ex-situ and in situ unveils a new hotspot of unexplored genetic diversity. Plant Genetic Resources, Crop Science, 62, 1200–1212. DOI: 10.1002/csc2.20723.
  • Arystanbekkyzy, M., Nadeem, M. A., Aktas, H., Yeken, M. Z., Zencirci, N., Nawaz, M. A., Ali, F., Haider, M. S., Tunc, K., Chung, G., & Baloch, F. S. (2019). Phylogenetic and Taxonomic Relationship of Turkish Wild and Cultivated Emmer (Triticum turgidum ssp. dicoccoides) Revealed by iPBS-Retrotransposons Markers. International Journal of Agriculture and Biology, 21, 163-155. https://hdl.handle.net/20.500.12619/33351.
  • Baloch, F. S., Alsaleh, A., Shahid, M. Q., Çiftçi, V., Sáenz de Miera, L. E., Aasim, M., Nadeem, M. A., Aktaş, H., Özkan, H., & Hatipoğlu, R. (2017). A whole genome DArTseq and SNP analysis for genetic diversity assessment in durum wheat from Central Fertile Crescent. PLoS ONE, 12(1), e0167821. https://doi.org/10.1371/journal.pone.0167821.
  • Delhaize, E., James, R. A., & Ryan, P. R. (2012). Aluminium tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (Triticum aestivum) grown on acid soil. The New Phytologist, 195(3), 609-619. http://dx.doi.org/10.1111/j.1469-8137.2012.04183.x. PMid:22642366.
  • European Union. (2012). Commission Regulation (EU) No 231/2012 of 9 March 2012 laying down specifications for food additives listed in Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council (Text with EEA relevance). Official Journal of the European Union, 83(3), 1-295. https://op.europa.eu/en/publication-detail/-/publication/a42dd9b2-b63f-438b-a790-1fa5995b7d41.
  • Frouin, J., Labeyrie, A., Boisnard, A., Sacchi, G. A., & Ahmadi, N. (2019). Genomic prediction offers the most effective marker assisted breeding approach for ability to prevent arsenic accumulation in rice grains. PLoS ONE, 14(6), e0217516. https://doi.org/10.1371/journal.pone.0217516.
  • Garcia-Oliveira, A., Martins-Lopes, P., Tolrà, R., Poschenrieder, C., Guedes-Pinto, H., & Benito, C. (2016). Differential physiological responses of Portuguese bread wheat (Triticum aestivum L.) genotypes under aluminium stress. Diversity, 8(4), 26. http://dx.doi.org/10.3390/d8040026.
  • Glaubitz, J. C., Casstevens, T. M., Lu, F., Harriman, J., Elshire, R. J., Sun, Q., & Buckler, E. S. (2014). TASSEL-GBS: A High Capacity Genotyping by Sequencing Analysis Pipeline. PLoS ONE, 9(2), e90346. https://doi.org/10.1371/journal.pone.0090346.
  • Gupta, N., Singh, G. S., & Kumar, A. (2013). Molecular basis of aluminium toxicity in plants: A review. American Journal of Plant Sciences, 4, 21-37. DOI: 10.4236/ajps.2013.412A3004.
  • Kaler, A. S., & Purcell, L. C. (2019). Estimation of a significance threshold for genome-wide association studies. BMC Genomics, 20, 618. https://doi.org/10.1186/s12864-019-5992-7.
  • Kaya, H. B., Cetin, O., Kaya, H. S., Sahin, M., Sefer, F., & Tanyolac, B. (2016). Association mapping in Turkish olive cultivars revealed significant markers related to some important agronomic traits. Biochemical Genetics, 54(2), 313-329. https://doi.org/10.1007/s10528-016-9738-9.
  • Liang, J., Liang, X., Cao, P., Wang, X., Gao, P., Ma, N., Li, N., & Xu, H. (2019). A preliminary investigation of naturally occurring aluminum in grains, vegetables, and fruits from some areas of China and dietary intake assessment. Journal of Food Science, 84(3), 701-710. http://dx.doi.org/10.1111/1750-3841.14459. PMid:30730583.
  • Liu, W., Xu, F., Lv, T., Zhou, W., Chen, Y., Jin, C., Lu, L., & Lin, X. (2018). Spatial responses of antioxidative system to aluminum stress in roots of wheat (Triticum aestivum L.) plants. The Science of the Total Environment, 627, 462-469. DOI: 10.1016/j.scitotenv.2018.01.021.
  • Ma, J., Jiang, G., Zheng, W., & Zhang, M. (2019). A longitudinal assessment of aluminum contents in foodstuffs and aluminum intake of residents in Tianjin metropolis. Food Science & Nutrition, 7(3), 997-1003. http://dx.doi.org/10.1002/fsn3.920. PMid:30918642.
  • Maksimović, I., Kastori, R., Putnik-Delić, M., Momčilović, V., Denčić, S., & Mirosavljević, M. (2020). Genetic differences in aluminium accumulation in the grains of field grown Aegilops and Triticum. Plant, Soil and Environment, 66(7), 351-356. https://doi.org/10.17221/127/2020-PSE.
  • Mello, J. C., Tonial, I. B., & Lucchetta, L. (2023). Aluminum accumulation in the wheat production chain: a review. Food Science and Technology, 43, e116022. https://doi.org/10.1590/fst.116022.
  • Mulugeta, B., Tesfaye, K., Ortiz, R., Johansson, E., Hailesilassie, T., Hammenhag, C., Hailu, F., & Geleta, M. (2023). Marker-trait association analyses revealed major novel QTLs for grain yield and related traits in durum wheat. Frontiers in Plant Science, 13, 1009244. https://doi.org/10.3389/fpls.2022.1009244.
  • Nadeem, M. A., Nawaz, M. A., Shahid, M. Q., Doğan, Y., Çömertpay, G., Yıldız, M., Hatipoğlu, R., Ahmad, F., Alsaleh, A., Labhane, N., Özkan, H., Chung, G., & Baloch, F. S. (2018). DNA molecular markers in plant breeding: Current status and recent advancements in genomic selection and genome editing. Biotechnology & Biotechnological Equipment, 32(2), 261-285. https://doi.org/10.1080/13102818.2017.1400401.
  • Nanda, B. B., Brahmaji Rao, J. S., Kumar, R., & Acharya, R. (2016). Determination of trace concentration of aluminium in raw rice samples using instrumental neutron activation analysis and particle induced gamma-ray emission methods. Journal of Radioanalytical and Nuclear Chemistry, 310(3), 1241-1245. http://dx.doi.org/10.1007/s10967-016-5032-x.
  • Ofoe, R., Thomas, R. H., Asiedu, S. K., Wang-Pruski, G., Fofana, B., & Abbey, L. (2023). Aluminum in plant: Benefits, toxicity and tolerance mechanisms. Frontiers in Plant Science, 13, DOI: 10.3389/fpls.2022.1085998 .
  • Rahman, M. A., Lee, S. H., Ji, H. C., Kabir, A. H., Jones, C. S., & Lee, K. W. (2018). Importance of mineral nutrition for mitigating aluminum toxicity in plants on acidic soils: Current status and opportunities. International Journal of Molecular Sciences, 19(10), 3073. doi: 10.3390/ijms19103073. PMID: 30297682; PMCID: PMC6213855.
  • Stahl, T., Taschan, H., & Brunn, H. (2011). Aluminium content of selected foods and food products. Environmental Sciences Europe, 23(1), 1-11. http://dx.doi.org/10.1186/2190-4715-23-37.
  • Szabó, A., Gyimes, E., & Véha, A. (2015). Aluminium toxicity in winter wheat. Acta Universitatis Sapientiae. Alimentaria, 8(1), 95-103. http://dx.doi.org/10.1515/ausal-2015-0009.
  • Tam, V., Patel, N., Turcotte, M., Bossé, Y., Paré, G., & Meyre, D. (2019). Benefits and limitations of genome-wide association studies. Nature Reviews Genetics, 20, 467–484. https://doi.org/10.1038/s41576-019-0127-1.
  • Väli, U., Einarsson, A., Waits, L., & Ellegren, H. (2008). To what extent do microsatellite markers reflect genome-wide genetic diversity in natural populations? Molecular Ecology, 17(17), 3808-3817. doi: 10.1111/j.1365-294X.2008.03876.x.
  • Vieira, M. L., Santini, L., Diniz, A. L., & Munhoz, C. F. (2016). Microsatellite markers: What they mean and why they are so useful. Genetics and Molecular Biology, 39(3), 312-328. doi: 10.1590/1678-4685-GMB-2016-0027.
  • Yeken, M. Z., Kantar, F., Çancı, H., Özer, G., & Çiftçi, V. (2018). Türkiye’deki Yerel Phaseolus vulgaris Populasyonlarını Kullanarak Kuru Fasulye Çeşitlerinin Islahı. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 4(1), 45-54. DOI: 10.24180/ijaws.408794.
  • Yeken, M. Z., Nadeem, M. A., Karaköy, T., Baloch, F. S., & Çiftçi, V. (2019). Determination of Turkish Common Bean Germplasm for Morpho-agronomic and Mineral Variations for Breeding Perspectives in Türkiye. KSU Journal of Agriculture and Nature, 22(Suppl: 1), 38-50. DOI: 10.18016/ksutarimdoga.vi.549996.
  • Zingale, S., Spina, A., Ingrao, C., Fallico, B., Timpanaro, G., Anastasi, U., & Guarnaccia, P. (2023). Factors affecting the nutritional, health, and technological quality of durum wheat for pasta-making: A systematic literature review. Plants, 12(3), 530. https://doi.org/10.3390/plants12030530.

Gelişmiş Güvenlik ve Besin Değeri için Makarnalık Buğday Islahı: Alüminyum Alımıyla Mücadelede Bir GWAS Yaklaşımı

Yıl 2023, Cilt: 9 Sayı: 2, 262 - 277, 21.08.2023
https://doi.org/10.24180/ijaws.1284491

Öz

Güvenli ve kaliteli gıda üretmenin önemi her geçen gün artmakta ve bu talebin karşılanmasında alüminyum içeriği düşük durum buğdayı çeşitlerinin geliştirilmesi büyük önem taşımaktadır. Islahçılar, alüminyum alımına daha dirençli yeni çeşitler geliştirerek bu hedefe ulaşabilmeyi amaçlamaktadır. Bu amaca ulaşmak için, Türkiye'de piyasaya sürülen modern çeşitler ve eski yerel çeşitler de dahil olmak üzere çeşitli makarnalık buğday genotiplerinin bulunduğu bir koleksiyonda genotiplerin alüminyum seviyeleri, endüktif olarak eşleştirilmiş plazma kütle spektrometresi kullanılarak değerlendirilmiştir. Sonuçlar, genotiplerin 0.9 ila 24.6 mg kg-1 arasında değiştiğini, ortalama 3.31 mg kg-1 olduğunu, bunların %93.1'inin ≤ 5 mg kg-1 gibi düşük bir içeriğe sahip olduğunu ortaya koymaktadır. Genom çapında ilişkilendirme çalışması önemli özelliklerle ilişkili genetik varyasyou açığa çıkarmada çok güçlü bir tekniktir. Bu çalışmada, 2A ve 3A kromozomları üzerinde bulunan ve %14 ve %71'lik bir fenotipik varyasyonu açıklayan iki markör-özellik ilişkisi tanımlamıştır. Bu bulgular, tüketiciler için güvenli ve sağlıklı gıda sağlamak için sürekli takip ihtiyacını vurgulamakta ve genom çapında ilişkilendirme çalışmalarının ve markör destekli seleksiyon yardımıyla, alüminyum seviyeleri azaltılmış yeni durum buğdayı çeşitlerinin geliştirilmesini hızlandırabileceğini öne sürmektedir. Bununla birlikte, çalışmanın metodolojisi sağlam olmasına rağmen, farklı makarnalık buğday genotipleri arasındaki alüminyum içeriği varyasyonuna katkıda bulunan genetik faktörlerin doğrulanması için daha fazla araştırma yapılması gerekmektedir.

Proje Numarası

6602c-BİLTEM/19-323

Kaynakça

  • ATSDR (2008). Toxicological profile for aluminum. In U.S. Department of Health and Human Services (Ed.), Agency for Toxic Substances and Disease Registry –ATSDR’s toxicological profiles. Washington, D.C. http://dx.doi.org/10.1201/9781420061888_ch29.
  • Alsaleh, A. (2022c). SSR-based genome-wide association study in Turkish durum wheat germplasms revealed novel QTL of accumulated platinum. Molecular Biology Reports. 49, pages 11289–11300. https://doi.org/10.1007/s11033-022-07720-7.
  • Alsaleh, A., Baloch, F. S., Sesiz, U., Nadeem, M. A., Hatipoglu, R., Erbakan, M., & Özkan, H. (2022b). Marker-assisted selection and validation of DNA markers associated with cadmium content in durum wheat germplasm, Crop and pasture science, 73(7–8), 943–956. doi:10.1071/CP21484.
  • Alsaleh, A., Baloch, F. S., Azrak, M., Hamwieh, A., Cömertpay, G., Hatipoğlu, R., Nachit, M., & Özkan, H. (2019). Identification of chromosomal regions in the genetic control of quality traits in durum wheat (Triticum turgidum L.) from the Fertile Crescent. Turkish Journal of Agriculture and Forestry, 43,(3), 334–350. doi:https://doi.org/10.3906/tar-1807-83.
  • Alsaleh, A., Bektas, H., Baloch, F. S., Nadeem, M. A., & Özkan, H. (2022a). Turkish durum wheat conserved ex-situ and in situ unveils a new hotspot of unexplored genetic diversity. Plant Genetic Resources, Crop Science, 62, 1200–1212. DOI: 10.1002/csc2.20723.
  • Arystanbekkyzy, M., Nadeem, M. A., Aktas, H., Yeken, M. Z., Zencirci, N., Nawaz, M. A., Ali, F., Haider, M. S., Tunc, K., Chung, G., & Baloch, F. S. (2019). Phylogenetic and Taxonomic Relationship of Turkish Wild and Cultivated Emmer (Triticum turgidum ssp. dicoccoides) Revealed by iPBS-Retrotransposons Markers. International Journal of Agriculture and Biology, 21, 163-155. https://hdl.handle.net/20.500.12619/33351.
  • Baloch, F. S., Alsaleh, A., Shahid, M. Q., Çiftçi, V., Sáenz de Miera, L. E., Aasim, M., Nadeem, M. A., Aktaş, H., Özkan, H., & Hatipoğlu, R. (2017). A whole genome DArTseq and SNP analysis for genetic diversity assessment in durum wheat from Central Fertile Crescent. PLoS ONE, 12(1), e0167821. https://doi.org/10.1371/journal.pone.0167821.
  • Delhaize, E., James, R. A., & Ryan, P. R. (2012). Aluminium tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (Triticum aestivum) grown on acid soil. The New Phytologist, 195(3), 609-619. http://dx.doi.org/10.1111/j.1469-8137.2012.04183.x. PMid:22642366.
  • European Union. (2012). Commission Regulation (EU) No 231/2012 of 9 March 2012 laying down specifications for food additives listed in Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council (Text with EEA relevance). Official Journal of the European Union, 83(3), 1-295. https://op.europa.eu/en/publication-detail/-/publication/a42dd9b2-b63f-438b-a790-1fa5995b7d41.
  • Frouin, J., Labeyrie, A., Boisnard, A., Sacchi, G. A., & Ahmadi, N. (2019). Genomic prediction offers the most effective marker assisted breeding approach for ability to prevent arsenic accumulation in rice grains. PLoS ONE, 14(6), e0217516. https://doi.org/10.1371/journal.pone.0217516.
  • Garcia-Oliveira, A., Martins-Lopes, P., Tolrà, R., Poschenrieder, C., Guedes-Pinto, H., & Benito, C. (2016). Differential physiological responses of Portuguese bread wheat (Triticum aestivum L.) genotypes under aluminium stress. Diversity, 8(4), 26. http://dx.doi.org/10.3390/d8040026.
  • Glaubitz, J. C., Casstevens, T. M., Lu, F., Harriman, J., Elshire, R. J., Sun, Q., & Buckler, E. S. (2014). TASSEL-GBS: A High Capacity Genotyping by Sequencing Analysis Pipeline. PLoS ONE, 9(2), e90346. https://doi.org/10.1371/journal.pone.0090346.
  • Gupta, N., Singh, G. S., & Kumar, A. (2013). Molecular basis of aluminium toxicity in plants: A review. American Journal of Plant Sciences, 4, 21-37. DOI: 10.4236/ajps.2013.412A3004.
  • Kaler, A. S., & Purcell, L. C. (2019). Estimation of a significance threshold for genome-wide association studies. BMC Genomics, 20, 618. https://doi.org/10.1186/s12864-019-5992-7.
  • Kaya, H. B., Cetin, O., Kaya, H. S., Sahin, M., Sefer, F., & Tanyolac, B. (2016). Association mapping in Turkish olive cultivars revealed significant markers related to some important agronomic traits. Biochemical Genetics, 54(2), 313-329. https://doi.org/10.1007/s10528-016-9738-9.
  • Liang, J., Liang, X., Cao, P., Wang, X., Gao, P., Ma, N., Li, N., & Xu, H. (2019). A preliminary investigation of naturally occurring aluminum in grains, vegetables, and fruits from some areas of China and dietary intake assessment. Journal of Food Science, 84(3), 701-710. http://dx.doi.org/10.1111/1750-3841.14459. PMid:30730583.
  • Liu, W., Xu, F., Lv, T., Zhou, W., Chen, Y., Jin, C., Lu, L., & Lin, X. (2018). Spatial responses of antioxidative system to aluminum stress in roots of wheat (Triticum aestivum L.) plants. The Science of the Total Environment, 627, 462-469. DOI: 10.1016/j.scitotenv.2018.01.021.
  • Ma, J., Jiang, G., Zheng, W., & Zhang, M. (2019). A longitudinal assessment of aluminum contents in foodstuffs and aluminum intake of residents in Tianjin metropolis. Food Science & Nutrition, 7(3), 997-1003. http://dx.doi.org/10.1002/fsn3.920. PMid:30918642.
  • Maksimović, I., Kastori, R., Putnik-Delić, M., Momčilović, V., Denčić, S., & Mirosavljević, M. (2020). Genetic differences in aluminium accumulation in the grains of field grown Aegilops and Triticum. Plant, Soil and Environment, 66(7), 351-356. https://doi.org/10.17221/127/2020-PSE.
  • Mello, J. C., Tonial, I. B., & Lucchetta, L. (2023). Aluminum accumulation in the wheat production chain: a review. Food Science and Technology, 43, e116022. https://doi.org/10.1590/fst.116022.
  • Mulugeta, B., Tesfaye, K., Ortiz, R., Johansson, E., Hailesilassie, T., Hammenhag, C., Hailu, F., & Geleta, M. (2023). Marker-trait association analyses revealed major novel QTLs for grain yield and related traits in durum wheat. Frontiers in Plant Science, 13, 1009244. https://doi.org/10.3389/fpls.2022.1009244.
  • Nadeem, M. A., Nawaz, M. A., Shahid, M. Q., Doğan, Y., Çömertpay, G., Yıldız, M., Hatipoğlu, R., Ahmad, F., Alsaleh, A., Labhane, N., Özkan, H., Chung, G., & Baloch, F. S. (2018). DNA molecular markers in plant breeding: Current status and recent advancements in genomic selection and genome editing. Biotechnology & Biotechnological Equipment, 32(2), 261-285. https://doi.org/10.1080/13102818.2017.1400401.
  • Nanda, B. B., Brahmaji Rao, J. S., Kumar, R., & Acharya, R. (2016). Determination of trace concentration of aluminium in raw rice samples using instrumental neutron activation analysis and particle induced gamma-ray emission methods. Journal of Radioanalytical and Nuclear Chemistry, 310(3), 1241-1245. http://dx.doi.org/10.1007/s10967-016-5032-x.
  • Ofoe, R., Thomas, R. H., Asiedu, S. K., Wang-Pruski, G., Fofana, B., & Abbey, L. (2023). Aluminum in plant: Benefits, toxicity and tolerance mechanisms. Frontiers in Plant Science, 13, DOI: 10.3389/fpls.2022.1085998 .
  • Rahman, M. A., Lee, S. H., Ji, H. C., Kabir, A. H., Jones, C. S., & Lee, K. W. (2018). Importance of mineral nutrition for mitigating aluminum toxicity in plants on acidic soils: Current status and opportunities. International Journal of Molecular Sciences, 19(10), 3073. doi: 10.3390/ijms19103073. PMID: 30297682; PMCID: PMC6213855.
  • Stahl, T., Taschan, H., & Brunn, H. (2011). Aluminium content of selected foods and food products. Environmental Sciences Europe, 23(1), 1-11. http://dx.doi.org/10.1186/2190-4715-23-37.
  • Szabó, A., Gyimes, E., & Véha, A. (2015). Aluminium toxicity in winter wheat. Acta Universitatis Sapientiae. Alimentaria, 8(1), 95-103. http://dx.doi.org/10.1515/ausal-2015-0009.
  • Tam, V., Patel, N., Turcotte, M., Bossé, Y., Paré, G., & Meyre, D. (2019). Benefits and limitations of genome-wide association studies. Nature Reviews Genetics, 20, 467–484. https://doi.org/10.1038/s41576-019-0127-1.
  • Väli, U., Einarsson, A., Waits, L., & Ellegren, H. (2008). To what extent do microsatellite markers reflect genome-wide genetic diversity in natural populations? Molecular Ecology, 17(17), 3808-3817. doi: 10.1111/j.1365-294X.2008.03876.x.
  • Vieira, M. L., Santini, L., Diniz, A. L., & Munhoz, C. F. (2016). Microsatellite markers: What they mean and why they are so useful. Genetics and Molecular Biology, 39(3), 312-328. doi: 10.1590/1678-4685-GMB-2016-0027.
  • Yeken, M. Z., Kantar, F., Çancı, H., Özer, G., & Çiftçi, V. (2018). Türkiye’deki Yerel Phaseolus vulgaris Populasyonlarını Kullanarak Kuru Fasulye Çeşitlerinin Islahı. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 4(1), 45-54. DOI: 10.24180/ijaws.408794.
  • Yeken, M. Z., Nadeem, M. A., Karaköy, T., Baloch, F. S., & Çiftçi, V. (2019). Determination of Turkish Common Bean Germplasm for Morpho-agronomic and Mineral Variations for Breeding Perspectives in Türkiye. KSU Journal of Agriculture and Nature, 22(Suppl: 1), 38-50. DOI: 10.18016/ksutarimdoga.vi.549996.
  • Zingale, S., Spina, A., Ingrao, C., Fallico, B., Timpanaro, G., Anastasi, U., & Guarnaccia, P. (2023). Factors affecting the nutritional, health, and technological quality of durum wheat for pasta-making: A systematic literature review. Plants, 12(3), 530. https://doi.org/10.3390/plants12030530.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği (Diğer)
Bölüm Tarla Bitkileri
Yazarlar

Ahmad Alsaleh 0000-0001-7078-3221

Proje Numarası 6602c-BİLTEM/19-323
Erken Görünüm Tarihi 14 Ağustos 2023
Yayımlanma Tarihi 21 Ağustos 2023
Gönderilme Tarihi 17 Nisan 2023
Kabul Tarihi 2 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 9 Sayı: 2

Kaynak Göster

APA Alsaleh, A. (2023). Durum Wheat Breeding for Enhanced Safety and Nutritional Value: A GWAS Approach to Tackling Aluminum Uptake. Uluslararası Tarım Ve Yaban Hayatı Bilimleri Dergisi, 9(2), 262-277. https://doi.org/10.24180/ijaws.1284491

17365   17368      17366     17369    17370              


88x31.png    Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi Creative Commons Attribution 4.0 Generic License a