Derleme
BibTex RIS Kaynak Göster

Nanobionic humans: the future of nano-material-supported implants and wearable technologies

Yıl 2025, Cilt: 1 Sayı: 4, 1 - 33, 28.12.2025

Öz

This review article provides an overview of the topic “The nanobionic human: the future of nano-material-supported implants and wearable technologies”, examining this subject under various headings: human-machine interfaces, wearable technologies, biointegration and biocompatibility, ethical dimensions, and future perspectives. The article examines the topic of nanotechnology in human-machine interfaces from a transhumanism perspective, along with nanotechnology-supported implants and their orthopaedic and other applications under subheadings. The future expectations and challenges of these topics are also evaluated. The effects, performance, and uses of nanotechnology on human health are discussed under nanobionic wearable technologies. This study evaluates how human-computer integration is being redefined by nanotechnological advances from a transhumanism perspective. The Nanobionic Wearable Technologies section discusses the usage methods, application forms, benefits, and materials of smart textiles (nano-silver and nano-carbon-based conductive fabrics), nanosensors in health monitoring (glucose sensors, electrolyte sensors, heart and biomechanics), and piezoelectric sensors (sports science, military technologies, health sciences). The Biointegration and Biocompatibility section discusses the immunological response and biocompatibility of nanomaterials, explaining the working mechanisms and differences between hard and soft protein coronas and mentioning the Vroman effect. Tissue engineering and how nanoimplants can be integrated into the body are detailed, along with the extracellular matrix (ECM) structure. It explains how the repair mechanism of microcapsules works when nanoimplants are damaged. It discusses the uses, mechanisms, and areas of application of hydrogels when microcapsules are insufficient. The ethical dimension of nanobionic technologies discusses the ethical and human implications of these developments. It addresses cyber security, data security, socio-economic conditions, legal responsibilities in artificial intelligence decisions, and equal opportunities. The future perspectives section examines the future of nanotechnology and cyborg concepts. It discusses the revolutionary potential of this technology in the performance of personalised wearable nanotechnologies and their ethical implications. The conclusion provides an overview.

Kaynakça

  • N. Barkalina, C. Charalambous, C. Jones, and K. Coward, “Nanotechnology in reproductive medicine: Emerging applications of nanomaterials,” Nanomedicine Nanotechnology, Biol. Med., vol. 10, no. 5, pp. e921–e938, 2014, doi: 10.1016/J.NANO.2014.01.001.
  • M. Fakruddin, Z. Hossain, and H. Afroz, “Prospects and applications of nanobiotechnology: A medical perspective,” J. Nanobiotechnology, vol. 10, Jul. 2012, doi: 10.1186/1477-3155-10-31.
  • Q. Zeng, S. Zhao, H. Yang, Y. Zhang, and T. Wu, Micro/Nano Technologies for High-Density Retinal Implant, vol. 10, no. 6. Multidisciplinary Digital Publishing Institute, 2019, p. 419. doi: 10.3390/MI10060419.
  • P. P. Maciel et al., “Use of strontium doping glass-ceramic material for bone regeneration in critical defect: In vitro and in vivo analyses,” Ceram. Int., vol. 46, no. 16, pp. 24940–24954, Nov. 2020, doi: 10.1016/j.ceramint.2020.06.280.
  • L. Zhang and T. J. Webster, “Nanotechnology and nanomaterials: Promises for improved tissue regeneration,” Nano Today, vol. 4, no. 1, pp. 66–80, Feb. 2009, doi: 10.1016/J.NANTOD.2008.10.014.
  • S. Sun, Q. Yang, D. Jiang, and Y. Zhang, “Nanobiotechnology augmented cancer stem cell guided management of cancer: liquid-biopsy, imaging, and treatment,” J. Nanobiotechnology, vol. 22, no. 1, Dec. 2024, doi: 10.1186/S12951-024-02432-5.
  • R. A. Green et al., “Substrate dependent stability of conducting polymer coatings on medical electrodes,” Biomaterials, vol. 33, no. 25, pp. 5875–5886, Sep. 2012, doi: 10.1016/J.BIOMATERIALS.2012.05.017.
  • D. F. Williams, “On the mechanisms of biocompatibility,” Biomaterials, vol. 29, no. 20, pp. 2941–2953, Jul. 2008, doi: 10.1016/J.BIOMATERIALS.2008.04.023.
  • Y. H. L. Luo and L. da Cruz, “The Argus® II Retinal Prosthesis System,” Prog. Retin. Eye Res., vol. 50, pp. 89–107, Jan. 2016, doi: 10.1016/J.PRETEYERES.2015.09.003.
  • S. H. Um et al., “Regulation of cell locomotion by nanosecond-laser-induced hydroxyapatite patterning,” Bioact. Mater., vol. 6, no. 10, pp. 3608–3619, Oct. 2021, doi: 10.1016/j.bioactmat.2021.03.025.
  • G. A. Silva, “Introduction to nanotechnology and its applications to medicine,” Surg. Neurol., vol. 61, no. 3, pp. 216–220, 2004, doi: 10.1016/J.SURNEU.2003.09.036.
  • M. Heim et al., “Combined macro-/mesoporous microelectrode arrays for low-noise extracellular recording of neural networks,” J. Neurophysiol., vol. 108, no. 6, pp. 1793–1803, Sep. 2012, doi: 10.1152/JN.00711.2011.
  • D. Ting et al., “Multisite inhibitors for enteric coronavirus: antiviral cationic carbon dots based on curcumin,” ACS Appl. Nano Mater., vol. 1, no. 10, pp. 5451–5459, Oct. 2018, doi: 10.1021/ACSANM.8B00779.
  • A. Tewabe, A. Abate, M. Tamrie, A. Seyfu, and E. A. Siraj, “Targeted drug delivery — from magic bullet to nanomedicine: Principles, challenges, and future perspectives,” J. Multidiscip. Healthc., vol. 14, pp. 1711–1724, 2021, doi: 10.2147/JMDH.S313968.
  • R. P. Singh, “Prospects of Nanobiomaterials for Biosensing,” Int. J. Electrochem., vol. 2011, pp. 1–30, 2011, doi: 10.4061/2011/125487.
  • J. R. Antonio, C. R. Antônio, I. L. S. Cardeal, J. M. A. Ballavenuto, and J. R. Oliveira, “Nanotechnology in dermatology,” An. Bras. Dermatol., vol. 89, no. 1, pp. 126–136, 2014, doi: 10.1590/ABD1806-4841.20142228.
  • B. Şen et al., “High-performance graphite-supported ruthenium nanocatalyst for hydrogen evolution reaction,” J. Mol. Liq., vol. 268, pp. 807–812, Oct. 2018, doi: 10.1016/J.MOLLIQ.2018.07.117.
  • D. Kuru, “Amorf borun elektrokimyasal eksfoliasyonuyla bor nanotabakalarının sentezi ve karakterizasyonu,” Bor Derg., vol. 9, no. 3, pp. 111–119, Sep. 2024, doi: 10.30728/BORON.1483030.
  • J. L. Elechiguerra et al., “Interaction of silver nanoparticles with HIV-1,” J. Nanobiotechnology, vol. 3, Jun. 2005, doi: 10.1186/1477-3155-3-6.
  • M. F. Hawthorne, “New horizons for therapy based on the boron neutron capture reaction,” Mol. Med. Today, vol. 4, no. 4, pp. 174–181, Apr. 1998, doi: 10.1016/S1357-4310(98)01226-X.
  • R. Nagraik, A. Sharma, D. Kumar, S. Mukherjee, F. Sen, and A. P. Kumar, “Amalgamation of biosensors and nanotechnology in disease diagnosis: Mini-review,” Sensors Int., vol. 2, Jan. 2021, doi: 10.1016/J.SINTL.2021.100089.
  • P. Vader, E. A. Mol, G. Pasterkamp, and R. M. Schiffelers, “Extracellular vesicles for drug delivery,” Adv. Drug Deliv. Rev., vol. 106, pp. 148–156, Nov. 2016, doi: 10.1016/J.ADDR.2016.02.006.
  • T. Ozawa, “Thermal analysis - Review and prospect,” Thermochim. Acta, vol. 355, no. 1–2, pp. 35–42, Jul. 2000, doi: 10.1016/S0040-6031(00)00435-4.
  • S. Pang et al., “Enhanced mechanical performance and bioactivity in strontium/copper co-substituted diopside scaffolds,” Biomater. Adv., vol. 145, Feb. 2023, doi: 10.1016/j.bioadv.2022.213230.
  • Z. Tüylek, “Nanoteknolojinin Çevre ve İnsan Sağlığı Üzerindeki Riskleri,” Kilis 7 Aralık Üniversitesi Fen ve Mühendislik Derg., vol. 2, no. 2, pp. 1–12, Dec. 2018, Accessed: Nov. 24, 2025. [Online]. Available: https://dergipark.org.tr/tr/pub/kifmd/issue/33523/397004
  • S. Eris, Z. Daşdelen, and F. Sen, “Investigation of electrocatalytic activity and stability of Pt@f-VC catalyst prepared by in-situ synthesis for Methanol electrooxidation,” Int. J. Hydrogen Energy, vol. 43, no. 1, pp. 385–390, Jan. 2018, doi: 10.1016/J.IJHYDENE.2017.11.063.
  • S. Rafiei, S. E. Rezatofighi, M. R. Ardakani, and S. Rastegarzadeh, “Gold Nanoparticles Impair Foot-and-Mouth Disease Virus Replication,” IEEE Trans. Nanobioscience, vol. 15, no. 1, pp. 34–40, Jan. 2016, doi: 10.1109/TNB.2015.2508718.
  • T. Li, Z. X. Chen, Y. L. Cao, X. P. Ai, and H. X. Yang, “Transition-metal chlorides as conversion cathode materials for Li-ion batteries,” Electrochim. Acta, vol. 68, pp. 202–205, Apr. 2012, doi: 10.1016/j.electacta.2012.02.061.
  • H. Burhan et al., “Highly efficient carbon hybrid supported catalysts using nano-architecture as anode catalysts for direct methanol fuel cells,” Int. J. Hydrogen Energy, vol. 48, no. 17, pp. 6657–6665, Feb. 2023, doi: 10.1016/J.IJHYDENE.2021.12.141.
  • B. Sen, B. Demirkan, B. Şimşek, A. Savk, and F. Sen, “Monodisperse palladium nanocatalysts for dehydrocoupling of dimethylamineborane,” Nano-Structures & Nano-Objects, vol. 16, pp. 209–214, Oct. 2018, doi: 10.1016/J.NANOSO.2018.07.008.
  • A. Hojjati-Najafabadi et al., “Bacillus thuringiensis Based Ruthenium/Nickel Co-Doped Zinc as a Green Nanocatalyst: Enhanced Photocatalytic Activity, Mechanism, and Efficient H2 Production from Sodium Borohydride Methanolysis,” Ind. Eng. Chem. Res., vol. 62, no. 11, pp. 4655–4664, Mar. 2023, doi: 10.1021/ACS.IECR.2C03833.
  • H. Göksu, Y. Yıldız, B. Çelik, M. Yazıcı, B. Kılbaş, and F. Şen, “Highly Efficient and Monodisperse Graphene Oxide Furnished Ru/Pd Nanoparticles for the Dehalogenation of Aryl Halides via Ammonia Borane,” ChemistrySelect, vol. 1, no. 5, pp. 953–958, Apr. 2016, doi: 10.1002/SLCT.201600207;PAGE:STRING:ARTICLE/CHAPTER.
  • F. Şen, G. Gökağaç, and S. Şen, “High performance Pt nanoparticles prepared by new surfactants for C 1 to C3 alcohol oxidation reactions,” J. Nanoparticle Res., vol. 15, no. 10, Oct. 2013, doi: 10.1007/S11051-013-1979-5.
  • N. Alrushaid, F. A. Khan, E. A. Al-Suhaimi, and A. Elaissari, “Nanotechnology in Cancer Diagnosis and Treatment,” Mar. 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/pharmaceutics15031025.
  • E. Asadipour, M. Asgari, P. Mousavi, T. Piri-Gharaghie, G. Ghajari, and A. Mirzaie, “Nano-Biotechnology and Challenges of Drug Delivery System in Cancer Treatment Pathway: Review Article,” Chem. Biodivers., vol. 20, no. 6, Jun. 2023, doi: 10.1002/CBDV.202201072.
  • F. Sen, A. A. Boghossian, S. Sen, Z. W. Ulissi, J. Zhang, and M. S. Strano, “Observation of Oscillatory Surface Reactions of Riboflavin, Trolox, and Singlet Oxygen Using Single Carbon Nanotube Fluorescence Spectroscopy,” ACS Nano, vol. 6, no. 12, pp. 10632–10645, Dec. 2012, doi: 10.1021/NN303716N.
  • F. KARAKAYA, A. S. BÜLBÜL, M. BEKMEZCİ, and F. ŞEN, “Silver nanoparticle synthesis by biogenic reduction method and investigation of antimicrobial, antibiofilm, anticancer activities,” J. Sci. Reports-A, no. 055, pp. 1–15, 2023, doi: 10.59313/jsr-a.1277894.
  • M. T. Vurat, M. Parmaksiz, A. E. Elçin, and Y. M. Elçin, “Bioactive composite hydrogels as 3D mesenchymal stem cell encapsulation environment for bone tissue engineering: in vitro and in vivo studies,” J. Biomed. Mater. Res. - Part A, vol. 111, no. 2, pp. 261–277, Feb. 2023, doi: 10.1002/JBM.A.37457.
  • Y. Tu, F. Peng, A. A. M. André, Y. Men, M. Srinivas, and D. A. Wilson, “Biodegradable Hybrid Stomatocyte Nanomotors for Drug Delivery,” ACS Nano, vol. 11, no. 2, pp. 1957–1963, Feb. 2017, doi: 10.1021/ACSNANO.6B08079.
  • S. Günbatar, A. Aygun, Y. Karataş, M. Gülcan, and F. Şen, “Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature,” J. Colloid Interface Sci., vol. 530, pp. 321–327, Nov. 2018, doi: 10.1016/J.JCIS.2018.06.100.
  • P. D. Howe, “A review of Boron effects in the environment,” Biol. Trace Elem. Res., vol. 66, no. 1–3, pp. 153–166, 1998, doi: 10.1007/BF02783135.
  • B. Tüzün-Antepli, Ş. Şeker, A. E. Elçin, G. Khang, and Y. M. Elçin, “Evaluation of Human Osteoblasts on NIPS Micro-Patterned PCL Carriers Containing Nanohydroxyapatite and Reduced Graphene Oxide Using PSµM,” Molecules, vol. 27, no. 20, Oct. 2022, doi: 10.3390/MOLECULES27207091.
  • C. Mohanty, G. Arya, R. S. Verma, and S. K. Sahoo, “Nanobiotechnology: Application of nanotechnology in therapeutics and diagnosis,” Int. J. Green Nanotechnol. Biomed., vol. 1, no. 1, 2009, doi: 10.1080/19430850902908522.
  • A. Aimaiti, A. Maimaitiyiming, X. Boyong, K. Aji, C. Li, and L. Cui, “Low-dose strontium stimulates osteogenesis but high-dose doses cause apoptosis in human adipose-derived stem cells via regulation of the ERK1/2 signaling pathway,” Stem Cell Res. Ther., vol. 8, no. 1, Dec. 2017, doi: 10.1186/S13287-017-0726-8.
  • K. Sköld, B. H-Stenstam, A. Z. Diaz, V. Giusti, L. Pellettieri, and J. W. Hopewell, “Boron neutron capture therapy for glioblastoma multiforme: Advantage of prolonged infusion of BPA-f,” Acta Neurol. Scand., vol. 122, no. 1, pp. 58–62, Jul. 2010, doi: 10.1111/J.1600-0404.2009.01267.X.
  • C. Di Meo et al., “Hyaluronan as carrier of carboranes for tumor targeting in boron neutron capture therapy,” Biomacromolecules, vol. 8, no. 2, pp. 552–559, Feb. 2007, doi: 10.1021/BM0607426.
  • L. Stipniece et al., “Strontium substituted hydroxyapatite promotes direct primary human osteoblast maturation,” Ceram. Int., vol. 47, no. 3, pp. 3368–3379, Feb. 2021, doi: 10.1016/j.ceramint.2020.09.182.
  • A. E. Pazarçeviren, A. Tezcaner, D. Keskin, S. T. Kolukısa, S. Sürdem, and Z. Evis, “Boron-doped Biphasic Hydroxyapatite/β-Tricalcium Phosphate for Bone Tissue Engineering,” Biol. Trace Elem. Res., vol. 199, no. 3, pp. 968–980, Mar. 2021, doi: 10.1007/S12011-020-02230-8.
  • S. H. Farjana, N. Huda, M. A. P. Mahmud, and C. Lang, “A global life cycle assessment of manganese mining processes based on EcoInvent database,” Sci. Total Environ., vol. 688, pp. 1102–1111, Oct. 2019, doi: 10.1016/J.SCITOTENV.2019.06.184.
  • T. Ishii, T. Matsunaga, and N. Hayashi, “Formation of rhamnogalacturonan II-borate dimer in pectin determines cell wall thickness of pumpkin tissue,” Plant Physiol., vol. 126, no. 4, pp. 1698–1705, 2001, doi: 10.1104/pp.126.4.1698.
  • K. R. Pulagam et al., “Gold nanoparticles as boron carriers for boron neutron capture therapy: Synthesis, radiolabelling and in vivo evaluation,” Molecules, vol. 24, no. 19, Oct. 2019, doi: 10.3390/MOLECULES24193609.
  • J. Wu, B. Li, and J. Lu, “Life cycle assessment on boron production: is boric acid extraction from salt-lake brine environmentally friendly?,” Clean Technol. Environ. Policy, vol. 23, no. 7, pp. 1981–1991, Sep. 2021, doi: 10.1007/S10098-021-02092-1.
  • P. Argust, “Distribution of Boron in the environment,” Biol. Trace Elem. Res., vol. 66, no. 1–3, pp. 131–143, 1998, doi: 10.1007/BF02783133.
  • M. Du, J. Chen, K. Liu, H. Xing, and C. Song, “Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair,” Compos. Part B Eng., vol. 215, Jun. 2021, doi: 10.1016/j.compositesb.2021.108790.
  • Y. Zhang, J. Li, V. H. M. Mouser, N. Roumans, L. Moroni, and P. Habibovic, “Biomimetic Mechanically Strong One-Dimensional Hydroxyapatite/Poly(d, l-lactide) Composite Inducing Formation of Anisotropic Collagen Matrix,” ACS Nano, vol. 15, no. 11, pp. 17480–17498, Nov. 2021, doi: 10.1021/ACSNANO.1C03905.
  • B. Sen, B. Demirkan, A. Şavk, S. Karahan Gülbay, and F. Sen, “Trimetallic PdRuNi nanocomposites decorated on graphene oxide: A superior catalyst for the hydrogen evolution reaction,” Int. J. Hydrogen Energy, vol. 43, no. 38, pp. 17984–17992, Sep. 2018, doi: 10.1016/J.IJHYDENE.2018.07.122.
  • R. Wu et al., “Large-area single-crystal sheets of borophene on Cu(111) surfaces,” Nat. Nanotechnol., vol. 14, no. 1, pp. 44–49, Jan. 2019, doi: 10.1038/S41565-018-0317-6.
  • H. Seckin, R. N. E. Tiri, I. Meydan, A. Aygun, M. K. Gunduz, and F. Sen, “An environmental approach for the photodegradation of toxic pollutants from wastewater using Pt–Pd nanoparticles: Antioxidant, antibacterial and lipid peroxidation inhibition applications,” Environ. Res., vol. 208, p. 112708, May 2022, doi: 10.1016/J.ENVRES.2022.112708.
  • F. Şen and G. Gökağaç, “Pt nanoparticles synthesized with new surfactants: improvement in C1–C3 alcohol oxidation catalytic activity,” J. Appl. Electrochem. 2013 441, vol. 44, no. 1, pp. 199–207, Sep. 2013, doi: 10.1007/S10800-013-0631-5.
  • H. S. Ko, S. Lee, and J. Y. Jho, “Synthesis and modification of hydroxyapatite nanofiber for poly(Lactic acid) composites with enhanced mechanical strength and bioactivity,” Nanomaterials, vol. 11, no. 1, pp. 1–13, Jan. 2021, doi: 10.3390/NANO11010213.
  • Y. Dutt et al., “Therapeutic applications of nanobiotechnology,” J. Nanobiotechnology, vol. 21, no. 1, Dec. 2023, doi: 10.1186/S12951-023-01909-Z.
  • S. Kansız, M. T. Vurat, M. Parmaksiz, A. E. Elçin, and Y. M. Elçin, “Chitosan/PVA reinforced boron/strontium multi-substituted hydroxyapatite-based biocomposites: Effects of synthesis pH and coating on the physicochemical, mechanical, and in vitro biological properties of scaffolds,” Mater. Today Chem., vol. 35, p. 101865, Jan. 2024, doi: 10.1016/J.MTCHEM.2023.101865.
  • D. Shekhawat, A. Singh, M. K. Banerjee, T. Singh, and A. Patnaik, “Bioceramic composites for orthopaedic applications: A comprehensive review of mechanical, biological, and microstructural properties,” Ceram. Int., vol. 47, no. 3, pp. 3013–3030, Feb. 2021, doi: 10.1016/j.ceramint.2020.09.214.
  • J. Chai, N. Han, S. Feng, X. Huang, B. Tang, and W. Zhang, “Insights on Titanium-based chalcogenides TiX2 (X = O, S, Se) as LIBs/SIBs anode materials,” Chem. Eng. J., vol. 453, Feb. 2023, doi: 10.1016/j.cej.2022.139768.
  • M. T. VURAT, A. E. ELÇIN, and Y. M. ELÇIN, “Osteogenic composite nanocoating based on nanohydroxyapatite, strontium ranelate and polycaprolactone for titanium implants,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 28, no. 9, pp. 1763–1773, Sep. 2018, doi: 10.1016/S1003-6326(18)64820-4.
  • B. Şen, A. Aygün, A. Şavk, S. Akocak, and F. Şen, “Bimetallic palladium–iridium alloy nanoparticles as highly efficient and stable catalyst for the hydrogen evolution reaction,” Int. J. Hydrogen Energy, vol. 43, no. 44, pp. 20183–20191, Nov. 2018, doi: 10.1016/J.IJHYDENE.2018.07.081.
  • X. Xing, Y. Han, and H. Cheng, “Biomedical applications of chitosan/silk fibroin composites: A review,” Int. J. Biol. Macromol., vol. 240, Jun. 2023, doi: 10.1016/J.IJBIOMAC.2023.124407.
  • H. Yin et al., “Fabrication and characterization of strontium-doped borate-based bioactive glass scaffolds for bone tissue engineering,” J. Alloys Compd., vol. 743, pp. 564–569, Apr. 2018, doi: 10.1016/J.JALLCOM.2018.01.099.
  • V. Uskoković, “Ion-doped hydroxyapatite: An impasse or the road to follow?,” Ceram. Int., vol. 46, no. 8, pp. 11443–11465, Jun. 2020, doi: 10.1016/j.ceramint.2020.02.001.
  • A. Ali, S. Bano, R. Priyadarshi, and Y. S. Negi, “Effect of carbon based fillers on properties of Chitosan/PVA/βTCP based composite scaffold for bone tissue engineering,” Mater. Today Proc., vol. 15, pp. 173–182, 2019, doi: 10.1016/J.MATPR.2019.04.189.
  • F. Şen and G. Gökağaç, “Pt nanoparticles synthesized with new surfactants: Improvement in C 1-C3 alcohol oxidation catalytic activity,” J. Appl. Electrochem., vol. 44, no. 1, pp. 199–207, Jan. 2014, doi: 10.1007/s10800-013-0631-5.
  • Y. Luo, S. Chen, Y. Shi, and J. Ma, “3D printing of strontium-doped hydroxyapatite based composite scaffolds for repairing critical-sized rabbit calvarial defects,” Biomed. Mater., vol. 13, no. 6, Aug. 2018, doi: 10.1088/1748-605X/AAD923.
  • N. H. Khand et al., “A new electrochemical method for the detection of quercetin in onion, honey and green tea using Co3O4 modified GCE,” J. Food Meas. Charact. 2021 154, vol. 15, no. 4, pp. 3720–3730, May 2021, doi: 10.1007/S11694-021-00956-0.
  • A. Cherif, R. Nebbali, J. W. Sheffield, N. Doner, and F. Sen, “Numerical investigation of hydrogen production via autothermal reforming of steam and methane over Ni/Al2O3 and Pt/Al2O3 patterned catalytic layers,” Int. J. Hydrogen Energy, vol. 46, no. 75, pp. 37521–37532, Oct. 2021, doi: 10.1016/J.IJHYDENE.2021.04.032.
  • B. Yedekçi, A. Tezcaner, A. Z. Alshemary, B. Yılmaz, T. Demir, and Z. Evis, “Synthesis and sintering of B, Sr, Mg multi-doped hydroxyapatites: Structural, mechanical and biological characterization,” J. Mech. Behav. Biomed. Mater., vol. 115, Mar. 2021, doi: 10.1016/J.JMBBM.2020.104230.
  • A. A. Aly and M. K. Ahmed, “Fibrous scaffolds of Ag/Fe co-doped hydroxyapatite encapsulated into polycaprolactone: Morphology, mechanical and in vitro cell adhesion,” Int. J. Pharm., vol. 601, May 2021, doi: 10.1016/J.IJPHARM.2021.120557.
  • S. B. Khan, “Metal nanoparticles containing chitosan wrapped cellulose nanocomposites for catalytic hydrogen production and reduction of environmental pollutants,” Carbohydr. Polym., vol. 242, Aug. 2020, doi: 10.1016/J.CARBPOL.2020.116286.
  • Sivanthaperumal, R. Tabassum, and T. Ansari, “Synthesis, Characterization and Antimicrobial Activity of Nanochitosan and Chitosan Encapsulated Zinc Oxide Nanoparticles,” Asian J. Chem., vol. 34, no. 12, pp. 3313–3319, Dec. 2022, doi: 10.14233/AJCHEM.2022.23985.
  • P. Li et al., “Micro-/nano-structured Co(NO3)2·6H2O@CNTs as novel anode material with superior lithium storage performance,” J. Electroanal. Chem., vol. 791, pp. 29–35, Apr. 2017, doi: 10.1016/j.jelechem.2017.03.007.
  • N. Korkmaz, Y. Ceylan, P. Taslimi, A. Karadağ, A. S. Bülbül, and F. Şen, “Biogenic nano silver: Synthesis, characterization, antibacterial, antibiofilms, and enzymatic activity,” Adv. Powder Technol., vol. 31, no. 7, pp. 2942–2950, Jul. 2020, doi: 10.1016/J.APT.2020.05.020.
  • F. Soysal, Z. Ç.-A. K. Ü. F. Ve, and undefined 2023, “Grafen Oksit/Altın/Polianilin Nanokompozitlerinin Eş Zamanlı Çöktürme/Polimerizasyon Yöntemleriyle Sentezi ve Fototermal Performansı,” dergipark.org.tr.
  • B. Sen, S. Kuzu, E. Demir, S. Akocak, and F. Sen, “Polymer-graphene hybride decorated Pt nanoparticles as highly efficient and reusable catalyst for the dehydrogenation of dimethylamine–borane at room temperature,” Int. J. Hydrogen Energy, vol. 42, no. 36, pp. 23284–23291, Sep. 2017, doi: 10.1016/J.IJHYDENE.2017.05.112.
  • R. V. Gadhave, V. S.K, P. V. Dhawale, and P. T. Gadekar, “Effect of boric acid on poly vinyl alcohol- tannin blend and its application as water-based wood adhesive,” Des. Monomers Polym., vol. 23, no. 1, pp. 188–196, Jan. 2020, doi: 10.1080/15685551.2020.1826124.
  • M. Megha et al., “Structural and biological properties of novel Vanadium and Strontium co-doped HAp for tissue engineering applications,” Ceram. Int., vol. 49, no. 18, pp. 30156–30169, Sep. 2023, doi: 10.1016/J.CERAMINT.2023.06.272.
  • Y. Wu et al., “Hydrogen generation from methanolysis of sodium borohydride using waste coffee oil modified zinc oxide nanoparticles and their photocatalytic activities,” Int. J. Hydrogen Energy, vol. 48, no. 17, pp. 6613–6623, Feb. 2023, doi: 10.1016/J.IJHYDENE.2022.04.177.
  • A. Aygun et al., “Highly active PdPt bimetallic nanoparticles synthesized by one-step bioreduction method: Characterizations, anticancer, antibacterial activities and evaluation of their catalytic effect for hydrogen generation,” Int. J. Hydrogen Energy, vol. 48, no. 17, pp. 6666–6679, Feb. 2023, doi: 10.1016/J.IJHYDENE.2021.12.144.
  • Y. Gong et al., “Mixed-metal MOF-derived Co–Mn–O hollow spheres as anodes for lithium storage,” Mater. Today Energy, vol. 21, Sep. 2021, doi: 10.1016/j.mtener.2021.100825.
  • S. Basu, P. Biswas, M. Anto, N. Singh, and K. Mukherjee, “Nanomaterial-enabled drug transport systems: a comprehensive exploration of current developments and future avenues in therapeutic delivery.,” 3 Biotech, vol. 14, no. 12, p. 289, Dec. 2024, doi: 10.1007/s13205-024-04135-y.
  • C. GÖKALP, Z. ÇIPLAK, B. GETİREN, and N. YILDIZ, “NIR Duyarlı NGKN-Fe3O4@PPy Nanokompozitinin Sentezi ve Fototermal Performansının İncelenmesi,” J. Polytech., Feb. 2024, doi: 10.2339/POLITEKNIK.1009280.
  • S. Malik, K. Muhammad, and Y. Waheed, “Emerging Applications of Nanotechnology in Healthcare and Medicine,” Molecules, vol. 28, no. 18, p. 6624, Sep. 2023, doi: 10.3390/molecules28186624.
  • J. W. Mair and H. G. Day, “Curcumin Method for Spectrophotometric Determination of Boron Extracted from Radiofrequency Ashed Animal Tissues Using 2-Ethyl-1,3-Hexanediol,” Anal. Chem., vol. 44, no. 12, pp. 2015–2017, Oct. 1972, doi: 10.1021/AC60320A022.
  • E. B. Souto, “Patenting nanomedicines: Legal aspects, intellectual property and grant opportunities,” Patenting Nanomedicines Leg. Asp. Intellect. Prop. Grant Oppor., vol. 9783642292, pp. 1–457, Oct. 2012, doi: 10.1007/978-3-642-29265-1.
  • A. Sirelkhatim et al., “Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism,” Nano-Micro Lett., vol. 7, no. 3, pp. 219–242, Apr. 2015, doi: 10.1007/S40820-015-0040-X.
  • Y. Liang et al., “Facile synthesis of biogenic palladium nanoparticles using biomass strategy and application as photocatalyst degradation for textile dye pollutants and their in-vitro antimicrobial activity,” Chemosphere, vol. 306, p. 135518, Nov. 2022, doi: 10.1016/J.CHEMOSPHERE.2022.135518.
  • D. M. Smith, J. K. Simon, and J. R. Baker, “Applications of nanotechnology for immunology,” Nat. Rev. Immunol., vol. 13, no. 8, pp. 592–605, 2013, doi: 10.1038/NRI3488.
  • H. D. Yıldızay, M. Bekmezci, and F. Şen, “Nanofluids and engineering applications: A review,” J. Sci. Reports-A, no. 060, pp. 126–149, 2025, doi: 10.59313/jsr-a.1634164.
  • B. Sen, E. Kuyuldar, A. Şavk, H. Calimli, S. Duman, and F. Sen, “Monodisperse rutheniumcopper alloy nanoparticles decorated on reduced graphene oxide for dehydrogenation of DMAB,” Int. J. Hydrogen Energy, vol. 44, no. 21, pp. 10744–10751, Apr. 2019, doi: 10.1016/J.IJHYDENE.2019.02.176.
  • H. Göksu, H. Burhan, S. D. Mustafov, and F. Şen, “Oxidation of Benzyl Alcohol Compounds in the Presence of Carbon Hybrid Supported Platinum Nanoparticles (Pt@CHs) in Oxygen Atmosphere,” Sci. Reports 2020 101, vol. 10, no. 1, pp. 5439-, Mar. 2020, doi: 10.1038/s41598-020-62400-5.
  • J. Lin et al., “Phyto-mediated synthesis of nanoparticles and their applications on hydrogen generation on NaBH4, biological activities and photodegradation on azo dyes: Development of machine learning model,” Food Chem. Toxicol., vol. 163, p. 112972, May 2022, doi: 10.1016/J.FCT.2022.112972.
  • H. Ghaffari et al., “Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: Another emerging application of nanomedicine,” J. Biomed. Sci., vol. 26, no. 1, Sep. 2019, doi: 10.1186/S12929-019-0563-4.
  • B. A. Browne, “Toward a new theory of podzolization,” Carbon Forms Funct. For. Soils, pp. 253–273, Aug. 2006, doi: 10.2136/1995.CARBONFORMS.C12.
  • R. Keren and F. T. Bingham, “Boron in Water, Soils, and Plants,” pp. 229–276, 1958, doi: 10.1007/978-1-4612-5046-3_7.
  • Z. Yinghuai, X. Lin, H. Xie, J. Li, N. S. Hosmane, and Y. Zhang, “The Current Status and Perspectives of Delivery Strategy for Boronbased Drugs,” Curr. Med. Chem., vol. 26, no. 26, pp. 5019–5035, Sep. 2018, doi: 10.2174/0929867325666180904105212.
  • S. Bhat, U. T. Uthappa, T. Altalhi, H. Y. Jung, and M. D. Kurkuri, “Functionalized Porous Hydroxyapatite Scaffolds for Tissue Engineering Applications: A Focused Review,” ACS Biomater. Sci. Eng., vol. 8, no. 10, pp. 4039–4076, Oct. 2022, doi: 10.1021/ACSBIOMATERIALS.1C00438.
  • A. S.-R. Pang et al., “Nanoparticles as Drug Delivery Systems for the Targeted Treatment of Atherosclerosis,” Molecules, vol. 29, no. 12, p. 2873, Jun. 2024, doi: 10.3390/molecules29122873.
  • J. Wang et al., “Fabrication and preliminary biological evaluation of a highly porous biphasic calcium phosphate scaffold with nano-hydroxyapatite surface coating,” Ceram. Int., vol. 44, no. 2, pp. 1304–1311, Feb. 2018, doi: 10.1016/J.CERAMINT.2017.08.053.
  • V. P. Torchilin, “Structure and design of polymeric surfactant-based drug delivery systems,” J. Control. Release, vol. 73, no. 2–3, pp. 137–172, Jul. 2001, doi: 10.1016/S0168-3659(01)00299-1.
  • K. K. Jain, “Role of nanobiotechnology in developing personalized medicine for cancer,” Technol. Cancer Res. Treat., vol. 4, no. 6, pp. 645–650, 2005, doi: 10.1177/153303460500400608.
  • T. Norgate and N. Haque, “Using life cycle assessment to evaluate some environmental impacts of gold production,” J. Clean. Prod., vol. 29–30, pp. 53–63, Jul. 2012, doi: 10.1016/J.JCLEPRO.2012.01.042.
  • A. Koç, G. Finkenzeller, A. E. Elçin, G. B. Stark, and Y. M. Elçin, “Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies,” J. Biomater. Appl., vol. 29, no. 5, pp. 748–760, Nov. 2014, doi: 10.1177/0885328214544769.
  • S. Lakhal and M. J. A. Wood, “Exosome nanotechnology: An emerging paradigm shift in drug delivery: Exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers,” BioEssays, vol. 33, no. 10, pp. 737–741, Oct. 2011, doi: 10.1002/BIES.201100076.
  • C. Fitzmaurice et al., “The Global Burden of Cancer 2013,” JAMA Oncol., vol. 1, no. 4, pp. 505–527, Jul. 2015, doi: 10.1001/JAMAONCOL.2015.0735.
  • H. Cabral, K. Miyata, K. Osada, and K. Kataoka, “Block Copolymer Micelles in Nanomedicine Applications,” Chem. Rev., vol. 118, no. 14, pp. 6844–6892, Jul. 2018, doi: 10.1021/ACS.CHEMREV.8B00199.
  • A. Shoaib et al., “A Nanotechnology-Based Approach to Biosensor Application in Current Diabetes Management Practices,” Nanomaterials, vol. 13, no. 5, p. 867, Feb. 2023, doi: 10.3390/nano13050867.
  • S. Singhal, S. Nie, and M. D. Wang, “Nanotechnology applications in surgical oncology,” Annu. Rev. Med., vol. 61, pp. 359–373, Feb. 2010, doi: 10.1146/ANNUREV.MED.60.052907.094936.
  • S. Durkut, Y. M. Elçin, and A. E. Elçin, “Biodegradation of chitosan-tripolyphosphate beads: In vitro and in vivo studies,” Artif. Cells, Blood Substitutes, Biotechnol., vol. 34, no. 2, pp. 263–276, Mar. 2006, doi: 10.1080/10731190600581866.
  • I. Takeuchi, K. Nomura, and K. Makino, “Hydrophobic boron compound-loaded poly(L-lactide-co-glycolide) nanoparticles for boron neutron capture therapy,” Colloids Surfaces B Biointerfaces, vol. 159, pp. 360–365, Nov. 2017, doi: 10.1016/J.COLSURFB.2017.08.002.
  • R. L. Frost, R. Scholz, X. Ruan, and R. M. F. Lima, “Thermal analysis and infrared emission spectroscopy of the borate mineral colemanite (CaB3O4(OH)3·H2O): Implications for thermal stability,” J. Therm. Anal. Calorim., vol. 124, no. 1, pp. 131–135, Apr. 2016, doi: 10.1007/S10973-015-5128-5.
  • K. Arikan, H. Burhan, R. Bayat, and F. Sen, “Glucose nano biosensor with non-enzymatic excellent sensitivity prepared with nickel–cobalt nanocomposites on f-MWCNT,” Chemosphere, vol. 291, Mar. 2022, doi: 10.1016/J.CHEMOSPHERE.2021.132720.
  • L. M. Rodríguez-Lorenzo, A. J. Salinas, M. Vallet-Regí, and J. San Román, “Composite biomaterials based on ceramic polymers. I. Reinforced systems based on Al2O3/PMMA/PLLA,” J. Biomed. Mater. Res., vol. 30, no. 4, pp. 515–522, Apr. 1996, doi: 10.1002/(SICI)1097-4636(199604)30:4<515::AID-JBM10>3.0.CO;2-G.
  • G. Rengasamy and S. Mahalingam, “Fabrication and characterization of chitosan/Ag@hydroxyapatite nanocomposite films for osteoregeneration: Insights into mechanical properties, biological performance, and drug release,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 717, Jul. 2025, doi: 10.1016/J.COLSURFA.2025.136790.
  • A. Raghunath and E. Perumal, “Metal oxide nanoparticles as antimicrobial agents: a promise for the future,” Int. J. Antimicrob. Agents, vol. 49, no. 2, pp. 137–152, Feb. 2017, doi: 10.1016/J.IJANTIMICAG.2016.11.011.
  • W. Cai, J. Wang, C. Chu, W. Chen, C. Wu, and G. Liu, “Metal–Organic Framework-Based Stimuli-Responsive Systems for Drug Delivery,” Adv. Sci., vol. 6, no. 1, Jan. 2019, doi: 10.1002/ADVS.201801526.
  • S. Nie, Y. Xing, G. J. Kim, and J. W. Simons, “Nanotechnology applications in cancer,” Annu. Rev. Biomed. Eng., vol. 9, pp. 257–288, 2007, doi: 10.1146/ANNUREV.BIOENG.9.060906.152025.
  • Y. Yıldız, İ. Esirden, E. Erken, E. Demir, M. Kaya, and F. Şen, “Microwave (Mw)-assisted Synthesis of 5-Substituted 1H-Tetrazoles via [3+2] Cycloaddition Catalyzed by Mw-Pd/Co Nanoparticles Decorated on Multi-Walled Carbon Nanotubes,” ChemistrySelect, vol. 1, no. 8, pp. 1695–1701, Jun. 2016, doi: 10.1002/SLCT.201600265;WGROUP:STRING:PUBLICATION.
  • H. Nakamura, H. Koganei, T. Miyoshi, Y. Sakurai, K. Ono, and M. Suzuki, “Antitumor effect of boron nitride nanotubes in combination with thermal neutron irradiation on BNCT,” Bioorganic Med. Chem. Lett., vol. 25, no. 2, pp. 172–174, Jan. 2015, doi: 10.1016/J.BMCL.2014.12.005.
  • A. P. Blum, J. K. Kammeyer, A. M. Rush, C. E. Callmann, M. E. Hahn, and N. C. Gianneschi, “Stimuli-responsive nanomaterials for biomedical applications,” J. Am. Chem. Soc., vol. 137, no. 6, pp. 2140–2154, Feb. 2015, doi: 10.1021/JA510147N.
  • B. Sen, S. Kuzu, E. Demir, E. Yıldırır, and F. Sen, “Highly efficient catalytic dehydrogenation of dimethyl ammonia borane via monodisperse palladium–nickel alloy nanoparticles assembled on PEDOT,” Int. J. Hydrogen Energy, vol. 42, no. 36, pp. 23307–23314, Sep. 2017, doi: 10.1016/J.IJHYDENE.2017.05.115.
  • B. Çelik et al., “Retracted Article: Highly monodisperse Pt(0)@AC NPs as highly efficient and reusable catalysts: the effect of the surfactant on their catalytic activities in room temperature dehydrocoupling of DMAB,” Catal. Sci. Technol., vol. 6, no. 6, pp. 1685–1692, Mar. 2016, doi: 10.1039/C5CY01371B.
  • W. D. Loomis and R. W. Durst, “Chemistry and biology of boron.,” Biofactors, vol. 3, no. 4, pp. 229–239, Apr. 1992.
  • J. Chen et al., “Remarkable boron delivery of iRGD-modified polymeric nanoparticles for boron neutron capture therapy,” Int. J. Nanomedicine, vol. 14, pp. 8161–8177, 2019, doi: 10.2147/IJN.S214224.
  • P. Taslimi et al., “Pyrazole[3,4-d]pyridazine derivatives: Molecular docking and explore of acetylcholinesterase and carbonic anhydrase enzymes inhibitors as anticholinergics potentials,” Bioorg. Chem., vol. 92, Nov. 2019, doi: 10.1016/J.BIOORG.2019.103213.
  • S. Ozturk, F. B. Ayanoğlu, M. Parmaksiz, A. E. Elçin, and Y. M. Elçin, “Clinical and surgical aspects of medical materials’ biocompatibility,” Handb. Biomater. Biocompat., pp. 219–250, Jan. 2020, doi: 10.1016/B978-0-08-102967-1.00012-8.
  • R. Núñez, M. Tarrés, A. Ferrer-Ugalde, F. F. De Biani, and F. Teixidor, “Electrochemistry and Photoluminescence of Icosahedral Carboranes, Boranes, Metallacarboranes, and Their Derivatives,” Chem. Rev., vol. 116, no. 23, pp. 14307–14378, Dec. 2016, doi: 10.1021/ACS.CHEMREV.6B00198.
  • Y. Zhou, S. Peng, H. Wang, X. Cai, and Q. Wang, “Review of Personalized Medicine and Pharmacogenomics of Anti-Cancer Compounds and Natural Products,” Genes (Basel)., vol. 15, no. 4, Apr. 2024, doi: 10.3390/genes15040468.
  • F. Şen and G. Gökaǧaç, “Improving Catalytic Efficiency in the Methanol Oxidation Reaction by Inserting Ru in Face-Centered Cubic Pt Nanoparticles Prepared by a New Surfactant, tert-Octanethiol,” Energy and Fuels, vol. 22, no. 3, pp. 1858–1864, May 2008, doi: 10.1021/EF700575T.
  • H. Omidian, N. Babanejad, and L. X. Cubeddu, “Nanosystems in Cardiovascular Medicine: Advancements, Applications, and Future Perspectives,” Pharmaceutics, vol. 15, no. 7, 2023, doi: 10.3390/pharmaceutics15071935.
  • M. F. Hawthorne, “The Role of Chemistry in the Development of Boron Neutron Capture Therapy of Cancer,” Angew. Chemie Int. Ed. English, vol. 32, no. 7, pp. 950–984, 1993, doi: 10.1002/ANIE.199309501.
  • S. Biyik, “ Effect of Cubic and Hexagonal Boron Nitride Additions on the Synthesis of Ag–SnO 2 Electrical Contact Material ,” J. Nanoelectron. Optoelectron., vol. 14, no. 7, pp. 1010–1015, Jun. 2019, doi: 10.1166/JNO.2019.2592.
  • E. Erken, Y. Yildiz, B. Kilbaş, and F. Şen, “Synthesis and Characterization of Nearly Monodisperse Pt Nanoparticles for C1 to C3 Alcohol Oxidation and Dehydrogenation of Dimethylamine-borane (DMAB),” J. Nanosci. Nanotechnol., vol. 16, no. 6, pp. 5944–5950, Jun. 2016, doi: 10.1166/JNN.2016.11683.
  • F. Diler et al., “Efficient preparation and application of monodisperse palladium loaded graphene oxide as a reusable and effective heterogeneous catalyst for suzuki cross-coupling reaction,” J. Mol. Liq., vol. 298, p. 111967, Jan. 2020, doi: 10.1016/J.MOLLIQ.2019.111967.
  • S. Pandiyarajan, S. S. M. Manickaraj, A. H. Liao, A. R. Panneer Selvam, K. Y. Lee, and H. C. Chuang, “Coherent construction of recovered γ-Al2O3 embedded N-doped activated carbon by supercritical-CO2 pathway: Robust hybrid electrode material for energy storage device,” J. Alloys Compd., vol. 936, Mar. 2023, doi: 10.1016/J.JALLCOM.2022.168213.
  • R. E. Mesmer, C. F. Baes, and F. H. Sweeton, “Acidity Measurements at Elevated Temperatures. VI. Boric Acid Equilibria,” Inorg. Chem., vol. 11, no. 3, pp. 537–543, Mar. 1972, doi: 10.1021/IC50109A023.
  • F. Zheng, Z. Yin, H. Xia, and Y. Zhang, “MOF-derived porous Co3O4 cuboids with excellent performance as anode materials for lithium-ion batteries,” Mater. Lett., vol. 197, pp. 188–191, Jun. 2017, doi: 10.1016/j.matlet.2017.03.050.
  • S. M. George, C. Nayak, I. Singh, and K. Balani, “Multifunctional Hydroxyapatite Composites for Orthopedic Applications: A Review,” ACS Biomater. Sci. Eng., vol. 8, no. 8, pp. 3162–3186, Aug. 2022, doi: 10.1021/ACSBIOMATERIALS.2C00140.
  • E. Erken et al., “New Pt(0) Nanoparticles as Highly Active and Reusable Catalysts in the C1–C3 Alcohol Oxidation and the Room Temperature Dehydrocoupling of Dimethylamine-Borane (DMAB),” J. Clust. Sci. 2015 271, vol. 27, no. 1, pp. 9–23, Jun. 2015, doi: 10.1007/S10876-015-0892-8.
  • B. Şahin, E. Demir, A. Aygün, H. Gündüz, and F. Şen, “Investigation of the effect of pomegranate extract and monodisperse silver nanoparticle combination on MCF-7 cell line,” J. Biotechnol., vol. 260, pp. 79–83, Oct. 2017, doi: 10.1016/J.JBIOTEC.2017.09.012.
  • A. Akbari and J. Rezaie, “Potential therapeutic application of mesenchymal stem cell-derived exosomes in SARS-CoV-2 pneumonia,” Stem Cell Res. Ther., vol. 11, no. 1, Aug. 2020, doi: 10.1186/S13287-020-01866-6.
  • X. Qian, W. Chen, J. Huang, J. Wu, and J. Wu, “Ni–CoS2/WS2/MoS2 hollow cuboids as noble metal-free bifunctional catalysts for highly efficient photovoltaics and electrochemical hydrogen production,” Renew. Energy, vol. 211, pp. 459–469, Jul. 2023, doi: 10.1016/J.RENENE.2023.05.036.
  • Y. Abo-zeid and G. R. Williams, “The potential anti-infective applications of metal oxide nanoparticles: A systematic review,” Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology, vol. 12, no. 2, Mar. 2020, doi: 10.1002/WNAN.1592.
  • M. Derakhshi, M. Naseri, Z. Vafaeipour, B. Malaekeh-Nikouei, A. H. Jafarian, and L. Ansari, “Enhanced wound-healing efficacy of electrospun mesoporous hydroxyapatite nanoparticle-loaded chitosan nanofiber developed using pluronic F127,” Int. J. Biol. Macromol., vol. 240, Jun. 2023, doi: 10.1016/J.IJBIOMAC.2023.124427.
  • S. H. Farjana, N. Huda, M. A. P. Mahmud, and C. Lang, “Comparative life-cycle assessment of uranium extraction processes,” J. Clean. Prod., vol. 202, pp. 666–683, Nov. 2018, doi: 10.1016/J.JCLEPRO.2018.08.105.
  • G. S. Ginsburg, R. P. Konstance, J. S. Allsbrook, and K. A. Schulman, “Implications of pharmacogenomics for drug development and clinical practice,” Arch. Intern. Med., vol. 165, no. 20, pp. 2331–2336, Nov. 2005, doi: 10.1001/archinte.165.20.2331.
  • R. F. Barth, Z. Zhang, and T. Liu, “A realistic appraisal of boron neutron capture therapy as a cancer treatment modality,” Cancer Commun., vol. 38, no. 1, 2018, doi: 10.1186/S40880-018-0280-5.
  • Q. Zhang et al., “Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets,” Nat. Cell Biol., vol. 23, no. 12, pp. 1240–1254, Dec. 2021, doi: 10.1038/s41556-021-00805-8.
  • P. Feng et al., “Structural and Functional Adaptive Artificial Bone: Materials, Fabrications, and Properties,” Adv. Funct. Mater., vol. 33, no. 23, Jun. 2023, doi: 10.1002/ADFM.202214726.
  • C. Mirkin and C. Niemeyer, “Nanobiotechnology II: more concepts and applications,” 2007.
  • M. A. Chowdhury, M. M. K. Uddin, M. B. A. Shuvho, M. Rana, and N. Hossain, “A novel temperature dependent method for borophene synthesis,” Appl. Surf. Sci. Adv., vol. 11, Oct. 2022, doi: 10.1016/J.APSADV.2022.100308.
  • J. Wang et al., “Carborane Derivative Conjugated with Gold Nanoclusters for Targeted Cancer Cell Imaging,” Biomacromolecules, vol. 18, no. 5, pp. 1466–1472, May 2017, doi: 10.1021/ACS.BIOMAC.6B01845.
  • M. Nehra, U. Uthappa, V. Kumar, … R. K.-J. of C., and undefined 2021, “Nanobiotechnology-assisted therapies to manage brain cancer in personalized manner,” Elsevier.
  • Y. Qiao et al., “3D well-ordered porous phosphorus doped carbon as an anode for sodium storage: Structure design, experimental and computational insights,” J. Mater. Chem. A, vol. 7, no. 18, pp. 11400–11407, 2019, doi: 10.1039/C9TA02268F.
  • B. Albert and H. Hillebrecht, “Boron: Elementary Challenge for Experimenters and Theoreticians,” Angew. Chemie Int. Ed., vol. 48, no. 46, pp. 8640–8668, Nov. 2009, doi: 10.1002/anie.200903246.
  • J. W. Wong and J. Y. M. Koo, “Psychopharmacological therapies in dermatology,” Dermatol. Online J., vol. 19, no. 5, 2013, doi: 10.5070/D3195018169.
  • A. Silvestri et al., “The era of nano-bionic: 2D materials for wearable and implantable body sensors,” Adv. Drug Deliv. Rev., vol. 186, p. 114315, Jul. 2022, doi: 10.1016/J.ADDR.2022.114315.
  • Ö. Gör Fatma SÖNMEZ ÇAKIR Doç Alper AYTEKİN Arş Gör Fatma TÜMİNÇİN, “Sosyal Araştırmalar ve Davranış Bilimleri Dergisi Journal of Social Research and Behavioral Sciences Nesnelerin İnterneti Ve Giyilebilir Teknolojiler *,” pp. 84–95, 2018.
  • Y. Ren, F. Zhang, Z. Yan, and P. Y. Chen, “Wearable bioelectronics based on emerging nanomaterials for telehealth applications,” Device, vol. 3, no. 1, pp. 1–29, 2025, doi: 10.1016/j.device.2024.100676.
  • A. Kholkin, N. Amdursky, I. Bdikin, E. Gazit, and G. Rosenman, “Strong piezoelectricity in bioinspired peptide nanotubes,” ACS Nano, vol. 4, no. 2, pp. 610–614, Feb. 2010, doi: 10.1021/NN901327V.
  • P. R. More, S. Pandit, A. De Filippis, G. Franci, I. Mijakovic, and M. Galdiero, “Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens,” Microorganisms, vol. 11, no. 2, 2023, doi: 10.3390/microorganisms11020369.
  • F. Gulbagça et al., “Facile bio-fabrication of Pd-Ag bimetallic nanoparticles and its performance in catalytic and pharmaceutical applications: Hydrogen production and in-vitro antibacterial, anticancer activities, and model development,” Chem. Eng. Res. Des., vol. 180, pp. 254–264, Apr. 2022, doi: 10.1016/J.CHERD.2022.02.024.
  • H. J. Lee, S. Y. Yeo, and S. H. Jeong, “Antibacterial effect of nanosized silver colloidal solution on textile fabrics,” J. Mater. Sci., vol. 38, no. 10, pp. 2199–2204, May 2003, doi: 10.1023/A:1023736416361/METRICS.
  • S. Arora, J. Jain, J. M. Rajwade, and K. M. Paknikar, “Cellular responses induced by silver nanoparticles: In vitro studies,” Toxicol. Lett., vol. 179, no. 2, pp. 93–100, Jun. 2008, doi: 10.1016/J.TOXLET.2008.04.009.
  • A. B. Stefaniak et al., “Dermal exposure potential from textiles that contain silver nanoparticles,” Int. J. Occup. Environ. Health, vol. 20, no. 3, pp. 220–234, 2014, doi: 10.1179/2049396714Y.0000000070;SUBPAGE:STRING:ACCESS.
  • “NANO GÜMÜŞ EMPRENYE EDİLMİŞ ÜÇ BOYUTLU KUMAŞLARDA ANTİ-MİKROBİYAL ETKİNLİK”, doi: 10.20854/bujse.454358.
  • J. Zhang, F. Wang, S. S. K. Yalamarty, N. Filipczak, Y. Jin, and X. Li, “Nano Silver-Induced Toxicity and Associated Mechanisms,” Int. J. Nanomedicine, vol. 17, p. 1851, 2022, doi: 10.2147/IJN.S355131.
  • F. Ameen et al., “Synthesis and characterization of activated carbon supported bimetallic Pd based nanoparticles and their sensor and antibacterial investigation,” Environ. Res., vol. 221, p. 115287, Mar. 2023, doi: 10.1016/J.ENVRES.2023.115287.
  • E. Demir, B. Sen, and F. Sen, “Highly efficient Pt nanoparticles and f-MWCNT nanocomposites based counter electrodes for dye-sensitized solar cells,” Nano-Structures & Nano-Objects, vol. 11, pp. 39–45, Jul. 2017, doi: 10.1016/J.NANOSO.2017.06.003.
  • F. Göktepe, “Eğrilebilir karbon nanotüpler ve bu özel liflerden üretilen teknik iplikler,” Tekst. ve Muhendis, vol. 22, no. 100, pp. 1–12, 2015, doi: 10.7216/1300759920152210001.
  • E. K. ÇEVEN, N. ER, and G. KARAKAN GÜNAYDIN, “NANOPARTİKÜL Katkili Poli̇mer Yüzeyleri̇ İletkenli Özelli̇kleri̇ni̇ Opti̇mi̇zasyonu,” Uludağ Univ. J. Fac. Eng., pp. 345–364, 2021, doi: 10.17482/uumfd.836257.
  • M. Syduzzaman, A. Hassan, H. R. Anik, M. Akter, and M. R. Islam, “Nanotechnology for High-Performance Textiles: A Promising Frontier for Innovation,” ChemNanoMat, vol. 9, no. 9, p. e202300205, Sep. 2023, doi: 10.1002/CNMA.202300205;REQUESTEDJOURNAL:JOURNAL:2199692X;PAGE:STRING:ARTICLE/CHAPTER.
  • G. Yavuz, E. Yilmaz, E. Halvaci, C. Catal, and I. Turk, “Nanotechnology in Medical Applications ; Recent Developments in Devices and Materials,” J. Sci. Reports-C, no. 5, pp. 1–32, 2023.
  • S. I. Kaya, S. Kurbanoglu, E. Yavuz, S. Demiroglu Mustafov, F. Sen, and S. A. Ozkan, “Carbon-based ruthenium nanomaterial-based electroanalytical sensors for the detection of anticancer drug Idarubicin,” Sci. Reports 2020 101, vol. 10, no. 1, pp. 11057-, Jul. 2020, doi: 10.1038/s41598-020-68055-6.
  • Z. Tüylek, “Biyolojik Sistemlerde Gelecekteki Nano / Biyosensör Ürünlerine Hazırlık,” Biyosistem Mühendisliği Derg., vol. 2, no. 1, pp. 17–39, 2021.
  • Z. Tüylek, “Biyosensörler ve Nanoteknolojik Etkileşim Biosensors and Nanotechnological Interaction,” BEÜ Fen Bilim. Derg. BEU J. Sci., vol. 6, no. 62, pp. 71–80, 2017, [Online]. Available: http://dergipark.gov.tr/download/article-file/391093
  • R. Darabi et al., “Simultaneous determination of ascorbic acid, dopamine, and uric acid with a highly selective and sensitive reduced graphene oxide/polypyrrole-platinum nanocomposite modified electrochemical sensor,” Electrochim. Acta, vol. 457, p. 142402, Jul. 2023, doi: 10.1016/J.ELECTACTA.2023.142402.
  • A. Şavk et al., “Highly monodisperse Pd-Ni nanoparticles supported on rGO as a rapid, sensitive, reusable and selective enzyme-free glucose sensor,” Sci. Rep., vol. 9, no. 1, pp. 19228-, Dec. 2019, doi: 10.1038/S41598-019-55746-Y;TECHMETA.
  • D. Mihai et al., “Continuous glucose monitoring devices: A brief presentation (Review),” Exp. Ther. Med., vol. 23, no. 2, pp. 1–6, 2021, doi: 10.3892/etm.2021.11097.
  • I. Meydan, H. Burhan, T. Gür, H. Seçkin, B. Tanhaei, and F. Sen, “Characterization of Rheum ribes with ZnO nanoparticle and its antidiabetic, antibacterial, DNA damage prevention and lipid peroxidation prevention activity of in vitro,” Environ. Res., vol. 204, p. 112363, Mar. 2022, doi: 10.1016/J.ENVRES.2021.112363.
  • J. Wu, Y. Liu, H. Yin, and M. Guo, “A new generation of sensors for non-invasive blood glucose monitoring.,” Am. J. Transl. Res., vol. 15, no. 6, pp. 3825–3837, 2023, Accessed: Nov. 24, 2025. [Online]. Available: https://pmc.ncbi.nlm.nih.gov/articles/PMC10331674/
  • G. Acciaroli, M. Vettoretti, A. Facchinetti, and G. Sparacino, “Calibration of Minimally Invasive Continuous Glucose Monitoring Sensors: State-of-The-Art and Current Perspectives,” vol. 8, no. 1, p. 24, Mar. 2018, doi: 10.3390/BIOS8010024.
  • M. Safarkhani et al., “Nanomaterial-assisted wearable glucose biosensors for noninvasive real-time monitoring: Pioneering point-of-care and beyond,” Nano Mater. Sci., vol. 6, no. 3, pp. 263–283, Jun. 2024, doi: 10.1016/j.nanoms.2023.11.009.
  • K. J. Cash and H. A. Clark, “Diabetes,” vol. 16, no. 12, pp. 584–593, 2011, doi: 10.1016/j.molmed.2010.08.002.Nanosensors.
  • Z. Yu, H. Wu, Z. Xu, Z. Yang, J. Lv, and C. Kong, “Wearable Noninvasive Glucose Sensor Based on CuxO NFs/Cu NPs Nanocomposites,” Sensors, vol. 23, no. 2, 2023, doi: 10.3390/s23020695.
  • R. Ulus, Y. Yıldız, S. Eriş, B. Aday, F. Şen, and M. Kaya, “Functionalized Multi-Walled Carbon Nanotubes (f-MWCNT) as Highly Efficient and Reusable Heterogeneous Catalysts for the Synthesis of Acridinedione Derivatives,” ChemistrySelect, vol. 1, no. 13, pp. 3861–3865, Aug. 2016, doi: 10.1002/SLCT.201600719.
  • A. T. Lawal, “Recent developments in electrochemical sensors based on graphene for bioanalytical applications,” Sens. Bio-Sensing Res., vol. 41, no. July, p. 100571, 2023, doi: 10.1016/j.sbsr.2023.100571.
  • A. Hojjati-Najafabadi, S. Salmanpour, F. Sen, P. N. Asrami, M. Mahdavian, and M. A. Khalilzadeh, “A Tramadol Drug Electrochemical Sensor Amplified by Biosynthesized Au Nanoparticle Using Mentha aquatic Extract and Ionic Liquid,” Top. Catal. 2021 655, vol. 65, no. 5, pp. 587–594, Sep. 2021, doi: 10.1007/S11244-021-01498-X.
  • A. Mahendra, “An overview on electrolytes: Its importance, function, and imbalances,” Clin Nutr Hosp Diet, vol. 43, no. 1, pp. 1–02, 2023, doi: 10.12873/0211-6057.23.01.195.
  • A. Akter, M. M. H. Apu, Y. R. Veeranki, T. N. Baroud, and H. F. Posada-Quintero, “Recent Studies on Smart Textile-Based Wearable Sweat Sensors for Medical Monitoring: A Systematic Review,” J. Sens. Actuator Networks, vol. 13, no. 4, 2024, doi: 10.3390/jsan13040040.
  • C. Tang, Z. Liu, and L. Li, “Mechanical Sensors for Cardiovascular Monitoring: From Battery-Powered to Self-Powered,” Biosensors, vol. 12, no. 8, 2022, doi: 10.3390/bios12080651.
  • A. Ali, S. Iqbal, and X. Chen, “Recent advances in piezoelectric wearable energy harvesting based on human motion: Materials, design, and applications,” Energy Strateg. Rev., vol. 53, no. May, p. 101422, May 2024, doi: 10.1016/j.esr.2024.101422.
  • D. T. P. Fong and Y. Y. Chan, “The use of wearable inertial motion sensors in human lower limb biomechanics studies: A systematic review,” Sensors (Switzerland), vol. 10, no. 12, pp. 11556–11565, 2010, doi: 10.3390/s101211556.
  • M. A. Gartstein., S. Putnam., and R. Kliewer., “乳鼠心肌提取 HHS Public Access,” Physiol. Behav., vol. 176, no. 3, pp. 139–148, 2016, doi: 10.15406/ijbsbe.2018.04.00125.A.
  • G. D. Buckberg, N. C. Nanda, C. Nguyen, and M. J. Kocica, “What is the heart? Anatomy, function, pathophysiology, and misconceptions,” J. Cardiovasc. Dev. Dis., vol. 5, no. 2, 2018, doi: 10.3390/jcdd5020033.
  • C. M. Boutry et al., “Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow,” Nat. Biomed. Eng. 2019 31, vol. 3, no. 1, pp. 47–57, Jan. 2019, doi: 10.1038/s41551-018-0336-5.
  • A. Kelimeler, “PİEZOELEKTRİK UYGULAMALI AYAKKABI TASARIMI PIEZOELECTRIC APPLIED SHOE DESIGN Dr . Öğr . Üyesi . Mustafa Oğuz GÖK Kahramanmaraş Sütçü İmam Üniversitesi , Güzel Sanatlar Fakültesi , Tekstil ve Moda Tasarımı Bölümü , mustafaoguz@ksu.edu.tr , Kahramanmaraş / ,” no. 22, pp. 888–893, 2018.
  • V. Naresh and N. Lee, “A review on biosensors and recent development of nanostructured materials-enabled biosensors,” Sensors (Switzerland), vol. 21, no. 4, pp. 1–35, Feb. 2021, doi: 10.3390/s21041109.
  • S. Ranwa and M. Kumar, “Sensing Materials: Ceramics,” Encycl. Sensors Biosensors, First Ed. Four Vol. Set, pp. 1–13, Jan. 2023, doi: 10.1016/B978-0-12-822548-6.00020-0.
  • G. T. Hwang, M. Byun, C. K. Jeong, and K. J. Lee, “Flexible piezoelectric Thin-Film energy harvesters and nanosensors for biomedical applications,” Adv. Healthc. Mater., vol. 4, no. 5, pp. 646–658, Apr. 2015, Accessed: Nov. 24, 2025. [Online]. Available: /doi/pdf/10.1002/adhm.201400642
  • M. Tekkalmaz, G. Haydarlar, and M. A. Sofuoğlu, “Yapısal Sağlık İzlemede Kullanılan Piezoelektrik Sensörlerin Değişen Sıcaklıklarda Davranışının İncelenmesi,” J. Polytech., vol. 0900, no. 3, pp. 597–606, 2019, doi: 10.2339/politeknik.513956.
  • X. Wang, “Piezoelectric nanogenerators—Harvesting ambient mechanical energy at the nanometer scale,” Nano Energy, vol. 1, no. 1, pp. 13–24, Jan. 2012, doi: 10.1016/J.NANOEN.2011.09.001.
  • I. Z. Hossain, A. Khan, and G. Hossain, “A Piezoelectric Smart Textile for Energy Harvesting and Wearable Self-Powered Sensors,” Energies, vol. 15, no. 15, 2022, doi: 10.3390/en15155541.
  • C. Dagdeviren et al., “Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm,” Proc. Natl. Acad. Sci. U. S. A., vol. 111, no. 5, pp. 1927–1932, Feb. 2014, doi: 10.1073/PNAS.1317233111;WGROUP:STRING:PUBLICATION.
  • L. Persano et al., “High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene),” Nat. Commun., vol. 4, pp. 1610–1633, 2013, doi: 10.1038/ncomms2639.
  • X. Wan, H. Cong, G. Jiang, X. Liang, L. Liu, and H. He, “A Review on PVDF Nanofibers in Textiles for Flexible Piezoelectric Sensors,” ACS Appl. Nano Mater., 2023, doi: 10.1021/ACSANM.2C04916.
  • M. O. GÖK, İ. KARADÖL, and M. ŞEKKELİ, “PİEZO Uygulamali AkilliTeksti̇l Uygulamasi,” Mühendislik Bilim. ve Tasarım Derg., vol. 7, no. 2, pp. 369–380, 2019, doi: 10.21923/jesd.431669.
  • Z. Wang, X. Hu, Z. Fan, and W. Fei, “Wearable piezoelectrical muscle monitoring system for swimming analysis neural network,” IEICE Electron. Express, vol. 22, no. 5, pp. 1–5, 2025, doi: 10.1587/elex.21.20240287.
  • X. Gao, M. Zheng, H. Lv, Y. Zhang, M. Zhu, and Y. Hou, “Ultrahigh sensitive flexible sensor based on textured piezoelectric composites for preventing sports injuries,” Compos. Sci. Technol., vol. 229, p. 109693, Oct. 2022, doi: 10.1016/J.COMPSCITECH.2022.109693.
  • C. Zhao, C. Jia, Y. Zhu, and T. Zhao, “An effective self-powered piezoelectric sensor for monitoring basketball skills,” Sensors, vol. 21, no. 15, p. 5144, Aug. 2021, doi: 10.3390/S21155144/S1.
  • N. Doner, H. Burhan, R. Bayat, E. Esra Altuner, and F. Sen, “Energy Generation through Thermopower Waves using Multi-walled Carbon Nanotube Yarn,” Fuel, vol. 331, p. 125906, Jan. 2023, doi: 10.1016/J.FUEL.2022.125906.
  • E. Demir, A. Savk, B. Sen, and F. Sen, “A novel monodisperse metal nanoparticles anchored graphene oxide as Counter Electrode for Dye-Sensitized Solar Cells,” Nano-Structures & Nano-Objects, vol. 12, pp. 41–45, Oct. 2017, doi: 10.1016/J.NANOSO.2017.08.018.
  • J. Vitorino, B. Damas, and V. Víegas, “Harvesting energy from a soldier’s gait using the piezoelectric effect,” Energy Harvest. Syst., vol. 11, no. 1, pp. 1–11, 2024, doi: 10.1515/ehs-2023-0149.
  • Y. Chen, X. Zhang, and C. Lu, “Flexible piezoelectric materials and strain sensors for wearable electronics and artificial intelligence applications,” Chem. Sci., vol. 15, no. 40, pp. 16436–16466, Oct. 2024, doi: 10.1039/D4SC05166A.
  • M. A. Mangi et al., “Applications of piezoelectric-based sensors, actuators, and energy harvesters,” Sensors and Actuators Reports, vol. 9, p. 100302, Jun. 2025, doi: 10.1016/J.SNR.2025.100302.
  • Y. Wu, Y. Ma, H. Zheng, and S. Ramakrishna, “Piezoelectric materials for flexible and wearable electronics: A review,” Mater. Des., vol. 211, p. 110164, Dec. 2021, doi: 10.1016/J.MATDES.2021.110164.
  • M. Bekmezci, R. Bayat, G. Kaya, and F. Şen, “Applications of Boron and Derivatives in Defense Industry: Mini Review,” Int. J. Boron Sci. Nanotechnol., no. 2, pp. 24–38, 2025.
  • “Recent development of piezoelectric biosensors for physiological signal detection and machine learning assisted cardiovascular disease diagnosis - RSC Advances (RSC Publishing) DOI:10.1039/D3RA05932D.” Accessed: Nov. 25, 2025. [Online]. Available: https://pubs.rsc.org/en/content/articlehtml/2023/ra/d3ra05932d?utm_source=chatgpt.com
  • M. A. Belal et al., “Advances in nanogenerator enabled smart mask-based self-powered health monitoring units,” Mater. Adv., vol. 6, no. 22, pp. 8210–8238, Nov. 2025, doi: 10.1039/D5MA00845J.
  • Z. Li, Q. Zheng, Z. L. Wang, and Z. Li, “Nanogenerator-Based Self-Powered Sensors for Wearable and Implantable Electronics,” Res. (Washington, D.C.), vol. 2020, Jan. 2020, doi: 10.34133/2020/8710686.
  • Q. Zhu, T. Wu, and N. Wang, “From Piezoelectric Nanogenerator to Non-Invasive Medical Sensor: A Review,” Biosensors, vol. 13, no. 1, 2023, doi: 10.3390/bios13010113.
  • N. Rubab and S. W. Kim, “Self-powered Sensors based on Piezoelectric Nanogenerators,” J. Sens. Sci. Technol., vol. 31, no. 5, pp. 293–300, 2022, doi: 10.46670/JSST.2022.31.5.293.
  • J. M. Anderson, A. Rodriguez, and D. T. Chang, “Foreign body reaction to biomaterials,” Semin. Immunol., vol. 20, no. 2, pp. 86–100, Apr. 2008, doi: 10.1016/J.SMIM.2007.11.004.
  • R. García-álvarez and M. Vallet-Regí, “Hard and soft protein corona of nanomaterials: Analysis and relevance,” Nanomaterials, vol. 11, no. 4, 2021, doi: 10.3390/nano11040888.
  • A. A. Aljabali et al., “Nanomaterials and Their Impact on the Immune System,” Int. J. Mol. Sci. 2023, Vol. 24, Page 2008, vol. 24, no. 3, p. 2008, Jan. 2023, doi: 10.3390/IJMS24032008.
  • T. R. Kyriakides et al., “Biocompatibility of nanomaterials and their immunological properties,” Biomed. Mater., vol. 16, no. 4, pp. 1–49, 2021, doi: 10.1088/1748-605X/abe5fa.
  • V. Lenders, X. Koutsoumpou, A. Sargsian, and B. B. Manshian, “Biomedical nanomaterials for immunological applications: Ongoing research and clinical trials,” Nanoscale Adv., vol. 2, no. 11, pp. 5046–5089, 2020, doi: 10.1039/d0na00478b.
  • D. Nierenberg, A. R. Khaled, and O. Flores, “Formation of a protein corona influences the biological identity of nanomaterials,” Reports Pract. Oncol. Radiother., vol. 23, no. 4, p. 300, Jul. 2018, doi: 10.1016/J.RPOR.2018.05.005.
  • M. S. Nas, M. H. Calimli, H. Burhan, M. Yılmaz, S. D. Mustafov, and F. Sen, “Corrigendum to ‘Synthesis, characterization, kinetics and adsorption properties of Pt-Co@GO nano-adsorbent for methylene blue removal in the aquatic mediums using ultrasonic process systems’. [J. Mol. Liquids 296 (2019) 112100],” J. Mol. Liq., vol. 340, p. 117289, Oct. 2021, doi: 10.1016/J.MOLLIQ.2021.117289.
  • A. Halıcı et al., “Nanopartiküllerin Genotoksik Etkileri,” Gazi Üniversitesi Fen Fakültesi Derg., vol. 38, no. 2, pp. 19–38, 2021, doi: 10.5281/zenodo.5734749.
  • E. DÖNMEZ, H. T. YÜKSEL DOLGUN, and Ş. KIRKAN, “Nanopartiküler Aşılar,” J. Anatol. Environ. Anim. Sci., vol. 6, no. 4, pp. 578–584, 2021, doi: 10.35229/jaes.970713.
  • E. Aydin, A. Aydin, G. Çeti̇Ner, and G. Erel-Akbaba, “DOĞADAN İLHAM ALAN BİYOMİMETİK NANOTAŞIYICI SİSTEMLER,” Ankara Univ. Eczac. Fak. Derg., vol. 46, no. 2, pp. 551–575, 2022, doi: 10.33483/jfpau.1033286.
  • P. X. Ma, “Biomimetic Materials for Tissue Engineering,” Adv. Drug Deliv. Rev., vol. 60, no. 2, p. 184, Jan. 2007, doi: 10.1016/J.ADDR.2007.08.041.
  • L. V. Bauso, V. La Fauci, C. Longo, and G. Calabrese, “Bone Tissue Engineering and Nanotechnology: A Promising Combination for Bone Regeneration,” Biology (Basel)., vol. 13, no. 4, pp. 1–31, 2024, doi: 10.3390/biology13040237.
  • M. Piccoli, “Extracellular Matrix-Derived Hydrogels as Tissue Replacements,” 2020.
  • A. Curtis and C. Wilkinson, “Topographical control of cells,” vol. 18, pp. 1573–1583, 1997.
  • S. Klein, L. V. R. Distel, W. Neuhuber, and C. Kryschi, “Caffeic acid, quercetin and 5-fluorocytidine-functionalized au-fe3o4 nanoheterodimers for x-ray-triggered drug delivery in breast tumor spheroids,” Nanomaterials, vol. 11, no. 5, 2021, doi: 10.3390/nano11051167.
  • N. Vanni et al., “Formamidinium Perovskite Deposition in Ambient Air Environment for Inverted p-i-n Solar Cells,” Nanomaterials, vol. 14, no. 1, 2024, doi: 10.3390/nano14010107.
  • T. T. M. Nguyen, X. Jin, Q. Zheng, and T. H. Yi, “Smart Nanomaterials in Tissue Engineering: Scaffolds, Bioprinting, and Stem Cell Integration,” Eng. Mater., vol. Part F1161, pp. 275–303, 2026, doi: 10.1007/978-981-96-8023-8_11.
  • D. H. Kim, P. P. Provenzano, C. L. Smith, and A. Levchenko, “Matrix nanotopography as a regulator of cell function,” J. Cell Biol., vol. 197, no. 3, pp. 351–360, Apr. 2012, doi: 10.1083/JCB.201108062.
  • Y. J. Lee et al., “Update on SARS-CoV-2 vaccination of patients with inflammatory bowel disease: What clinicians need to know,” Intest. Res., vol. 20, no. 3, pp. 386–388, 2022, doi: 10.5217/ir.2020.00172.
  • J. H. Yoo et al., “Preparation of Remote Plasma Atomic Layer-Deposited HfO2 Thin Films with High Charge Trapping Densities and Their Application in Nonvolatile Memory Devices,” Nanomaterials, vol. 13, no. 11, 2023, doi: 10.3390/nano13111785.
  • Kshitiz, J. Afzal, S. Y. Kim, and D. H. Kim, “A nanotopography approach for studying the structure-function relationships of cells and tissues,” Cell Adhes. Migr., vol. 9, no. 4, pp. 300–307, 2015, doi: 10.4161/cam.29359.
  • D. E. Mazouzi et al., “Auto-combustion designed BiFeO3/Bi2O3 photocatalyst for improved photodegradation of nitrobenzene under visible light and sunlight irradiation,” Surfaces and Interfaces, vol. 44, p. 103581, Jan. 2024, doi:10.1016/J.SURFIN.2023.103581.
  • Y. Zhang, K. Gulati, Z. Li, P. Di, and Y. Liu, “Dental implant nano-engineering: Advances, limitations and future directions,” Nanomaterials, vol. 11, no. 10, pp. 1–26, 2021, doi: 10.3390/nano11102489.
  • S. D. Menikheim and E. B. Lavik, “Self-healing biomaterials: The next generation is nano,” vol. 12, no. 6, p. e1641, Nov. 2020, Accessed: Nov. 29, 2025. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/32359015/
  • S. Habib et al., “Self-healing performance of multifunctional polymeric smart coatings,” Polymers (Basel)., vol. 11, no. 9, 2019, doi: 10.3390/polym11091519.
  • M. Samadzadeh, S. H. Boura, M. Peikari, S. M. Kasiriha, and A. Ashrafi, “A review on self-healing coatings based on micro/nanocapsules,” Prog. Org. Coatings, vol. 68, no. 3, pp. 159–164, Jul. 2010, doi: 10.1016/J.PORGCOAT.2010.01.006.
  • S. R. White et al., “Autonomic healing of polymer composites,” Nature, vol. 409, no. 6822, pp. 794–797, Feb. 2001, doi: 10.1038/35057232.
  • H. Sadabadi, S. R. Allahkaram, A. Kordijazi, and P. K. Rohatgi, “Self-healing Coatings Loaded by Nano/microcapsules: A Review,” Prot. Met. Phys. Chem. Surfaces 2022 582, vol. 58, no. 2, pp. 287–307, May 2022, doi: 10.1134/S2070205122020162.
  • B. Yuan et al., “A self-degradable ‘nanoarmor’ coating of medical implant potentiates bone fracture healing,” Nano Today, vol. 52, p. 101959, Oct. 2023, doi: 10.1016/J.NANTOD.2023.101959.
  • S. J. Koo et al., “Improved light harvesting of fiber-shaped dye-sensitized solar cells by using a bacteriophage doping method,” Nanomaterials, vol. 11, no. 12, 2021, doi: 10.3390/nano11123421.
  • J. Xu and S. hui Hsu, “Self-healing hydrogel as an injectable implant: translation in brain diseases,” J. Biomed. Sci. 2023 301, vol. 30, no. 1, pp. 43-, Jun. 2023, doi: 10.1186/S12929-023-00939-X.
  • Y. Liang, H. Xu, Z. Li, A. Zhangji, and B. Guo, “Bioinspired Injectable Self-Healing Hydrogel Sealant with Fault-Tolerant and Repeated Thermo-Responsive Adhesion for Sutureless Post-Wound-Closure and Wound Healing,” Nano-Micro Lett. 2022 141, vol. 14, no. 1, pp. 185-, Sep. 2022, doi: 10.1007/S40820-022-00928-Z.
  • “A study on improvement of personal information divulgence prevention system (A case of the health and welfare division).” Accessed: Nov. 29, 2025. [Online]. Available: https://www.researchgate.net/publication/329683694_A_study_on_improvement_of_personal_information_divulgence_prevention_system_A_case_of_the_health_and_welfare_division
  • L. Xue et al., “Self‐Healing Hydrogels: Mechanisms and Biomedical Applications,” MedComm, vol. 6, no. 5, p. e70181, May 2025, doi: 10.1002/MCO2.70181.
  • J. Xu, T. Y. Chen, C. H. Tai, and S. hui Hsu, “Bioactive self-healing hydrogel based on tannic acid modified gold nano-crosslinker as an injectable brain implant for treating Parkinson’s disease,” Biomater. Res., vol. 27, no. 1, Dec. 2023, doi: 10.1186/S40824-023-00347-0;PAGE:STRING:ARTICLE/CHAPTER.
  • S. K. Choi, “Nanomaterial-enabled sensors and therapeutic platforms for reactive organophosphates,” Nanomaterials, vol. 11, no. 1, pp. 1–23, 2021, doi: 10.3390/nano11010224.
  • S. Munir, M. Javed, Y. Hu, Y. Liu, and S. Xiong, “The effect of acidic and alkaline ph on the physico-mechanical properties of surimi-based edible films incorporated with green tea extract,” Polymers (Basel)., vol. 12, no. 10, pp. 1–15, 2020, doi: 10.3390/polym12102281.
  • A. Carnicer-Lombarte, H. T. Lancashire, and A. Vanhoestenberghe, “In vitro biocompatibility and electrical stability of thick-film platinum/gold alloy electrodes printed on alumina,” J. Neural Eng., vol. 14, no. 3, Mar. 2017, doi: 10.1088/1741-2552/AA6557.
  • M. A. Butt, S. Tabassum, R. S. Hardy, and M. M. Kiyani, “Mechanistic insight into nanomedicine for polycystic ovary syndrome,” Mol. Biol. Rep., vol. 52, no. 1, Dec. 2025, doi: 10.1007/s11033-025-10709-7.
  • H. Choi, W.-S. Choi, and J.-O. Jeong, “A Review of Advanced Hydrogel Applications for Tissue Engineering and Drug Delivery Systems as Biomaterials.,” Gels (Basel, Switzerland), vol. 10, no. 11, Oct. 2024, doi: 10.3390/gels10110693.
  • K. P. Chowdhury, “Nanomaterials for Multifunctional Textiles,” pp. 169–217, Mar. 2023, doi: 10.21741/9781644902288-8.
  • J. O. Abaricia, N. Farzad, T. J. Heath, J. Simmons, L. Morandini, and R. Olivares-Navarrete, “Control of innate immune response by biomaterial surface topography, energy, and stiffness,” Acta Biomater., vol. 133, pp. 58–73, Oct. 2021, doi: 10.1016/J.ACTBIO.2021.04.021.
  • J. M. Yoo, S. Negi, P. Tathireddy, F. Solzbacher, J. I. Song, and L. W. Rieth, “Excimer laser deinsulation of Parylene-C on iridium for use in an activated iridium oxide film-coated Utah electrode array,” J. Neurosci. Methods, vol. 215, no. 1, pp. 78–87, Apr. 2013, doi: 10.1016/J.JNEUMETH.2013.02.010.
  • C. You et al., “Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation,” Sci. Rep., vol. 7, no. 1, Dec. 2017, doi: 10.1038/s41598-017-10481-0.
  • C. K. Kundu, M. T. Hossen, and R. Saha, “Coloration with nanoparticles: Scope for developing simultaneous colouring and functional properties onto textile surfaces—a short review,” Color. Technol., vol. 138, no. 5, pp. 443–455, Oct. 2022, doi: 10.1111/COTE.12621.
  • X. Zhang et al., “Bioinspired Flexible Kevlar/Hydrogel Composites with Antipuncture and Strain-Sensing Properties for Personal Protective Equipment,” ACS Appl. Mater. Interfaces, vol. 16, no. 34, pp. 45473–45486, Aug. 2024, doi: 10.1021/ACSAMI.4C08659.
  • P. G. Coelho et al., “Basic research methods and current trends of dental implant surfaces,” J. Biomed. Mater. Res. - Part B Appl. Biomater., vol. 88, no. 2, pp. 579–596, Feb. 2009, doi: 10.1002/JBM.B.31264.
  • P. Guermonprez, J. Valladeau, L. Zitvogel, C. Théry, and S. Amigorena, “Antigen presentation and T cell stimulation by dendritic cells,” Annu. Rev. Immunol., vol. 20, pp. 621–667, 2002, doi: 10.1146/ANNUREV.IMMUNOL.20.100301.064828.
  • A. Bigham et al., “A theragenerative bio-nanocomposite consisting of black phosphorus quantum dots for bone cancer therapy and regeneration,” Bioact. Mater., vol. 35, pp. 99–121, May 2024, doi: 10.1016/J.BIOACTMAT.2024.01.018.
  • N. Yiwen et al., “109-115 Infiltration of macrophages and their phenotype in the healing process of full-thickness wound in rat,” Chinese J. Burn., vol. 30, no. 2, pp. 109–115, 2014, doi: 10.3760/cma.j.issn.1009-2587.2014.02.004.
  • X. Qin and S. Subianto, “Electrospun nanofibers for filtration applications,” Electrospun Nanofibers, pp. 449–466, 2017, doi: 10.1016/B978-0-08-100907-9.00017-9.
  • I. Baldim et al., “Biofate and cellular interactions of lipid nanoparticles,” Nanoparticle Ther. Prod. Technol. Types Nanoparticles, Regul. Asp., pp. 211–246, Jan. 2022, doi: 10.1016/B978-0-12-820757-4.00015-6.
  • J. L. Hernandez et al., “Effect of tissue microenvironment on fibrous capsule formation to biomaterial-coated implants,” Biomaterials, vol. 273, Jun. 2021, doi: 10.1016/J.BIOMATERIALS.2021.120806.
  • J. Zheng et al., “Tumor mitochondrial oxidative phosphorylation stimulated by the nuclear receptor RORγ represents an effective therapeutic opportunity in osteosarcoma,” Cell Reports Med., vol. 5, no. 5, May 2024, doi: 10.1016/J.XCRM.2024.101519.
  • Y. Zhang et al., “ N 6 ‐Methyladenosine modification mediated by METTL3 promotes DNA‐PKcs expression to induce anlotinib resistance in osteosarcoma ,” Clin. Transl. Med., vol. 15, no. 2, Feb. 2025, doi: 10.1002/CTM2.70228.
  • P. Kazimierczak, M. Koziol, and A. Przekora, “The chitosan/agarose/nanoha bone scaffold-induced m2 macrophage polarization and its effect on osteogenic differentiation in vitro,” Int. J. Mol. Sci., vol. 22, no. 3, pp. 1–14, Feb. 2021, doi: 10.3390/IJMS22031109.
  • W. J. Geelhoed, L. Moroni, and J. I. Rotmans, “Utilizing the Foreign Body Response to Grow Tissue Engineered Blood Vessels in Vivo,” J. Cardiovasc. Transl. Res., vol. 10, no. 2, pp. 167–179, Apr. 2017, doi: 10.1007/S12265-017-9731-7.
  • A. F. J. De Kanter, K. R. Jongsma, M. C. Verhaar, and A. L. Bredenoord, “The Ethical Implications of Tissue Engineering for Regenerative Purposes: A Systematic Review,” Tissue Eng. - Part B Rev., vol. 29, no. 2, pp. 167–187, Apr. 2023, doi: 10.1089/ten.teb.2022.0033.
  • T. A\ugaçbozan et al., “the Synthesis of Nanoparticles and the Current Application in Different Domains,” J. Sci. Reports-C, no. 004, pp. 33–53, 2023.
  • H. Mu et al., “Methionine intervention induces PD-L1 expression to enhance the immune checkpoint therapy response in MTAP-deleted osteosarcoma,” Cell Reports Med., vol. 6, no. 3, Mar. 2025, doi: 10.1016/J.XCRM.2025.101977.
  • G. SADULLAHOĞLU, “Production and Characterization of B2O3 Added M-Type Barium Hexaferrite Composite Magnet,” Uluslararası Muhendis. Arastirma ve Gelistirme Derg., vol. 13, no. 2, pp. 382–389, Jun. 2021, doi: 10.29137/UMAGD.737894.
  • S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram, “A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise,” J. Adv. Res., vol. 7, no. 1, pp. 17–28, Jan. 2016, doi: 10.1016/J.JARE.2015.02.007.
  • S. Y. Kwak et al., “A Nanobionic Light-Emitting Plant,” Nano Lett., vol. 17, no. 12, pp. 7951–7961, Dec. 2017, doi: 10.1021/ACS.NANOLETT.7B04369.
  • M. J. R. Virlan et al., “Organic nanomaterials and their applications in the treatment of oral diseases,” Molecules, vol. 21, no. 2, Feb. 2016, doi: 10.3390/MOLECULES21020207.
  • L. Suo, H. Wu, P. Wang, Z. Xue, J. Gao, and J. Shen, “The improvement of periodontal tissue regeneration using a 3D-printed carbon nanotube/chitosan/sodium alginate composite scaffold,” J. Biomed. Mater. Res. - Part B Appl. Biomater., vol. 111, no. 1, pp. 73–84, Jan. 2023, doi: 10.1002/JBM.B.35133.
  • D. Yang, J. Xiao, B. Wang, L. Li, X. Kong, and J. Liao, “The immune reaction and degradation fate of scaffold in cartilage/bone tissue engineering,” Mater. Sci. Eng. C, vol. 104, Nov. 2019, doi: 10.1016/J.MSEC.2019.109927.
  • C. Farrera and B. Fadeel, “It takes two to tango: Understanding the interactions between engineered nanomaterials and the immune system,” Eur. J. Pharm. Biopharm., vol. 95, pp. 3–12, Sep. 2015, doi: 10.1016/J.EJPB.2015.03.007.
  • F. Razzi et al., “Immunomodulation of surface biofunctionalized 3D printed porous titanium implants,” Biomed. Mater., vol. 15, no. 3, May 2020, doi: 10.1088/1748-605X/AB7763.
  • L. Ma et al., “Multifunctional 3D-printed scaffolds eradiate orthotopic osteosarcoma and promote osteogenesis via microwave
  • thermo-chemotherapy combined with immunotherapy,” Biomaterials, vol. 301, Oct. 2023, doi: 10.1016/J.BIOMATERIALS.2023.122236.
  • N. M. Molino, M. Neek, J. A. Tucker, E. L. Nelson, and S. W. Wang, “Viral-mimicking protein nanoparticle vaccine for eliciting anti-tumor responses,” Biomaterials, vol. 86, pp. 83–91, Apr. 2016, doi: 10.1016/J.BIOMATERIALS.2016.01.056.
  • R. Yanzhang et al., “Ginger extract inhibits c-MET activation and suppresses osteosarcoma in vitro and in vivo,” Cancer Cell Int. , vol. 25, no. 1, Dec. 2025, doi: 10.1186/S12935-025-03759-1.
  • S. Liu et al., “Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications,” Mil. Med. Res., vol. 10, no. 1, Dec. 2023, doi: 10.1186/S40779-023-00448-W.
  • R. Mahmud and F. Nabi, “Application of Nanotechnology in the field of Textile,” IOSR J. Polym. Text. Eng., vol. 04, no. 01, pp. 01–06, Jan. 2017, doi: 10.9790/019X-0401010106.
  • J. S. Park et al., “The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β,” Biomaterials, vol. 32, no. 16, pp. 3921–3930, Jun. 2011, doi: 10.1016/J.BIOMATERIALS.2011.02.019.
  • S. R. Shin et al., “Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation,” ACS Nano, vol. 6, no. 1, pp. 362–372, Jan. 2012, doi: 10.1021/NN203711S.
  • M. M. Churchland, B. M. Yu, M. Sahani, and K. V. Shenoy, “Techniques for extracting single-trial activity patterns from large-scale neural recordings,” Curr. Opin. Neurobiol., vol. 17, no. 5, pp. 609–618, Oct. 2007, doi: 10.1016/j.conb.2007.11.001.
  • V. J. Chen, L. A. Smith, and P. X. Ma, “Bone regeneration on computer-designed nano-fibrous scaffolds,” Biomaterials, vol. 27, no. 21, pp. 3973–3979, Jul. 2006, doi: 10.1016/J.BIOMATERIALS.2006.02.043.
  • S. Fiering et al., “Nanomaterials and Their Impact on the Immune System,” Int. J. Mol. Sci, vol. 2023, 2008, doi: 10.3390/ijms24032008.
  • C. I. Idumah, “Influence of nanotechnology in polymeric textiles, applications, and fight against COVID-19,” J. Text. Inst., vol. 112, no. 12, pp. 2056–2076, 2021, doi: 10.1080/00405000.2020.1858600.
  • C. T. Laurencin, M. A. Attawia, H. E. Elgendy, and K. M. Herbert, “Tissue engineered bone-regeneration using degradable polymers: The formation of mineralized matrices,” Bone, vol. 19, no. 1 SUPPL., pp. S93–S99, 1996, doi: 10.1016/S8756-3282(96)00132-9.
  • K. M. Woo, J. Seo, R. Zhang, and P. X. Ma, “Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds,” Biomaterials, vol. 28, no. 16, pp. 2622–2630, Jun. 2007, doi: 10.1016/J.BIOMATERIALS.2007.02.004.
  • R. Zhang and P. X. Ma, “Biomimetic polymer/apatite composite scaffolds for mineralized tissue engineering,” Macromol. Biosci., vol. 4, no. 2, pp. 100–111, Feb. 2004, doi: 10.1002/MABI.200300017.
  • Q. P. Pham, U. Sharma, and A. G. Mikos, “Electrospun poly (ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: Characterization of scaffolds and measurement of cellular infiltration,” Biomacromolecules, vol. 7, no. 10, pp. 2796–2805, Oct. 2006, doi: 10.1021/BM060680J.
  • S. M. Jay, E. Skokos, F. Laiwalla, M. M. Krady, and T. R. Kyriakides, “Foreign body giant cell formation is preceded by lamellipodia formation and can be attenuated by inhibition of Rac1 activation,” Am. J. Pathol., vol. 171, no. 2, pp. 632–640, 2007, doi: 10.2353/AJPATH.2007.061213.
  • M. A. Maurer-Jones, Y. S. Lin, and C. L. Haynes, “Functional assessment of metal oxide nanoparticle toxicity in immune cells,” ACS Nano, vol. 4, no. 6, pp. 3363–3373, Jun. 2010, doi: 10.1021/NN9018834.
  • M. Valko, C. J. Rhodes, J. Moncol, M. Izakovic, and M. Mazur, “Free radicals, metals and antioxidants in oxidative stress-induced cancer,” Chem. Biol. Interact., vol. 160, no. 1, pp. 1–40, Mar. 2006, doi: 10.1016/J.CBI.2005.12.009.
  • H. J. Johnston, G. Hutchison, F. M. Christensen, S. Peters, S. Hankin, and V. Stone, “A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity,” Crit. Rev. Toxicol., vol. 40, no. 4, pp. 328–346, Apr. 2010, doi: 10.3109/10408440903453074.
  • I. Pujalté et al., “Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells,” Part. Fibre Toxicol., vol. 8, Mar. 2011, doi: 10.1186/1743-8977-8-10.
  • Q. Huo et al., “A facile nanoparticle immunoassay for cancer biomarker discovery,” J. Nanobiotechnology, vol. 9, May 2011, doi: 10.1186/1477-3155-9-20.
  • A. A. A. Aljabali and M. A. Obeid, “Inorganic-organic Nanomaterials for Therapeutics and Molecular Imaging Applications,” Nanosci. Nanotechnology-Asia, vol. 10, no. 6, pp. 748–765, Sep. 2019, doi: 10.2174/2210681209666190807145229.
  • K. Jin, Z. Luo, B. Zhang, and Z. Pang, “Biomimetic nanoparticles for inflammation targeting,” Acta Pharm. Sin. B, vol. 8, no. 1, pp. 23–33, Jan. 2018, doi: 10.1016/J.APSB.2017.12.002.
  • X. Rong et al., “Sono-activable and biocatalytic 3D-printed scaffolds for intelligently sequential therapies in osteosarcoma eradication and defect regeneration,” Nat. Commun. , vol. 16, no. 1, Dec. 2025, doi: 10.1038/S41467-025-61377-X.
  • M. J. Hawkins, P. Soon-Shiong, and N. Desai, “Protein nanoparticles as drug carriers in clinical medicine,” Adv. Drug Deliv. Rev., vol. 60, no. 8, pp. 876–885, May 2008, doi: 10.1016/J.ADDR.2007.08.044.
  • Y. M. Yu, Y. P. Lu, T. Zhang, Y. F. Zheng, Y. S. Liu, and D. D. Xia, “Biomaterials science and surface engineering strategies for dental peri-implantitis management,” Mil. Med. Res., vol. 11, no. 1, Dec. 2024, doi: 10.1186/s40779-024-00532-9.
  • M. A. Shah, B. M. Pirzada, G. Price, A. L. Shibiru, and A. Qurashi, “Applications of nanotechnology in smart textile industry: A critical review,” J. Adv. Res., vol. 38, pp. 55–75, May 2022, doi: 10.1016/J.JARE.2022.01.008.
  • M. Sarikaya, C. Tamerler, A. K. Y. Jen, K. Schulten, and F. Baneyx, “Molecular biomimetics: Nanotechnology through biology,” Nat. Mater., vol. 2, no. 9, pp. 577–585, 2003, doi: 10.1038/NMAT964.
  • S. Talebian et al., “Self-Healing Hydrogels: The Next Paradigm Shift in Tissue Engineering?,” Adv. Sci., vol. 6, no. 16, Aug. 2019, doi: 10.1002/ADVS.201801664.
  • E. Reinares-Lara, C. Olarte-Pascual, and J. Pelegrín-Borondo, “Do you want to be a cyborg? The moderating effect of ethics on neural implant acceptance,” Comput. Human Behav., vol. 85, pp. 43–53, Aug. 2018, doi: 10.1016/J.CHB.2018.03.032.
  • J. L. Tan, J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C. S. Chen, “Cells lying on a bed of microneedles: An approach to isolate mechanical force,” Proc. Natl. Acad. Sci. U. S. A., vol. 100, no. 4, pp. 1484–1489, Feb. 2003, doi: 10.1073/PNAS.0235407100.
  • M. Paul and N. Jose, “An Overview of Cyborg”, Accessed: Nov. 30, 2025. [Online]. Available: http://www.livescience.com/5558-powerful-ideas-
  • M. Fazil, M. Firdhous, and A. Pirapaharan, “Cyborg Technology in Bio Engineering: Enabling Technologies, Implications, Applications and Future Trends,” J. Hum. Centered Technol., vol. 4, no. 1, pp. 56–67, Feb. 2025, doi: 10.11113/HUMENTECH.V4N1.90.
  • Q. Ma, W. Jing, X. Liu, J. Liu, M. Liu, and J. Chen, “The global, regional, and national burden and its trends of inguinal, femoral, and abdominal hernia from 1990 to 2019: findings from the 2019 Global Burden of Disease Study - a cross-sectional study,” Int. J. Surg., vol. 109, no. 3, pp. 333–342, Mar. 2023, doi: 10.1097/JS9.0000000000000217.
  • M. J. Selgelid, “Moderate eugenics and human enhancement,” Med. Heal. Care Philos., vol. 17, no. 1, pp. 3–12, Feb. 2014, doi: 10.1007/S11019-013-9485-1.
  • F. N. Maran, I. Turk, B. Akkoyun, M. Talaat, and F. Meligy, “Nanotechnology , and its versatile applications in medicine , environment , energy , textiles , food industry,” Int. J. Boron Sci. Nanotechnol., no. 1, pp. 17–49, 2024.
  • S. F. Mause and C. Weber, “Microparticles: Protagonists of a novel communication network for intercellular information exchange,” Circ. Res., vol. 107, no. 9, pp. 1047–1057, Oct. 2010, doi: 10.1161/CIRCRESAHA.110.226456.
  • H. Abe, “Control of Nanostructure of Materials,” Nanoparticle Technol. Handb., pp. 169–253, May 2018, doi: 10.1016/B978-0-444-64110-6.00004-4.

Nanobiyonik insanlar: nano malzeme destekli implantların ve giyilebilir teknolojilerin geleceği

Yıl 2025, Cilt: 1 Sayı: 4, 1 - 33, 28.12.2025

Öz

Bu derleme makalede ‘nanobiyonik insan: nano malzeme destekli implantlar ve giyilebilir teknolojilerin geleceği’ adlı
konuya genel bir bakış yapılmıştır ve bu konu farklı başlıklar altında insan ve makine arayüzleri, giyilebilir teknolojiler,
biyoentegrasyon ve biyouyumluluk, etik boyut ve gelecek perspektifleri olarak incelenmiştir. Makalede insan makine
arayüzünde nanoteknoloji konusunu transhümanizm perspektifinden nanoteknoloji destekli implantlar ve bunların orotpedik
uygulamalarıyla beraber diğer uygulamaları altbaşlıklarıyla incelenmiştir. Bu konuların gelecekteki beklentileri, zorlukları da
değerlendirilmiştir. Nanoteknolojinin insan sağlığına karşı nanobiyonik giyilebilir teknolojiler altında etkilerinden,
performansından ve kullanım şekillerinden bahsedilmektedir. Bu çalışma, insan-bilgisayar entegrasyonu nanoteknolojik
ilerlemeler ile yeniden tanımlanışının nasıl yapıldığını transhümanizm perspektifinden değerlendirmektedir. Nanobiyonik
Giyilebilir Teknolojiler bölümünde, akıllı tekstillerin (nano-gümüş ve nano-karbon bazlı iletken kumaşlar), sağlık takibinde
nanosensörler (glikoz sensörleri, elektrolit sensörleri, kalp ve biyomekanik), piezoelektrik sensörler (spor bilimleri, askeri
teknolojiler, sağlık bilimleri) alanlarında kullanım şekilleri, uygulanma biçimleri, yararları ve malzemelerinden
bahsedilmiştir. Biyoentegrasyon ve Biyouyumluluk bölümünde ise immünolojik yanıt ve nanomalzemelerin biyouyumluğu
hakkında tartışılıp sert ve yumuşak protein koronaların çalışma mekanizmaları, farklılıkları anlatılıp vroman etkisinden
bahsedilmiştir. Doku mühendisliği ile nanoimplantların vücuda nasıl entegre edilebileceği ve ekstraselüler matriks yapısı
(ECM) detaylandırılmıştır. Nanoimplantların hasar alması durumunda mikrokapsüllerin onarım mekanizmasının nasıl
çalıştığı anlatılmaktadır. Mikrokapsüllerin yetersiz olduğu durumlarda hidrojellerin kullanım şekillerinden, mekanizmasından
ve alanlarından bahsedilmektedir. Nanobiyonik teknolojilerin etik boyutunda bu gelişmlerin etik ve insan geliştirmelerinden
bahsedilmiştir. Siber güvenlik, veri güvenliği, sosyoekonomik durumlar, yapay zeka kararlarındaki yasal sorumluluklar ve
fırsat eşitliklerinden bahsedilmiştir. Gelecek persfektifler kısmında nanoteknolojinin geleceği ve cyborg kavramları
incelenmiştir. Bu teknolojinin kişiselleştirilmiş giyilebilir nanoteknolojilerin performanslarındaki devrimsel potansiyelinden
ve bunların etik durumlarından bahsedilmiştir. Sonuç kısmında makalede incelenen konulara genel bir bakış ve makale
sonucunda ulaşılan görüş açıklanmıştır.

Kaynakça

  • N. Barkalina, C. Charalambous, C. Jones, and K. Coward, “Nanotechnology in reproductive medicine: Emerging applications of nanomaterials,” Nanomedicine Nanotechnology, Biol. Med., vol. 10, no. 5, pp. e921–e938, 2014, doi: 10.1016/J.NANO.2014.01.001.
  • M. Fakruddin, Z. Hossain, and H. Afroz, “Prospects and applications of nanobiotechnology: A medical perspective,” J. Nanobiotechnology, vol. 10, Jul. 2012, doi: 10.1186/1477-3155-10-31.
  • Q. Zeng, S. Zhao, H. Yang, Y. Zhang, and T. Wu, Micro/Nano Technologies for High-Density Retinal Implant, vol. 10, no. 6. Multidisciplinary Digital Publishing Institute, 2019, p. 419. doi: 10.3390/MI10060419.
  • P. P. Maciel et al., “Use of strontium doping glass-ceramic material for bone regeneration in critical defect: In vitro and in vivo analyses,” Ceram. Int., vol. 46, no. 16, pp. 24940–24954, Nov. 2020, doi: 10.1016/j.ceramint.2020.06.280.
  • L. Zhang and T. J. Webster, “Nanotechnology and nanomaterials: Promises for improved tissue regeneration,” Nano Today, vol. 4, no. 1, pp. 66–80, Feb. 2009, doi: 10.1016/J.NANTOD.2008.10.014.
  • S. Sun, Q. Yang, D. Jiang, and Y. Zhang, “Nanobiotechnology augmented cancer stem cell guided management of cancer: liquid-biopsy, imaging, and treatment,” J. Nanobiotechnology, vol. 22, no. 1, Dec. 2024, doi: 10.1186/S12951-024-02432-5.
  • R. A. Green et al., “Substrate dependent stability of conducting polymer coatings on medical electrodes,” Biomaterials, vol. 33, no. 25, pp. 5875–5886, Sep. 2012, doi: 10.1016/J.BIOMATERIALS.2012.05.017.
  • D. F. Williams, “On the mechanisms of biocompatibility,” Biomaterials, vol. 29, no. 20, pp. 2941–2953, Jul. 2008, doi: 10.1016/J.BIOMATERIALS.2008.04.023.
  • Y. H. L. Luo and L. da Cruz, “The Argus® II Retinal Prosthesis System,” Prog. Retin. Eye Res., vol. 50, pp. 89–107, Jan. 2016, doi: 10.1016/J.PRETEYERES.2015.09.003.
  • S. H. Um et al., “Regulation of cell locomotion by nanosecond-laser-induced hydroxyapatite patterning,” Bioact. Mater., vol. 6, no. 10, pp. 3608–3619, Oct. 2021, doi: 10.1016/j.bioactmat.2021.03.025.
  • G. A. Silva, “Introduction to nanotechnology and its applications to medicine,” Surg. Neurol., vol. 61, no. 3, pp. 216–220, 2004, doi: 10.1016/J.SURNEU.2003.09.036.
  • M. Heim et al., “Combined macro-/mesoporous microelectrode arrays for low-noise extracellular recording of neural networks,” J. Neurophysiol., vol. 108, no. 6, pp. 1793–1803, Sep. 2012, doi: 10.1152/JN.00711.2011.
  • D. Ting et al., “Multisite inhibitors for enteric coronavirus: antiviral cationic carbon dots based on curcumin,” ACS Appl. Nano Mater., vol. 1, no. 10, pp. 5451–5459, Oct. 2018, doi: 10.1021/ACSANM.8B00779.
  • A. Tewabe, A. Abate, M. Tamrie, A. Seyfu, and E. A. Siraj, “Targeted drug delivery — from magic bullet to nanomedicine: Principles, challenges, and future perspectives,” J. Multidiscip. Healthc., vol. 14, pp. 1711–1724, 2021, doi: 10.2147/JMDH.S313968.
  • R. P. Singh, “Prospects of Nanobiomaterials for Biosensing,” Int. J. Electrochem., vol. 2011, pp. 1–30, 2011, doi: 10.4061/2011/125487.
  • J. R. Antonio, C. R. Antônio, I. L. S. Cardeal, J. M. A. Ballavenuto, and J. R. Oliveira, “Nanotechnology in dermatology,” An. Bras. Dermatol., vol. 89, no. 1, pp. 126–136, 2014, doi: 10.1590/ABD1806-4841.20142228.
  • B. Şen et al., “High-performance graphite-supported ruthenium nanocatalyst for hydrogen evolution reaction,” J. Mol. Liq., vol. 268, pp. 807–812, Oct. 2018, doi: 10.1016/J.MOLLIQ.2018.07.117.
  • D. Kuru, “Amorf borun elektrokimyasal eksfoliasyonuyla bor nanotabakalarının sentezi ve karakterizasyonu,” Bor Derg., vol. 9, no. 3, pp. 111–119, Sep. 2024, doi: 10.30728/BORON.1483030.
  • J. L. Elechiguerra et al., “Interaction of silver nanoparticles with HIV-1,” J. Nanobiotechnology, vol. 3, Jun. 2005, doi: 10.1186/1477-3155-3-6.
  • M. F. Hawthorne, “New horizons for therapy based on the boron neutron capture reaction,” Mol. Med. Today, vol. 4, no. 4, pp. 174–181, Apr. 1998, doi: 10.1016/S1357-4310(98)01226-X.
  • R. Nagraik, A. Sharma, D. Kumar, S. Mukherjee, F. Sen, and A. P. Kumar, “Amalgamation of biosensors and nanotechnology in disease diagnosis: Mini-review,” Sensors Int., vol. 2, Jan. 2021, doi: 10.1016/J.SINTL.2021.100089.
  • P. Vader, E. A. Mol, G. Pasterkamp, and R. M. Schiffelers, “Extracellular vesicles for drug delivery,” Adv. Drug Deliv. Rev., vol. 106, pp. 148–156, Nov. 2016, doi: 10.1016/J.ADDR.2016.02.006.
  • T. Ozawa, “Thermal analysis - Review and prospect,” Thermochim. Acta, vol. 355, no. 1–2, pp. 35–42, Jul. 2000, doi: 10.1016/S0040-6031(00)00435-4.
  • S. Pang et al., “Enhanced mechanical performance and bioactivity in strontium/copper co-substituted diopside scaffolds,” Biomater. Adv., vol. 145, Feb. 2023, doi: 10.1016/j.bioadv.2022.213230.
  • Z. Tüylek, “Nanoteknolojinin Çevre ve İnsan Sağlığı Üzerindeki Riskleri,” Kilis 7 Aralık Üniversitesi Fen ve Mühendislik Derg., vol. 2, no. 2, pp. 1–12, Dec. 2018, Accessed: Nov. 24, 2025. [Online]. Available: https://dergipark.org.tr/tr/pub/kifmd/issue/33523/397004
  • S. Eris, Z. Daşdelen, and F. Sen, “Investigation of electrocatalytic activity and stability of Pt@f-VC catalyst prepared by in-situ synthesis for Methanol electrooxidation,” Int. J. Hydrogen Energy, vol. 43, no. 1, pp. 385–390, Jan. 2018, doi: 10.1016/J.IJHYDENE.2017.11.063.
  • S. Rafiei, S. E. Rezatofighi, M. R. Ardakani, and S. Rastegarzadeh, “Gold Nanoparticles Impair Foot-and-Mouth Disease Virus Replication,” IEEE Trans. Nanobioscience, vol. 15, no. 1, pp. 34–40, Jan. 2016, doi: 10.1109/TNB.2015.2508718.
  • T. Li, Z. X. Chen, Y. L. Cao, X. P. Ai, and H. X. Yang, “Transition-metal chlorides as conversion cathode materials for Li-ion batteries,” Electrochim. Acta, vol. 68, pp. 202–205, Apr. 2012, doi: 10.1016/j.electacta.2012.02.061.
  • H. Burhan et al., “Highly efficient carbon hybrid supported catalysts using nano-architecture as anode catalysts for direct methanol fuel cells,” Int. J. Hydrogen Energy, vol. 48, no. 17, pp. 6657–6665, Feb. 2023, doi: 10.1016/J.IJHYDENE.2021.12.141.
  • B. Sen, B. Demirkan, B. Şimşek, A. Savk, and F. Sen, “Monodisperse palladium nanocatalysts for dehydrocoupling of dimethylamineborane,” Nano-Structures & Nano-Objects, vol. 16, pp. 209–214, Oct. 2018, doi: 10.1016/J.NANOSO.2018.07.008.
  • A. Hojjati-Najafabadi et al., “Bacillus thuringiensis Based Ruthenium/Nickel Co-Doped Zinc as a Green Nanocatalyst: Enhanced Photocatalytic Activity, Mechanism, and Efficient H2 Production from Sodium Borohydride Methanolysis,” Ind. Eng. Chem. Res., vol. 62, no. 11, pp. 4655–4664, Mar. 2023, doi: 10.1021/ACS.IECR.2C03833.
  • H. Göksu, Y. Yıldız, B. Çelik, M. Yazıcı, B. Kılbaş, and F. Şen, “Highly Efficient and Monodisperse Graphene Oxide Furnished Ru/Pd Nanoparticles for the Dehalogenation of Aryl Halides via Ammonia Borane,” ChemistrySelect, vol. 1, no. 5, pp. 953–958, Apr. 2016, doi: 10.1002/SLCT.201600207;PAGE:STRING:ARTICLE/CHAPTER.
  • F. Şen, G. Gökağaç, and S. Şen, “High performance Pt nanoparticles prepared by new surfactants for C 1 to C3 alcohol oxidation reactions,” J. Nanoparticle Res., vol. 15, no. 10, Oct. 2013, doi: 10.1007/S11051-013-1979-5.
  • N. Alrushaid, F. A. Khan, E. A. Al-Suhaimi, and A. Elaissari, “Nanotechnology in Cancer Diagnosis and Treatment,” Mar. 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/pharmaceutics15031025.
  • E. Asadipour, M. Asgari, P. Mousavi, T. Piri-Gharaghie, G. Ghajari, and A. Mirzaie, “Nano-Biotechnology and Challenges of Drug Delivery System in Cancer Treatment Pathway: Review Article,” Chem. Biodivers., vol. 20, no. 6, Jun. 2023, doi: 10.1002/CBDV.202201072.
  • F. Sen, A. A. Boghossian, S. Sen, Z. W. Ulissi, J. Zhang, and M. S. Strano, “Observation of Oscillatory Surface Reactions of Riboflavin, Trolox, and Singlet Oxygen Using Single Carbon Nanotube Fluorescence Spectroscopy,” ACS Nano, vol. 6, no. 12, pp. 10632–10645, Dec. 2012, doi: 10.1021/NN303716N.
  • F. KARAKAYA, A. S. BÜLBÜL, M. BEKMEZCİ, and F. ŞEN, “Silver nanoparticle synthesis by biogenic reduction method and investigation of antimicrobial, antibiofilm, anticancer activities,” J. Sci. Reports-A, no. 055, pp. 1–15, 2023, doi: 10.59313/jsr-a.1277894.
  • M. T. Vurat, M. Parmaksiz, A. E. Elçin, and Y. M. Elçin, “Bioactive composite hydrogels as 3D mesenchymal stem cell encapsulation environment for bone tissue engineering: in vitro and in vivo studies,” J. Biomed. Mater. Res. - Part A, vol. 111, no. 2, pp. 261–277, Feb. 2023, doi: 10.1002/JBM.A.37457.
  • Y. Tu, F. Peng, A. A. M. André, Y. Men, M. Srinivas, and D. A. Wilson, “Biodegradable Hybrid Stomatocyte Nanomotors for Drug Delivery,” ACS Nano, vol. 11, no. 2, pp. 1957–1963, Feb. 2017, doi: 10.1021/ACSNANO.6B08079.
  • S. Günbatar, A. Aygun, Y. Karataş, M. Gülcan, and F. Şen, “Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature,” J. Colloid Interface Sci., vol. 530, pp. 321–327, Nov. 2018, doi: 10.1016/J.JCIS.2018.06.100.
  • P. D. Howe, “A review of Boron effects in the environment,” Biol. Trace Elem. Res., vol. 66, no. 1–3, pp. 153–166, 1998, doi: 10.1007/BF02783135.
  • B. Tüzün-Antepli, Ş. Şeker, A. E. Elçin, G. Khang, and Y. M. Elçin, “Evaluation of Human Osteoblasts on NIPS Micro-Patterned PCL Carriers Containing Nanohydroxyapatite and Reduced Graphene Oxide Using PSµM,” Molecules, vol. 27, no. 20, Oct. 2022, doi: 10.3390/MOLECULES27207091.
  • C. Mohanty, G. Arya, R. S. Verma, and S. K. Sahoo, “Nanobiotechnology: Application of nanotechnology in therapeutics and diagnosis,” Int. J. Green Nanotechnol. Biomed., vol. 1, no. 1, 2009, doi: 10.1080/19430850902908522.
  • A. Aimaiti, A. Maimaitiyiming, X. Boyong, K. Aji, C. Li, and L. Cui, “Low-dose strontium stimulates osteogenesis but high-dose doses cause apoptosis in human adipose-derived stem cells via regulation of the ERK1/2 signaling pathway,” Stem Cell Res. Ther., vol. 8, no. 1, Dec. 2017, doi: 10.1186/S13287-017-0726-8.
  • K. Sköld, B. H-Stenstam, A. Z. Diaz, V. Giusti, L. Pellettieri, and J. W. Hopewell, “Boron neutron capture therapy for glioblastoma multiforme: Advantage of prolonged infusion of BPA-f,” Acta Neurol. Scand., vol. 122, no. 1, pp. 58–62, Jul. 2010, doi: 10.1111/J.1600-0404.2009.01267.X.
  • C. Di Meo et al., “Hyaluronan as carrier of carboranes for tumor targeting in boron neutron capture therapy,” Biomacromolecules, vol. 8, no. 2, pp. 552–559, Feb. 2007, doi: 10.1021/BM0607426.
  • L. Stipniece et al., “Strontium substituted hydroxyapatite promotes direct primary human osteoblast maturation,” Ceram. Int., vol. 47, no. 3, pp. 3368–3379, Feb. 2021, doi: 10.1016/j.ceramint.2020.09.182.
  • A. E. Pazarçeviren, A. Tezcaner, D. Keskin, S. T. Kolukısa, S. Sürdem, and Z. Evis, “Boron-doped Biphasic Hydroxyapatite/β-Tricalcium Phosphate for Bone Tissue Engineering,” Biol. Trace Elem. Res., vol. 199, no. 3, pp. 968–980, Mar. 2021, doi: 10.1007/S12011-020-02230-8.
  • S. H. Farjana, N. Huda, M. A. P. Mahmud, and C. Lang, “A global life cycle assessment of manganese mining processes based on EcoInvent database,” Sci. Total Environ., vol. 688, pp. 1102–1111, Oct. 2019, doi: 10.1016/J.SCITOTENV.2019.06.184.
  • T. Ishii, T. Matsunaga, and N. Hayashi, “Formation of rhamnogalacturonan II-borate dimer in pectin determines cell wall thickness of pumpkin tissue,” Plant Physiol., vol. 126, no. 4, pp. 1698–1705, 2001, doi: 10.1104/pp.126.4.1698.
  • K. R. Pulagam et al., “Gold nanoparticles as boron carriers for boron neutron capture therapy: Synthesis, radiolabelling and in vivo evaluation,” Molecules, vol. 24, no. 19, Oct. 2019, doi: 10.3390/MOLECULES24193609.
  • J. Wu, B. Li, and J. Lu, “Life cycle assessment on boron production: is boric acid extraction from salt-lake brine environmentally friendly?,” Clean Technol. Environ. Policy, vol. 23, no. 7, pp. 1981–1991, Sep. 2021, doi: 10.1007/S10098-021-02092-1.
  • P. Argust, “Distribution of Boron in the environment,” Biol. Trace Elem. Res., vol. 66, no. 1–3, pp. 131–143, 1998, doi: 10.1007/BF02783133.
  • M. Du, J. Chen, K. Liu, H. Xing, and C. Song, “Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair,” Compos. Part B Eng., vol. 215, Jun. 2021, doi: 10.1016/j.compositesb.2021.108790.
  • Y. Zhang, J. Li, V. H. M. Mouser, N. Roumans, L. Moroni, and P. Habibovic, “Biomimetic Mechanically Strong One-Dimensional Hydroxyapatite/Poly(d, l-lactide) Composite Inducing Formation of Anisotropic Collagen Matrix,” ACS Nano, vol. 15, no. 11, pp. 17480–17498, Nov. 2021, doi: 10.1021/ACSNANO.1C03905.
  • B. Sen, B. Demirkan, A. Şavk, S. Karahan Gülbay, and F. Sen, “Trimetallic PdRuNi nanocomposites decorated on graphene oxide: A superior catalyst for the hydrogen evolution reaction,” Int. J. Hydrogen Energy, vol. 43, no. 38, pp. 17984–17992, Sep. 2018, doi: 10.1016/J.IJHYDENE.2018.07.122.
  • R. Wu et al., “Large-area single-crystal sheets of borophene on Cu(111) surfaces,” Nat. Nanotechnol., vol. 14, no. 1, pp. 44–49, Jan. 2019, doi: 10.1038/S41565-018-0317-6.
  • H. Seckin, R. N. E. Tiri, I. Meydan, A. Aygun, M. K. Gunduz, and F. Sen, “An environmental approach for the photodegradation of toxic pollutants from wastewater using Pt–Pd nanoparticles: Antioxidant, antibacterial and lipid peroxidation inhibition applications,” Environ. Res., vol. 208, p. 112708, May 2022, doi: 10.1016/J.ENVRES.2022.112708.
  • F. Şen and G. Gökağaç, “Pt nanoparticles synthesized with new surfactants: improvement in C1–C3 alcohol oxidation catalytic activity,” J. Appl. Electrochem. 2013 441, vol. 44, no. 1, pp. 199–207, Sep. 2013, doi: 10.1007/S10800-013-0631-5.
  • H. S. Ko, S. Lee, and J. Y. Jho, “Synthesis and modification of hydroxyapatite nanofiber for poly(Lactic acid) composites with enhanced mechanical strength and bioactivity,” Nanomaterials, vol. 11, no. 1, pp. 1–13, Jan. 2021, doi: 10.3390/NANO11010213.
  • Y. Dutt et al., “Therapeutic applications of nanobiotechnology,” J. Nanobiotechnology, vol. 21, no. 1, Dec. 2023, doi: 10.1186/S12951-023-01909-Z.
  • S. Kansız, M. T. Vurat, M. Parmaksiz, A. E. Elçin, and Y. M. Elçin, “Chitosan/PVA reinforced boron/strontium multi-substituted hydroxyapatite-based biocomposites: Effects of synthesis pH and coating on the physicochemical, mechanical, and in vitro biological properties of scaffolds,” Mater. Today Chem., vol. 35, p. 101865, Jan. 2024, doi: 10.1016/J.MTCHEM.2023.101865.
  • D. Shekhawat, A. Singh, M. K. Banerjee, T. Singh, and A. Patnaik, “Bioceramic composites for orthopaedic applications: A comprehensive review of mechanical, biological, and microstructural properties,” Ceram. Int., vol. 47, no. 3, pp. 3013–3030, Feb. 2021, doi: 10.1016/j.ceramint.2020.09.214.
  • J. Chai, N. Han, S. Feng, X. Huang, B. Tang, and W. Zhang, “Insights on Titanium-based chalcogenides TiX2 (X = O, S, Se) as LIBs/SIBs anode materials,” Chem. Eng. J., vol. 453, Feb. 2023, doi: 10.1016/j.cej.2022.139768.
  • M. T. VURAT, A. E. ELÇIN, and Y. M. ELÇIN, “Osteogenic composite nanocoating based on nanohydroxyapatite, strontium ranelate and polycaprolactone for titanium implants,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 28, no. 9, pp. 1763–1773, Sep. 2018, doi: 10.1016/S1003-6326(18)64820-4.
  • B. Şen, A. Aygün, A. Şavk, S. Akocak, and F. Şen, “Bimetallic palladium–iridium alloy nanoparticles as highly efficient and stable catalyst for the hydrogen evolution reaction,” Int. J. Hydrogen Energy, vol. 43, no. 44, pp. 20183–20191, Nov. 2018, doi: 10.1016/J.IJHYDENE.2018.07.081.
  • X. Xing, Y. Han, and H. Cheng, “Biomedical applications of chitosan/silk fibroin composites: A review,” Int. J. Biol. Macromol., vol. 240, Jun. 2023, doi: 10.1016/J.IJBIOMAC.2023.124407.
  • H. Yin et al., “Fabrication and characterization of strontium-doped borate-based bioactive glass scaffolds for bone tissue engineering,” J. Alloys Compd., vol. 743, pp. 564–569, Apr. 2018, doi: 10.1016/J.JALLCOM.2018.01.099.
  • V. Uskoković, “Ion-doped hydroxyapatite: An impasse or the road to follow?,” Ceram. Int., vol. 46, no. 8, pp. 11443–11465, Jun. 2020, doi: 10.1016/j.ceramint.2020.02.001.
  • A. Ali, S. Bano, R. Priyadarshi, and Y. S. Negi, “Effect of carbon based fillers on properties of Chitosan/PVA/βTCP based composite scaffold for bone tissue engineering,” Mater. Today Proc., vol. 15, pp. 173–182, 2019, doi: 10.1016/J.MATPR.2019.04.189.
  • F. Şen and G. Gökağaç, “Pt nanoparticles synthesized with new surfactants: Improvement in C 1-C3 alcohol oxidation catalytic activity,” J. Appl. Electrochem., vol. 44, no. 1, pp. 199–207, Jan. 2014, doi: 10.1007/s10800-013-0631-5.
  • Y. Luo, S. Chen, Y. Shi, and J. Ma, “3D printing of strontium-doped hydroxyapatite based composite scaffolds for repairing critical-sized rabbit calvarial defects,” Biomed. Mater., vol. 13, no. 6, Aug. 2018, doi: 10.1088/1748-605X/AAD923.
  • N. H. Khand et al., “A new electrochemical method for the detection of quercetin in onion, honey and green tea using Co3O4 modified GCE,” J. Food Meas. Charact. 2021 154, vol. 15, no. 4, pp. 3720–3730, May 2021, doi: 10.1007/S11694-021-00956-0.
  • A. Cherif, R. Nebbali, J. W. Sheffield, N. Doner, and F. Sen, “Numerical investigation of hydrogen production via autothermal reforming of steam and methane over Ni/Al2O3 and Pt/Al2O3 patterned catalytic layers,” Int. J. Hydrogen Energy, vol. 46, no. 75, pp. 37521–37532, Oct. 2021, doi: 10.1016/J.IJHYDENE.2021.04.032.
  • B. Yedekçi, A. Tezcaner, A. Z. Alshemary, B. Yılmaz, T. Demir, and Z. Evis, “Synthesis and sintering of B, Sr, Mg multi-doped hydroxyapatites: Structural, mechanical and biological characterization,” J. Mech. Behav. Biomed. Mater., vol. 115, Mar. 2021, doi: 10.1016/J.JMBBM.2020.104230.
  • A. A. Aly and M. K. Ahmed, “Fibrous scaffolds of Ag/Fe co-doped hydroxyapatite encapsulated into polycaprolactone: Morphology, mechanical and in vitro cell adhesion,” Int. J. Pharm., vol. 601, May 2021, doi: 10.1016/J.IJPHARM.2021.120557.
  • S. B. Khan, “Metal nanoparticles containing chitosan wrapped cellulose nanocomposites for catalytic hydrogen production and reduction of environmental pollutants,” Carbohydr. Polym., vol. 242, Aug. 2020, doi: 10.1016/J.CARBPOL.2020.116286.
  • Sivanthaperumal, R. Tabassum, and T. Ansari, “Synthesis, Characterization and Antimicrobial Activity of Nanochitosan and Chitosan Encapsulated Zinc Oxide Nanoparticles,” Asian J. Chem., vol. 34, no. 12, pp. 3313–3319, Dec. 2022, doi: 10.14233/AJCHEM.2022.23985.
  • P. Li et al., “Micro-/nano-structured Co(NO3)2·6H2O@CNTs as novel anode material with superior lithium storage performance,” J. Electroanal. Chem., vol. 791, pp. 29–35, Apr. 2017, doi: 10.1016/j.jelechem.2017.03.007.
  • N. Korkmaz, Y. Ceylan, P. Taslimi, A. Karadağ, A. S. Bülbül, and F. Şen, “Biogenic nano silver: Synthesis, characterization, antibacterial, antibiofilms, and enzymatic activity,” Adv. Powder Technol., vol. 31, no. 7, pp. 2942–2950, Jul. 2020, doi: 10.1016/J.APT.2020.05.020.
  • F. Soysal, Z. Ç.-A. K. Ü. F. Ve, and undefined 2023, “Grafen Oksit/Altın/Polianilin Nanokompozitlerinin Eş Zamanlı Çöktürme/Polimerizasyon Yöntemleriyle Sentezi ve Fototermal Performansı,” dergipark.org.tr.
  • B. Sen, S. Kuzu, E. Demir, S. Akocak, and F. Sen, “Polymer-graphene hybride decorated Pt nanoparticles as highly efficient and reusable catalyst for the dehydrogenation of dimethylamine–borane at room temperature,” Int. J. Hydrogen Energy, vol. 42, no. 36, pp. 23284–23291, Sep. 2017, doi: 10.1016/J.IJHYDENE.2017.05.112.
  • R. V. Gadhave, V. S.K, P. V. Dhawale, and P. T. Gadekar, “Effect of boric acid on poly vinyl alcohol- tannin blend and its application as water-based wood adhesive,” Des. Monomers Polym., vol. 23, no. 1, pp. 188–196, Jan. 2020, doi: 10.1080/15685551.2020.1826124.
  • M. Megha et al., “Structural and biological properties of novel Vanadium and Strontium co-doped HAp for tissue engineering applications,” Ceram. Int., vol. 49, no. 18, pp. 30156–30169, Sep. 2023, doi: 10.1016/J.CERAMINT.2023.06.272.
  • Y. Wu et al., “Hydrogen generation from methanolysis of sodium borohydride using waste coffee oil modified zinc oxide nanoparticles and their photocatalytic activities,” Int. J. Hydrogen Energy, vol. 48, no. 17, pp. 6613–6623, Feb. 2023, doi: 10.1016/J.IJHYDENE.2022.04.177.
  • A. Aygun et al., “Highly active PdPt bimetallic nanoparticles synthesized by one-step bioreduction method: Characterizations, anticancer, antibacterial activities and evaluation of their catalytic effect for hydrogen generation,” Int. J. Hydrogen Energy, vol. 48, no. 17, pp. 6666–6679, Feb. 2023, doi: 10.1016/J.IJHYDENE.2021.12.144.
  • Y. Gong et al., “Mixed-metal MOF-derived Co–Mn–O hollow spheres as anodes for lithium storage,” Mater. Today Energy, vol. 21, Sep. 2021, doi: 10.1016/j.mtener.2021.100825.
  • S. Basu, P. Biswas, M. Anto, N. Singh, and K. Mukherjee, “Nanomaterial-enabled drug transport systems: a comprehensive exploration of current developments and future avenues in therapeutic delivery.,” 3 Biotech, vol. 14, no. 12, p. 289, Dec. 2024, doi: 10.1007/s13205-024-04135-y.
  • C. GÖKALP, Z. ÇIPLAK, B. GETİREN, and N. YILDIZ, “NIR Duyarlı NGKN-Fe3O4@PPy Nanokompozitinin Sentezi ve Fototermal Performansının İncelenmesi,” J. Polytech., Feb. 2024, doi: 10.2339/POLITEKNIK.1009280.
  • S. Malik, K. Muhammad, and Y. Waheed, “Emerging Applications of Nanotechnology in Healthcare and Medicine,” Molecules, vol. 28, no. 18, p. 6624, Sep. 2023, doi: 10.3390/molecules28186624.
  • J. W. Mair and H. G. Day, “Curcumin Method for Spectrophotometric Determination of Boron Extracted from Radiofrequency Ashed Animal Tissues Using 2-Ethyl-1,3-Hexanediol,” Anal. Chem., vol. 44, no. 12, pp. 2015–2017, Oct. 1972, doi: 10.1021/AC60320A022.
  • E. B. Souto, “Patenting nanomedicines: Legal aspects, intellectual property and grant opportunities,” Patenting Nanomedicines Leg. Asp. Intellect. Prop. Grant Oppor., vol. 9783642292, pp. 1–457, Oct. 2012, doi: 10.1007/978-3-642-29265-1.
  • A. Sirelkhatim et al., “Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism,” Nano-Micro Lett., vol. 7, no. 3, pp. 219–242, Apr. 2015, doi: 10.1007/S40820-015-0040-X.
  • Y. Liang et al., “Facile synthesis of biogenic palladium nanoparticles using biomass strategy and application as photocatalyst degradation for textile dye pollutants and their in-vitro antimicrobial activity,” Chemosphere, vol. 306, p. 135518, Nov. 2022, doi: 10.1016/J.CHEMOSPHERE.2022.135518.
  • D. M. Smith, J. K. Simon, and J. R. Baker, “Applications of nanotechnology for immunology,” Nat. Rev. Immunol., vol. 13, no. 8, pp. 592–605, 2013, doi: 10.1038/NRI3488.
  • H. D. Yıldızay, M. Bekmezci, and F. Şen, “Nanofluids and engineering applications: A review,” J. Sci. Reports-A, no. 060, pp. 126–149, 2025, doi: 10.59313/jsr-a.1634164.
  • B. Sen, E. Kuyuldar, A. Şavk, H. Calimli, S. Duman, and F. Sen, “Monodisperse rutheniumcopper alloy nanoparticles decorated on reduced graphene oxide for dehydrogenation of DMAB,” Int. J. Hydrogen Energy, vol. 44, no. 21, pp. 10744–10751, Apr. 2019, doi: 10.1016/J.IJHYDENE.2019.02.176.
  • H. Göksu, H. Burhan, S. D. Mustafov, and F. Şen, “Oxidation of Benzyl Alcohol Compounds in the Presence of Carbon Hybrid Supported Platinum Nanoparticles (Pt@CHs) in Oxygen Atmosphere,” Sci. Reports 2020 101, vol. 10, no. 1, pp. 5439-, Mar. 2020, doi: 10.1038/s41598-020-62400-5.
  • J. Lin et al., “Phyto-mediated synthesis of nanoparticles and their applications on hydrogen generation on NaBH4, biological activities and photodegradation on azo dyes: Development of machine learning model,” Food Chem. Toxicol., vol. 163, p. 112972, May 2022, doi: 10.1016/J.FCT.2022.112972.
  • H. Ghaffari et al., “Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: Another emerging application of nanomedicine,” J. Biomed. Sci., vol. 26, no. 1, Sep. 2019, doi: 10.1186/S12929-019-0563-4.
  • B. A. Browne, “Toward a new theory of podzolization,” Carbon Forms Funct. For. Soils, pp. 253–273, Aug. 2006, doi: 10.2136/1995.CARBONFORMS.C12.
  • R. Keren and F. T. Bingham, “Boron in Water, Soils, and Plants,” pp. 229–276, 1958, doi: 10.1007/978-1-4612-5046-3_7.
  • Z. Yinghuai, X. Lin, H. Xie, J. Li, N. S. Hosmane, and Y. Zhang, “The Current Status and Perspectives of Delivery Strategy for Boronbased Drugs,” Curr. Med. Chem., vol. 26, no. 26, pp. 5019–5035, Sep. 2018, doi: 10.2174/0929867325666180904105212.
  • S. Bhat, U. T. Uthappa, T. Altalhi, H. Y. Jung, and M. D. Kurkuri, “Functionalized Porous Hydroxyapatite Scaffolds for Tissue Engineering Applications: A Focused Review,” ACS Biomater. Sci. Eng., vol. 8, no. 10, pp. 4039–4076, Oct. 2022, doi: 10.1021/ACSBIOMATERIALS.1C00438.
  • A. S.-R. Pang et al., “Nanoparticles as Drug Delivery Systems for the Targeted Treatment of Atherosclerosis,” Molecules, vol. 29, no. 12, p. 2873, Jun. 2024, doi: 10.3390/molecules29122873.
  • J. Wang et al., “Fabrication and preliminary biological evaluation of a highly porous biphasic calcium phosphate scaffold with nano-hydroxyapatite surface coating,” Ceram. Int., vol. 44, no. 2, pp. 1304–1311, Feb. 2018, doi: 10.1016/J.CERAMINT.2017.08.053.
  • V. P. Torchilin, “Structure and design of polymeric surfactant-based drug delivery systems,” J. Control. Release, vol. 73, no. 2–3, pp. 137–172, Jul. 2001, doi: 10.1016/S0168-3659(01)00299-1.
  • K. K. Jain, “Role of nanobiotechnology in developing personalized medicine for cancer,” Technol. Cancer Res. Treat., vol. 4, no. 6, pp. 645–650, 2005, doi: 10.1177/153303460500400608.
  • T. Norgate and N. Haque, “Using life cycle assessment to evaluate some environmental impacts of gold production,” J. Clean. Prod., vol. 29–30, pp. 53–63, Jul. 2012, doi: 10.1016/J.JCLEPRO.2012.01.042.
  • A. Koç, G. Finkenzeller, A. E. Elçin, G. B. Stark, and Y. M. Elçin, “Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies,” J. Biomater. Appl., vol. 29, no. 5, pp. 748–760, Nov. 2014, doi: 10.1177/0885328214544769.
  • S. Lakhal and M. J. A. Wood, “Exosome nanotechnology: An emerging paradigm shift in drug delivery: Exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers,” BioEssays, vol. 33, no. 10, pp. 737–741, Oct. 2011, doi: 10.1002/BIES.201100076.
  • C. Fitzmaurice et al., “The Global Burden of Cancer 2013,” JAMA Oncol., vol. 1, no. 4, pp. 505–527, Jul. 2015, doi: 10.1001/JAMAONCOL.2015.0735.
  • H. Cabral, K. Miyata, K. Osada, and K. Kataoka, “Block Copolymer Micelles in Nanomedicine Applications,” Chem. Rev., vol. 118, no. 14, pp. 6844–6892, Jul. 2018, doi: 10.1021/ACS.CHEMREV.8B00199.
  • A. Shoaib et al., “A Nanotechnology-Based Approach to Biosensor Application in Current Diabetes Management Practices,” Nanomaterials, vol. 13, no. 5, p. 867, Feb. 2023, doi: 10.3390/nano13050867.
  • S. Singhal, S. Nie, and M. D. Wang, “Nanotechnology applications in surgical oncology,” Annu. Rev. Med., vol. 61, pp. 359–373, Feb. 2010, doi: 10.1146/ANNUREV.MED.60.052907.094936.
  • S. Durkut, Y. M. Elçin, and A. E. Elçin, “Biodegradation of chitosan-tripolyphosphate beads: In vitro and in vivo studies,” Artif. Cells, Blood Substitutes, Biotechnol., vol. 34, no. 2, pp. 263–276, Mar. 2006, doi: 10.1080/10731190600581866.
  • I. Takeuchi, K. Nomura, and K. Makino, “Hydrophobic boron compound-loaded poly(L-lactide-co-glycolide) nanoparticles for boron neutron capture therapy,” Colloids Surfaces B Biointerfaces, vol. 159, pp. 360–365, Nov. 2017, doi: 10.1016/J.COLSURFB.2017.08.002.
  • R. L. Frost, R. Scholz, X. Ruan, and R. M. F. Lima, “Thermal analysis and infrared emission spectroscopy of the borate mineral colemanite (CaB3O4(OH)3·H2O): Implications for thermal stability,” J. Therm. Anal. Calorim., vol. 124, no. 1, pp. 131–135, Apr. 2016, doi: 10.1007/S10973-015-5128-5.
  • K. Arikan, H. Burhan, R. Bayat, and F. Sen, “Glucose nano biosensor with non-enzymatic excellent sensitivity prepared with nickel–cobalt nanocomposites on f-MWCNT,” Chemosphere, vol. 291, Mar. 2022, doi: 10.1016/J.CHEMOSPHERE.2021.132720.
  • L. M. Rodríguez-Lorenzo, A. J. Salinas, M. Vallet-Regí, and J. San Román, “Composite biomaterials based on ceramic polymers. I. Reinforced systems based on Al2O3/PMMA/PLLA,” J. Biomed. Mater. Res., vol. 30, no. 4, pp. 515–522, Apr. 1996, doi: 10.1002/(SICI)1097-4636(199604)30:4<515::AID-JBM10>3.0.CO;2-G.
  • G. Rengasamy and S. Mahalingam, “Fabrication and characterization of chitosan/Ag@hydroxyapatite nanocomposite films for osteoregeneration: Insights into mechanical properties, biological performance, and drug release,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 717, Jul. 2025, doi: 10.1016/J.COLSURFA.2025.136790.
  • A. Raghunath and E. Perumal, “Metal oxide nanoparticles as antimicrobial agents: a promise for the future,” Int. J. Antimicrob. Agents, vol. 49, no. 2, pp. 137–152, Feb. 2017, doi: 10.1016/J.IJANTIMICAG.2016.11.011.
  • W. Cai, J. Wang, C. Chu, W. Chen, C. Wu, and G. Liu, “Metal–Organic Framework-Based Stimuli-Responsive Systems for Drug Delivery,” Adv. Sci., vol. 6, no. 1, Jan. 2019, doi: 10.1002/ADVS.201801526.
  • S. Nie, Y. Xing, G. J. Kim, and J. W. Simons, “Nanotechnology applications in cancer,” Annu. Rev. Biomed. Eng., vol. 9, pp. 257–288, 2007, doi: 10.1146/ANNUREV.BIOENG.9.060906.152025.
  • Y. Yıldız, İ. Esirden, E. Erken, E. Demir, M. Kaya, and F. Şen, “Microwave (Mw)-assisted Synthesis of 5-Substituted 1H-Tetrazoles via [3+2] Cycloaddition Catalyzed by Mw-Pd/Co Nanoparticles Decorated on Multi-Walled Carbon Nanotubes,” ChemistrySelect, vol. 1, no. 8, pp. 1695–1701, Jun. 2016, doi: 10.1002/SLCT.201600265;WGROUP:STRING:PUBLICATION.
  • H. Nakamura, H. Koganei, T. Miyoshi, Y. Sakurai, K. Ono, and M. Suzuki, “Antitumor effect of boron nitride nanotubes in combination with thermal neutron irradiation on BNCT,” Bioorganic Med. Chem. Lett., vol. 25, no. 2, pp. 172–174, Jan. 2015, doi: 10.1016/J.BMCL.2014.12.005.
  • A. P. Blum, J. K. Kammeyer, A. M. Rush, C. E. Callmann, M. E. Hahn, and N. C. Gianneschi, “Stimuli-responsive nanomaterials for biomedical applications,” J. Am. Chem. Soc., vol. 137, no. 6, pp. 2140–2154, Feb. 2015, doi: 10.1021/JA510147N.
  • B. Sen, S. Kuzu, E. Demir, E. Yıldırır, and F. Sen, “Highly efficient catalytic dehydrogenation of dimethyl ammonia borane via monodisperse palladium–nickel alloy nanoparticles assembled on PEDOT,” Int. J. Hydrogen Energy, vol. 42, no. 36, pp. 23307–23314, Sep. 2017, doi: 10.1016/J.IJHYDENE.2017.05.115.
  • B. Çelik et al., “Retracted Article: Highly monodisperse Pt(0)@AC NPs as highly efficient and reusable catalysts: the effect of the surfactant on their catalytic activities in room temperature dehydrocoupling of DMAB,” Catal. Sci. Technol., vol. 6, no. 6, pp. 1685–1692, Mar. 2016, doi: 10.1039/C5CY01371B.
  • W. D. Loomis and R. W. Durst, “Chemistry and biology of boron.,” Biofactors, vol. 3, no. 4, pp. 229–239, Apr. 1992.
  • J. Chen et al., “Remarkable boron delivery of iRGD-modified polymeric nanoparticles for boron neutron capture therapy,” Int. J. Nanomedicine, vol. 14, pp. 8161–8177, 2019, doi: 10.2147/IJN.S214224.
  • P. Taslimi et al., “Pyrazole[3,4-d]pyridazine derivatives: Molecular docking and explore of acetylcholinesterase and carbonic anhydrase enzymes inhibitors as anticholinergics potentials,” Bioorg. Chem., vol. 92, Nov. 2019, doi: 10.1016/J.BIOORG.2019.103213.
  • S. Ozturk, F. B. Ayanoğlu, M. Parmaksiz, A. E. Elçin, and Y. M. Elçin, “Clinical and surgical aspects of medical materials’ biocompatibility,” Handb. Biomater. Biocompat., pp. 219–250, Jan. 2020, doi: 10.1016/B978-0-08-102967-1.00012-8.
  • R. Núñez, M. Tarrés, A. Ferrer-Ugalde, F. F. De Biani, and F. Teixidor, “Electrochemistry and Photoluminescence of Icosahedral Carboranes, Boranes, Metallacarboranes, and Their Derivatives,” Chem. Rev., vol. 116, no. 23, pp. 14307–14378, Dec. 2016, doi: 10.1021/ACS.CHEMREV.6B00198.
  • Y. Zhou, S. Peng, H. Wang, X. Cai, and Q. Wang, “Review of Personalized Medicine and Pharmacogenomics of Anti-Cancer Compounds and Natural Products,” Genes (Basel)., vol. 15, no. 4, Apr. 2024, doi: 10.3390/genes15040468.
  • F. Şen and G. Gökaǧaç, “Improving Catalytic Efficiency in the Methanol Oxidation Reaction by Inserting Ru in Face-Centered Cubic Pt Nanoparticles Prepared by a New Surfactant, tert-Octanethiol,” Energy and Fuels, vol. 22, no. 3, pp. 1858–1864, May 2008, doi: 10.1021/EF700575T.
  • H. Omidian, N. Babanejad, and L. X. Cubeddu, “Nanosystems in Cardiovascular Medicine: Advancements, Applications, and Future Perspectives,” Pharmaceutics, vol. 15, no. 7, 2023, doi: 10.3390/pharmaceutics15071935.
  • M. F. Hawthorne, “The Role of Chemistry in the Development of Boron Neutron Capture Therapy of Cancer,” Angew. Chemie Int. Ed. English, vol. 32, no. 7, pp. 950–984, 1993, doi: 10.1002/ANIE.199309501.
  • S. Biyik, “ Effect of Cubic and Hexagonal Boron Nitride Additions on the Synthesis of Ag–SnO 2 Electrical Contact Material ,” J. Nanoelectron. Optoelectron., vol. 14, no. 7, pp. 1010–1015, Jun. 2019, doi: 10.1166/JNO.2019.2592.
  • E. Erken, Y. Yildiz, B. Kilbaş, and F. Şen, “Synthesis and Characterization of Nearly Monodisperse Pt Nanoparticles for C1 to C3 Alcohol Oxidation and Dehydrogenation of Dimethylamine-borane (DMAB),” J. Nanosci. Nanotechnol., vol. 16, no. 6, pp. 5944–5950, Jun. 2016, doi: 10.1166/JNN.2016.11683.
  • F. Diler et al., “Efficient preparation and application of monodisperse palladium loaded graphene oxide as a reusable and effective heterogeneous catalyst for suzuki cross-coupling reaction,” J. Mol. Liq., vol. 298, p. 111967, Jan. 2020, doi: 10.1016/J.MOLLIQ.2019.111967.
  • S. Pandiyarajan, S. S. M. Manickaraj, A. H. Liao, A. R. Panneer Selvam, K. Y. Lee, and H. C. Chuang, “Coherent construction of recovered γ-Al2O3 embedded N-doped activated carbon by supercritical-CO2 pathway: Robust hybrid electrode material for energy storage device,” J. Alloys Compd., vol. 936, Mar. 2023, doi: 10.1016/J.JALLCOM.2022.168213.
  • R. E. Mesmer, C. F. Baes, and F. H. Sweeton, “Acidity Measurements at Elevated Temperatures. VI. Boric Acid Equilibria,” Inorg. Chem., vol. 11, no. 3, pp. 537–543, Mar. 1972, doi: 10.1021/IC50109A023.
  • F. Zheng, Z. Yin, H. Xia, and Y. Zhang, “MOF-derived porous Co3O4 cuboids with excellent performance as anode materials for lithium-ion batteries,” Mater. Lett., vol. 197, pp. 188–191, Jun. 2017, doi: 10.1016/j.matlet.2017.03.050.
  • S. M. George, C. Nayak, I. Singh, and K. Balani, “Multifunctional Hydroxyapatite Composites for Orthopedic Applications: A Review,” ACS Biomater. Sci. Eng., vol. 8, no. 8, pp. 3162–3186, Aug. 2022, doi: 10.1021/ACSBIOMATERIALS.2C00140.
  • E. Erken et al., “New Pt(0) Nanoparticles as Highly Active and Reusable Catalysts in the C1–C3 Alcohol Oxidation and the Room Temperature Dehydrocoupling of Dimethylamine-Borane (DMAB),” J. Clust. Sci. 2015 271, vol. 27, no. 1, pp. 9–23, Jun. 2015, doi: 10.1007/S10876-015-0892-8.
  • B. Şahin, E. Demir, A. Aygün, H. Gündüz, and F. Şen, “Investigation of the effect of pomegranate extract and monodisperse silver nanoparticle combination on MCF-7 cell line,” J. Biotechnol., vol. 260, pp. 79–83, Oct. 2017, doi: 10.1016/J.JBIOTEC.2017.09.012.
  • A. Akbari and J. Rezaie, “Potential therapeutic application of mesenchymal stem cell-derived exosomes in SARS-CoV-2 pneumonia,” Stem Cell Res. Ther., vol. 11, no. 1, Aug. 2020, doi: 10.1186/S13287-020-01866-6.
  • X. Qian, W. Chen, J. Huang, J. Wu, and J. Wu, “Ni–CoS2/WS2/MoS2 hollow cuboids as noble metal-free bifunctional catalysts for highly efficient photovoltaics and electrochemical hydrogen production,” Renew. Energy, vol. 211, pp. 459–469, Jul. 2023, doi: 10.1016/J.RENENE.2023.05.036.
  • Y. Abo-zeid and G. R. Williams, “The potential anti-infective applications of metal oxide nanoparticles: A systematic review,” Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology, vol. 12, no. 2, Mar. 2020, doi: 10.1002/WNAN.1592.
  • M. Derakhshi, M. Naseri, Z. Vafaeipour, B. Malaekeh-Nikouei, A. H. Jafarian, and L. Ansari, “Enhanced wound-healing efficacy of electrospun mesoporous hydroxyapatite nanoparticle-loaded chitosan nanofiber developed using pluronic F127,” Int. J. Biol. Macromol., vol. 240, Jun. 2023, doi: 10.1016/J.IJBIOMAC.2023.124427.
  • S. H. Farjana, N. Huda, M. A. P. Mahmud, and C. Lang, “Comparative life-cycle assessment of uranium extraction processes,” J. Clean. Prod., vol. 202, pp. 666–683, Nov. 2018, doi: 10.1016/J.JCLEPRO.2018.08.105.
  • G. S. Ginsburg, R. P. Konstance, J. S. Allsbrook, and K. A. Schulman, “Implications of pharmacogenomics for drug development and clinical practice,” Arch. Intern. Med., vol. 165, no. 20, pp. 2331–2336, Nov. 2005, doi: 10.1001/archinte.165.20.2331.
  • R. F. Barth, Z. Zhang, and T. Liu, “A realistic appraisal of boron neutron capture therapy as a cancer treatment modality,” Cancer Commun., vol. 38, no. 1, 2018, doi: 10.1186/S40880-018-0280-5.
  • Q. Zhang et al., “Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets,” Nat. Cell Biol., vol. 23, no. 12, pp. 1240–1254, Dec. 2021, doi: 10.1038/s41556-021-00805-8.
  • P. Feng et al., “Structural and Functional Adaptive Artificial Bone: Materials, Fabrications, and Properties,” Adv. Funct. Mater., vol. 33, no. 23, Jun. 2023, doi: 10.1002/ADFM.202214726.
  • C. Mirkin and C. Niemeyer, “Nanobiotechnology II: more concepts and applications,” 2007.
  • M. A. Chowdhury, M. M. K. Uddin, M. B. A. Shuvho, M. Rana, and N. Hossain, “A novel temperature dependent method for borophene synthesis,” Appl. Surf. Sci. Adv., vol. 11, Oct. 2022, doi: 10.1016/J.APSADV.2022.100308.
  • J. Wang et al., “Carborane Derivative Conjugated with Gold Nanoclusters for Targeted Cancer Cell Imaging,” Biomacromolecules, vol. 18, no. 5, pp. 1466–1472, May 2017, doi: 10.1021/ACS.BIOMAC.6B01845.
  • M. Nehra, U. Uthappa, V. Kumar, … R. K.-J. of C., and undefined 2021, “Nanobiotechnology-assisted therapies to manage brain cancer in personalized manner,” Elsevier.
  • Y. Qiao et al., “3D well-ordered porous phosphorus doped carbon as an anode for sodium storage: Structure design, experimental and computational insights,” J. Mater. Chem. A, vol. 7, no. 18, pp. 11400–11407, 2019, doi: 10.1039/C9TA02268F.
  • B. Albert and H. Hillebrecht, “Boron: Elementary Challenge for Experimenters and Theoreticians,” Angew. Chemie Int. Ed., vol. 48, no. 46, pp. 8640–8668, Nov. 2009, doi: 10.1002/anie.200903246.
  • J. W. Wong and J. Y. M. Koo, “Psychopharmacological therapies in dermatology,” Dermatol. Online J., vol. 19, no. 5, 2013, doi: 10.5070/D3195018169.
  • A. Silvestri et al., “The era of nano-bionic: 2D materials for wearable and implantable body sensors,” Adv. Drug Deliv. Rev., vol. 186, p. 114315, Jul. 2022, doi: 10.1016/J.ADDR.2022.114315.
  • Ö. Gör Fatma SÖNMEZ ÇAKIR Doç Alper AYTEKİN Arş Gör Fatma TÜMİNÇİN, “Sosyal Araştırmalar ve Davranış Bilimleri Dergisi Journal of Social Research and Behavioral Sciences Nesnelerin İnterneti Ve Giyilebilir Teknolojiler *,” pp. 84–95, 2018.
  • Y. Ren, F. Zhang, Z. Yan, and P. Y. Chen, “Wearable bioelectronics based on emerging nanomaterials for telehealth applications,” Device, vol. 3, no. 1, pp. 1–29, 2025, doi: 10.1016/j.device.2024.100676.
  • A. Kholkin, N. Amdursky, I. Bdikin, E. Gazit, and G. Rosenman, “Strong piezoelectricity in bioinspired peptide nanotubes,” ACS Nano, vol. 4, no. 2, pp. 610–614, Feb. 2010, doi: 10.1021/NN901327V.
  • P. R. More, S. Pandit, A. De Filippis, G. Franci, I. Mijakovic, and M. Galdiero, “Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens,” Microorganisms, vol. 11, no. 2, 2023, doi: 10.3390/microorganisms11020369.
  • F. Gulbagça et al., “Facile bio-fabrication of Pd-Ag bimetallic nanoparticles and its performance in catalytic and pharmaceutical applications: Hydrogen production and in-vitro antibacterial, anticancer activities, and model development,” Chem. Eng. Res. Des., vol. 180, pp. 254–264, Apr. 2022, doi: 10.1016/J.CHERD.2022.02.024.
  • H. J. Lee, S. Y. Yeo, and S. H. Jeong, “Antibacterial effect of nanosized silver colloidal solution on textile fabrics,” J. Mater. Sci., vol. 38, no. 10, pp. 2199–2204, May 2003, doi: 10.1023/A:1023736416361/METRICS.
  • S. Arora, J. Jain, J. M. Rajwade, and K. M. Paknikar, “Cellular responses induced by silver nanoparticles: In vitro studies,” Toxicol. Lett., vol. 179, no. 2, pp. 93–100, Jun. 2008, doi: 10.1016/J.TOXLET.2008.04.009.
  • A. B. Stefaniak et al., “Dermal exposure potential from textiles that contain silver nanoparticles,” Int. J. Occup. Environ. Health, vol. 20, no. 3, pp. 220–234, 2014, doi: 10.1179/2049396714Y.0000000070;SUBPAGE:STRING:ACCESS.
  • “NANO GÜMÜŞ EMPRENYE EDİLMİŞ ÜÇ BOYUTLU KUMAŞLARDA ANTİ-MİKROBİYAL ETKİNLİK”, doi: 10.20854/bujse.454358.
  • J. Zhang, F. Wang, S. S. K. Yalamarty, N. Filipczak, Y. Jin, and X. Li, “Nano Silver-Induced Toxicity and Associated Mechanisms,” Int. J. Nanomedicine, vol. 17, p. 1851, 2022, doi: 10.2147/IJN.S355131.
  • F. Ameen et al., “Synthesis and characterization of activated carbon supported bimetallic Pd based nanoparticles and their sensor and antibacterial investigation,” Environ. Res., vol. 221, p. 115287, Mar. 2023, doi: 10.1016/J.ENVRES.2023.115287.
  • E. Demir, B. Sen, and F. Sen, “Highly efficient Pt nanoparticles and f-MWCNT nanocomposites based counter electrodes for dye-sensitized solar cells,” Nano-Structures & Nano-Objects, vol. 11, pp. 39–45, Jul. 2017, doi: 10.1016/J.NANOSO.2017.06.003.
  • F. Göktepe, “Eğrilebilir karbon nanotüpler ve bu özel liflerden üretilen teknik iplikler,” Tekst. ve Muhendis, vol. 22, no. 100, pp. 1–12, 2015, doi: 10.7216/1300759920152210001.
  • E. K. ÇEVEN, N. ER, and G. KARAKAN GÜNAYDIN, “NANOPARTİKÜL Katkili Poli̇mer Yüzeyleri̇ İletkenli Özelli̇kleri̇ni̇ Opti̇mi̇zasyonu,” Uludağ Univ. J. Fac. Eng., pp. 345–364, 2021, doi: 10.17482/uumfd.836257.
  • M. Syduzzaman, A. Hassan, H. R. Anik, M. Akter, and M. R. Islam, “Nanotechnology for High-Performance Textiles: A Promising Frontier for Innovation,” ChemNanoMat, vol. 9, no. 9, p. e202300205, Sep. 2023, doi: 10.1002/CNMA.202300205;REQUESTEDJOURNAL:JOURNAL:2199692X;PAGE:STRING:ARTICLE/CHAPTER.
  • G. Yavuz, E. Yilmaz, E. Halvaci, C. Catal, and I. Turk, “Nanotechnology in Medical Applications ; Recent Developments in Devices and Materials,” J. Sci. Reports-C, no. 5, pp. 1–32, 2023.
  • S. I. Kaya, S. Kurbanoglu, E. Yavuz, S. Demiroglu Mustafov, F. Sen, and S. A. Ozkan, “Carbon-based ruthenium nanomaterial-based electroanalytical sensors for the detection of anticancer drug Idarubicin,” Sci. Reports 2020 101, vol. 10, no. 1, pp. 11057-, Jul. 2020, doi: 10.1038/s41598-020-68055-6.
  • Z. Tüylek, “Biyolojik Sistemlerde Gelecekteki Nano / Biyosensör Ürünlerine Hazırlık,” Biyosistem Mühendisliği Derg., vol. 2, no. 1, pp. 17–39, 2021.
  • Z. Tüylek, “Biyosensörler ve Nanoteknolojik Etkileşim Biosensors and Nanotechnological Interaction,” BEÜ Fen Bilim. Derg. BEU J. Sci., vol. 6, no. 62, pp. 71–80, 2017, [Online]. Available: http://dergipark.gov.tr/download/article-file/391093
  • R. Darabi et al., “Simultaneous determination of ascorbic acid, dopamine, and uric acid with a highly selective and sensitive reduced graphene oxide/polypyrrole-platinum nanocomposite modified electrochemical sensor,” Electrochim. Acta, vol. 457, p. 142402, Jul. 2023, doi: 10.1016/J.ELECTACTA.2023.142402.
  • A. Şavk et al., “Highly monodisperse Pd-Ni nanoparticles supported on rGO as a rapid, sensitive, reusable and selective enzyme-free glucose sensor,” Sci. Rep., vol. 9, no. 1, pp. 19228-, Dec. 2019, doi: 10.1038/S41598-019-55746-Y;TECHMETA.
  • D. Mihai et al., “Continuous glucose monitoring devices: A brief presentation (Review),” Exp. Ther. Med., vol. 23, no. 2, pp. 1–6, 2021, doi: 10.3892/etm.2021.11097.
  • I. Meydan, H. Burhan, T. Gür, H. Seçkin, B. Tanhaei, and F. Sen, “Characterization of Rheum ribes with ZnO nanoparticle and its antidiabetic, antibacterial, DNA damage prevention and lipid peroxidation prevention activity of in vitro,” Environ. Res., vol. 204, p. 112363, Mar. 2022, doi: 10.1016/J.ENVRES.2021.112363.
  • J. Wu, Y. Liu, H. Yin, and M. Guo, “A new generation of sensors for non-invasive blood glucose monitoring.,” Am. J. Transl. Res., vol. 15, no. 6, pp. 3825–3837, 2023, Accessed: Nov. 24, 2025. [Online]. Available: https://pmc.ncbi.nlm.nih.gov/articles/PMC10331674/
  • G. Acciaroli, M. Vettoretti, A. Facchinetti, and G. Sparacino, “Calibration of Minimally Invasive Continuous Glucose Monitoring Sensors: State-of-The-Art and Current Perspectives,” vol. 8, no. 1, p. 24, Mar. 2018, doi: 10.3390/BIOS8010024.
  • M. Safarkhani et al., “Nanomaterial-assisted wearable glucose biosensors for noninvasive real-time monitoring: Pioneering point-of-care and beyond,” Nano Mater. Sci., vol. 6, no. 3, pp. 263–283, Jun. 2024, doi: 10.1016/j.nanoms.2023.11.009.
  • K. J. Cash and H. A. Clark, “Diabetes,” vol. 16, no. 12, pp. 584–593, 2011, doi: 10.1016/j.molmed.2010.08.002.Nanosensors.
  • Z. Yu, H. Wu, Z. Xu, Z. Yang, J. Lv, and C. Kong, “Wearable Noninvasive Glucose Sensor Based on CuxO NFs/Cu NPs Nanocomposites,” Sensors, vol. 23, no. 2, 2023, doi: 10.3390/s23020695.
  • R. Ulus, Y. Yıldız, S. Eriş, B. Aday, F. Şen, and M. Kaya, “Functionalized Multi-Walled Carbon Nanotubes (f-MWCNT) as Highly Efficient and Reusable Heterogeneous Catalysts for the Synthesis of Acridinedione Derivatives,” ChemistrySelect, vol. 1, no. 13, pp. 3861–3865, Aug. 2016, doi: 10.1002/SLCT.201600719.
  • A. T. Lawal, “Recent developments in electrochemical sensors based on graphene for bioanalytical applications,” Sens. Bio-Sensing Res., vol. 41, no. July, p. 100571, 2023, doi: 10.1016/j.sbsr.2023.100571.
  • A. Hojjati-Najafabadi, S. Salmanpour, F. Sen, P. N. Asrami, M. Mahdavian, and M. A. Khalilzadeh, “A Tramadol Drug Electrochemical Sensor Amplified by Biosynthesized Au Nanoparticle Using Mentha aquatic Extract and Ionic Liquid,” Top. Catal. 2021 655, vol. 65, no. 5, pp. 587–594, Sep. 2021, doi: 10.1007/S11244-021-01498-X.
  • A. Mahendra, “An overview on electrolytes: Its importance, function, and imbalances,” Clin Nutr Hosp Diet, vol. 43, no. 1, pp. 1–02, 2023, doi: 10.12873/0211-6057.23.01.195.
  • A. Akter, M. M. H. Apu, Y. R. Veeranki, T. N. Baroud, and H. F. Posada-Quintero, “Recent Studies on Smart Textile-Based Wearable Sweat Sensors for Medical Monitoring: A Systematic Review,” J. Sens. Actuator Networks, vol. 13, no. 4, 2024, doi: 10.3390/jsan13040040.
  • C. Tang, Z. Liu, and L. Li, “Mechanical Sensors for Cardiovascular Monitoring: From Battery-Powered to Self-Powered,” Biosensors, vol. 12, no. 8, 2022, doi: 10.3390/bios12080651.
  • A. Ali, S. Iqbal, and X. Chen, “Recent advances in piezoelectric wearable energy harvesting based on human motion: Materials, design, and applications,” Energy Strateg. Rev., vol. 53, no. May, p. 101422, May 2024, doi: 10.1016/j.esr.2024.101422.
  • D. T. P. Fong and Y. Y. Chan, “The use of wearable inertial motion sensors in human lower limb biomechanics studies: A systematic review,” Sensors (Switzerland), vol. 10, no. 12, pp. 11556–11565, 2010, doi: 10.3390/s101211556.
  • M. A. Gartstein., S. Putnam., and R. Kliewer., “乳鼠心肌提取 HHS Public Access,” Physiol. Behav., vol. 176, no. 3, pp. 139–148, 2016, doi: 10.15406/ijbsbe.2018.04.00125.A.
  • G. D. Buckberg, N. C. Nanda, C. Nguyen, and M. J. Kocica, “What is the heart? Anatomy, function, pathophysiology, and misconceptions,” J. Cardiovasc. Dev. Dis., vol. 5, no. 2, 2018, doi: 10.3390/jcdd5020033.
  • C. M. Boutry et al., “Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow,” Nat. Biomed. Eng. 2019 31, vol. 3, no. 1, pp. 47–57, Jan. 2019, doi: 10.1038/s41551-018-0336-5.
  • A. Kelimeler, “PİEZOELEKTRİK UYGULAMALI AYAKKABI TASARIMI PIEZOELECTRIC APPLIED SHOE DESIGN Dr . Öğr . Üyesi . Mustafa Oğuz GÖK Kahramanmaraş Sütçü İmam Üniversitesi , Güzel Sanatlar Fakültesi , Tekstil ve Moda Tasarımı Bölümü , mustafaoguz@ksu.edu.tr , Kahramanmaraş / ,” no. 22, pp. 888–893, 2018.
  • V. Naresh and N. Lee, “A review on biosensors and recent development of nanostructured materials-enabled biosensors,” Sensors (Switzerland), vol. 21, no. 4, pp. 1–35, Feb. 2021, doi: 10.3390/s21041109.
  • S. Ranwa and M. Kumar, “Sensing Materials: Ceramics,” Encycl. Sensors Biosensors, First Ed. Four Vol. Set, pp. 1–13, Jan. 2023, doi: 10.1016/B978-0-12-822548-6.00020-0.
  • G. T. Hwang, M. Byun, C. K. Jeong, and K. J. Lee, “Flexible piezoelectric Thin-Film energy harvesters and nanosensors for biomedical applications,” Adv. Healthc. Mater., vol. 4, no. 5, pp. 646–658, Apr. 2015, Accessed: Nov. 24, 2025. [Online]. Available: /doi/pdf/10.1002/adhm.201400642
  • M. Tekkalmaz, G. Haydarlar, and M. A. Sofuoğlu, “Yapısal Sağlık İzlemede Kullanılan Piezoelektrik Sensörlerin Değişen Sıcaklıklarda Davranışının İncelenmesi,” J. Polytech., vol. 0900, no. 3, pp. 597–606, 2019, doi: 10.2339/politeknik.513956.
  • X. Wang, “Piezoelectric nanogenerators—Harvesting ambient mechanical energy at the nanometer scale,” Nano Energy, vol. 1, no. 1, pp. 13–24, Jan. 2012, doi: 10.1016/J.NANOEN.2011.09.001.
  • I. Z. Hossain, A. Khan, and G. Hossain, “A Piezoelectric Smart Textile for Energy Harvesting and Wearable Self-Powered Sensors,” Energies, vol. 15, no. 15, 2022, doi: 10.3390/en15155541.
  • C. Dagdeviren et al., “Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm,” Proc. Natl. Acad. Sci. U. S. A., vol. 111, no. 5, pp. 1927–1932, Feb. 2014, doi: 10.1073/PNAS.1317233111;WGROUP:STRING:PUBLICATION.
  • L. Persano et al., “High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene),” Nat. Commun., vol. 4, pp. 1610–1633, 2013, doi: 10.1038/ncomms2639.
  • X. Wan, H. Cong, G. Jiang, X. Liang, L. Liu, and H. He, “A Review on PVDF Nanofibers in Textiles for Flexible Piezoelectric Sensors,” ACS Appl. Nano Mater., 2023, doi: 10.1021/ACSANM.2C04916.
  • M. O. GÖK, İ. KARADÖL, and M. ŞEKKELİ, “PİEZO Uygulamali AkilliTeksti̇l Uygulamasi,” Mühendislik Bilim. ve Tasarım Derg., vol. 7, no. 2, pp. 369–380, 2019, doi: 10.21923/jesd.431669.
  • Z. Wang, X. Hu, Z. Fan, and W. Fei, “Wearable piezoelectrical muscle monitoring system for swimming analysis neural network,” IEICE Electron. Express, vol. 22, no. 5, pp. 1–5, 2025, doi: 10.1587/elex.21.20240287.
  • X. Gao, M. Zheng, H. Lv, Y. Zhang, M. Zhu, and Y. Hou, “Ultrahigh sensitive flexible sensor based on textured piezoelectric composites for preventing sports injuries,” Compos. Sci. Technol., vol. 229, p. 109693, Oct. 2022, doi: 10.1016/J.COMPSCITECH.2022.109693.
  • C. Zhao, C. Jia, Y. Zhu, and T. Zhao, “An effective self-powered piezoelectric sensor for monitoring basketball skills,” Sensors, vol. 21, no. 15, p. 5144, Aug. 2021, doi: 10.3390/S21155144/S1.
  • N. Doner, H. Burhan, R. Bayat, E. Esra Altuner, and F. Sen, “Energy Generation through Thermopower Waves using Multi-walled Carbon Nanotube Yarn,” Fuel, vol. 331, p. 125906, Jan. 2023, doi: 10.1016/J.FUEL.2022.125906.
  • E. Demir, A. Savk, B. Sen, and F. Sen, “A novel monodisperse metal nanoparticles anchored graphene oxide as Counter Electrode for Dye-Sensitized Solar Cells,” Nano-Structures & Nano-Objects, vol. 12, pp. 41–45, Oct. 2017, doi: 10.1016/J.NANOSO.2017.08.018.
  • J. Vitorino, B. Damas, and V. Víegas, “Harvesting energy from a soldier’s gait using the piezoelectric effect,” Energy Harvest. Syst., vol. 11, no. 1, pp. 1–11, 2024, doi: 10.1515/ehs-2023-0149.
  • Y. Chen, X. Zhang, and C. Lu, “Flexible piezoelectric materials and strain sensors for wearable electronics and artificial intelligence applications,” Chem. Sci., vol. 15, no. 40, pp. 16436–16466, Oct. 2024, doi: 10.1039/D4SC05166A.
  • M. A. Mangi et al., “Applications of piezoelectric-based sensors, actuators, and energy harvesters,” Sensors and Actuators Reports, vol. 9, p. 100302, Jun. 2025, doi: 10.1016/J.SNR.2025.100302.
  • Y. Wu, Y. Ma, H. Zheng, and S. Ramakrishna, “Piezoelectric materials for flexible and wearable electronics: A review,” Mater. Des., vol. 211, p. 110164, Dec. 2021, doi: 10.1016/J.MATDES.2021.110164.
  • M. Bekmezci, R. Bayat, G. Kaya, and F. Şen, “Applications of Boron and Derivatives in Defense Industry: Mini Review,” Int. J. Boron Sci. Nanotechnol., no. 2, pp. 24–38, 2025.
  • “Recent development of piezoelectric biosensors for physiological signal detection and machine learning assisted cardiovascular disease diagnosis - RSC Advances (RSC Publishing) DOI:10.1039/D3RA05932D.” Accessed: Nov. 25, 2025. [Online]. Available: https://pubs.rsc.org/en/content/articlehtml/2023/ra/d3ra05932d?utm_source=chatgpt.com
  • M. A. Belal et al., “Advances in nanogenerator enabled smart mask-based self-powered health monitoring units,” Mater. Adv., vol. 6, no. 22, pp. 8210–8238, Nov. 2025, doi: 10.1039/D5MA00845J.
  • Z. Li, Q. Zheng, Z. L. Wang, and Z. Li, “Nanogenerator-Based Self-Powered Sensors for Wearable and Implantable Electronics,” Res. (Washington, D.C.), vol. 2020, Jan. 2020, doi: 10.34133/2020/8710686.
  • Q. Zhu, T. Wu, and N. Wang, “From Piezoelectric Nanogenerator to Non-Invasive Medical Sensor: A Review,” Biosensors, vol. 13, no. 1, 2023, doi: 10.3390/bios13010113.
  • N. Rubab and S. W. Kim, “Self-powered Sensors based on Piezoelectric Nanogenerators,” J. Sens. Sci. Technol., vol. 31, no. 5, pp. 293–300, 2022, doi: 10.46670/JSST.2022.31.5.293.
  • J. M. Anderson, A. Rodriguez, and D. T. Chang, “Foreign body reaction to biomaterials,” Semin. Immunol., vol. 20, no. 2, pp. 86–100, Apr. 2008, doi: 10.1016/J.SMIM.2007.11.004.
  • R. García-álvarez and M. Vallet-Regí, “Hard and soft protein corona of nanomaterials: Analysis and relevance,” Nanomaterials, vol. 11, no. 4, 2021, doi: 10.3390/nano11040888.
  • A. A. Aljabali et al., “Nanomaterials and Their Impact on the Immune System,” Int. J. Mol. Sci. 2023, Vol. 24, Page 2008, vol. 24, no. 3, p. 2008, Jan. 2023, doi: 10.3390/IJMS24032008.
  • T. R. Kyriakides et al., “Biocompatibility of nanomaterials and their immunological properties,” Biomed. Mater., vol. 16, no. 4, pp. 1–49, 2021, doi: 10.1088/1748-605X/abe5fa.
  • V. Lenders, X. Koutsoumpou, A. Sargsian, and B. B. Manshian, “Biomedical nanomaterials for immunological applications: Ongoing research and clinical trials,” Nanoscale Adv., vol. 2, no. 11, pp. 5046–5089, 2020, doi: 10.1039/d0na00478b.
  • D. Nierenberg, A. R. Khaled, and O. Flores, “Formation of a protein corona influences the biological identity of nanomaterials,” Reports Pract. Oncol. Radiother., vol. 23, no. 4, p. 300, Jul. 2018, doi: 10.1016/J.RPOR.2018.05.005.
  • M. S. Nas, M. H. Calimli, H. Burhan, M. Yılmaz, S. D. Mustafov, and F. Sen, “Corrigendum to ‘Synthesis, characterization, kinetics and adsorption properties of Pt-Co@GO nano-adsorbent for methylene blue removal in the aquatic mediums using ultrasonic process systems’. [J. Mol. Liquids 296 (2019) 112100],” J. Mol. Liq., vol. 340, p. 117289, Oct. 2021, doi: 10.1016/J.MOLLIQ.2021.117289.
  • A. Halıcı et al., “Nanopartiküllerin Genotoksik Etkileri,” Gazi Üniversitesi Fen Fakültesi Derg., vol. 38, no. 2, pp. 19–38, 2021, doi: 10.5281/zenodo.5734749.
  • E. DÖNMEZ, H. T. YÜKSEL DOLGUN, and Ş. KIRKAN, “Nanopartiküler Aşılar,” J. Anatol. Environ. Anim. Sci., vol. 6, no. 4, pp. 578–584, 2021, doi: 10.35229/jaes.970713.
  • E. Aydin, A. Aydin, G. Çeti̇Ner, and G. Erel-Akbaba, “DOĞADAN İLHAM ALAN BİYOMİMETİK NANOTAŞIYICI SİSTEMLER,” Ankara Univ. Eczac. Fak. Derg., vol. 46, no. 2, pp. 551–575, 2022, doi: 10.33483/jfpau.1033286.
  • P. X. Ma, “Biomimetic Materials for Tissue Engineering,” Adv. Drug Deliv. Rev., vol. 60, no. 2, p. 184, Jan. 2007, doi: 10.1016/J.ADDR.2007.08.041.
  • L. V. Bauso, V. La Fauci, C. Longo, and G. Calabrese, “Bone Tissue Engineering and Nanotechnology: A Promising Combination for Bone Regeneration,” Biology (Basel)., vol. 13, no. 4, pp. 1–31, 2024, doi: 10.3390/biology13040237.
  • M. Piccoli, “Extracellular Matrix-Derived Hydrogels as Tissue Replacements,” 2020.
  • A. Curtis and C. Wilkinson, “Topographical control of cells,” vol. 18, pp. 1573–1583, 1997.
  • S. Klein, L. V. R. Distel, W. Neuhuber, and C. Kryschi, “Caffeic acid, quercetin and 5-fluorocytidine-functionalized au-fe3o4 nanoheterodimers for x-ray-triggered drug delivery in breast tumor spheroids,” Nanomaterials, vol. 11, no. 5, 2021, doi: 10.3390/nano11051167.
  • N. Vanni et al., “Formamidinium Perovskite Deposition in Ambient Air Environment for Inverted p-i-n Solar Cells,” Nanomaterials, vol. 14, no. 1, 2024, doi: 10.3390/nano14010107.
  • T. T. M. Nguyen, X. Jin, Q. Zheng, and T. H. Yi, “Smart Nanomaterials in Tissue Engineering: Scaffolds, Bioprinting, and Stem Cell Integration,” Eng. Mater., vol. Part F1161, pp. 275–303, 2026, doi: 10.1007/978-981-96-8023-8_11.
  • D. H. Kim, P. P. Provenzano, C. L. Smith, and A. Levchenko, “Matrix nanotopography as a regulator of cell function,” J. Cell Biol., vol. 197, no. 3, pp. 351–360, Apr. 2012, doi: 10.1083/JCB.201108062.
  • Y. J. Lee et al., “Update on SARS-CoV-2 vaccination of patients with inflammatory bowel disease: What clinicians need to know,” Intest. Res., vol. 20, no. 3, pp. 386–388, 2022, doi: 10.5217/ir.2020.00172.
  • J. H. Yoo et al., “Preparation of Remote Plasma Atomic Layer-Deposited HfO2 Thin Films with High Charge Trapping Densities and Their Application in Nonvolatile Memory Devices,” Nanomaterials, vol. 13, no. 11, 2023, doi: 10.3390/nano13111785.
  • Kshitiz, J. Afzal, S. Y. Kim, and D. H. Kim, “A nanotopography approach for studying the structure-function relationships of cells and tissues,” Cell Adhes. Migr., vol. 9, no. 4, pp. 300–307, 2015, doi: 10.4161/cam.29359.
  • D. E. Mazouzi et al., “Auto-combustion designed BiFeO3/Bi2O3 photocatalyst for improved photodegradation of nitrobenzene under visible light and sunlight irradiation,” Surfaces and Interfaces, vol. 44, p. 103581, Jan. 2024, doi:10.1016/J.SURFIN.2023.103581.
  • Y. Zhang, K. Gulati, Z. Li, P. Di, and Y. Liu, “Dental implant nano-engineering: Advances, limitations and future directions,” Nanomaterials, vol. 11, no. 10, pp. 1–26, 2021, doi: 10.3390/nano11102489.
  • S. D. Menikheim and E. B. Lavik, “Self-healing biomaterials: The next generation is nano,” vol. 12, no. 6, p. e1641, Nov. 2020, Accessed: Nov. 29, 2025. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/32359015/
  • S. Habib et al., “Self-healing performance of multifunctional polymeric smart coatings,” Polymers (Basel)., vol. 11, no. 9, 2019, doi: 10.3390/polym11091519.
  • M. Samadzadeh, S. H. Boura, M. Peikari, S. M. Kasiriha, and A. Ashrafi, “A review on self-healing coatings based on micro/nanocapsules,” Prog. Org. Coatings, vol. 68, no. 3, pp. 159–164, Jul. 2010, doi: 10.1016/J.PORGCOAT.2010.01.006.
  • S. R. White et al., “Autonomic healing of polymer composites,” Nature, vol. 409, no. 6822, pp. 794–797, Feb. 2001, doi: 10.1038/35057232.
  • H. Sadabadi, S. R. Allahkaram, A. Kordijazi, and P. K. Rohatgi, “Self-healing Coatings Loaded by Nano/microcapsules: A Review,” Prot. Met. Phys. Chem. Surfaces 2022 582, vol. 58, no. 2, pp. 287–307, May 2022, doi: 10.1134/S2070205122020162.
  • B. Yuan et al., “A self-degradable ‘nanoarmor’ coating of medical implant potentiates bone fracture healing,” Nano Today, vol. 52, p. 101959, Oct. 2023, doi: 10.1016/J.NANTOD.2023.101959.
  • S. J. Koo et al., “Improved light harvesting of fiber-shaped dye-sensitized solar cells by using a bacteriophage doping method,” Nanomaterials, vol. 11, no. 12, 2021, doi: 10.3390/nano11123421.
  • J. Xu and S. hui Hsu, “Self-healing hydrogel as an injectable implant: translation in brain diseases,” J. Biomed. Sci. 2023 301, vol. 30, no. 1, pp. 43-, Jun. 2023, doi: 10.1186/S12929-023-00939-X.
  • Y. Liang, H. Xu, Z. Li, A. Zhangji, and B. Guo, “Bioinspired Injectable Self-Healing Hydrogel Sealant with Fault-Tolerant and Repeated Thermo-Responsive Adhesion for Sutureless Post-Wound-Closure and Wound Healing,” Nano-Micro Lett. 2022 141, vol. 14, no. 1, pp. 185-, Sep. 2022, doi: 10.1007/S40820-022-00928-Z.
  • “A study on improvement of personal information divulgence prevention system (A case of the health and welfare division).” Accessed: Nov. 29, 2025. [Online]. Available: https://www.researchgate.net/publication/329683694_A_study_on_improvement_of_personal_information_divulgence_prevention_system_A_case_of_the_health_and_welfare_division
  • L. Xue et al., “Self‐Healing Hydrogels: Mechanisms and Biomedical Applications,” MedComm, vol. 6, no. 5, p. e70181, May 2025, doi: 10.1002/MCO2.70181.
  • J. Xu, T. Y. Chen, C. H. Tai, and S. hui Hsu, “Bioactive self-healing hydrogel based on tannic acid modified gold nano-crosslinker as an injectable brain implant for treating Parkinson’s disease,” Biomater. Res., vol. 27, no. 1, Dec. 2023, doi: 10.1186/S40824-023-00347-0;PAGE:STRING:ARTICLE/CHAPTER.
  • S. K. Choi, “Nanomaterial-enabled sensors and therapeutic platforms for reactive organophosphates,” Nanomaterials, vol. 11, no. 1, pp. 1–23, 2021, doi: 10.3390/nano11010224.
  • S. Munir, M. Javed, Y. Hu, Y. Liu, and S. Xiong, “The effect of acidic and alkaline ph on the physico-mechanical properties of surimi-based edible films incorporated with green tea extract,” Polymers (Basel)., vol. 12, no. 10, pp. 1–15, 2020, doi: 10.3390/polym12102281.
  • A. Carnicer-Lombarte, H. T. Lancashire, and A. Vanhoestenberghe, “In vitro biocompatibility and electrical stability of thick-film platinum/gold alloy electrodes printed on alumina,” J. Neural Eng., vol. 14, no. 3, Mar. 2017, doi: 10.1088/1741-2552/AA6557.
  • M. A. Butt, S. Tabassum, R. S. Hardy, and M. M. Kiyani, “Mechanistic insight into nanomedicine for polycystic ovary syndrome,” Mol. Biol. Rep., vol. 52, no. 1, Dec. 2025, doi: 10.1007/s11033-025-10709-7.
  • H. Choi, W.-S. Choi, and J.-O. Jeong, “A Review of Advanced Hydrogel Applications for Tissue Engineering and Drug Delivery Systems as Biomaterials.,” Gels (Basel, Switzerland), vol. 10, no. 11, Oct. 2024, doi: 10.3390/gels10110693.
  • K. P. Chowdhury, “Nanomaterials for Multifunctional Textiles,” pp. 169–217, Mar. 2023, doi: 10.21741/9781644902288-8.
  • J. O. Abaricia, N. Farzad, T. J. Heath, J. Simmons, L. Morandini, and R. Olivares-Navarrete, “Control of innate immune response by biomaterial surface topography, energy, and stiffness,” Acta Biomater., vol. 133, pp. 58–73, Oct. 2021, doi: 10.1016/J.ACTBIO.2021.04.021.
  • J. M. Yoo, S. Negi, P. Tathireddy, F. Solzbacher, J. I. Song, and L. W. Rieth, “Excimer laser deinsulation of Parylene-C on iridium for use in an activated iridium oxide film-coated Utah electrode array,” J. Neurosci. Methods, vol. 215, no. 1, pp. 78–87, Apr. 2013, doi: 10.1016/J.JNEUMETH.2013.02.010.
  • C. You et al., “Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation,” Sci. Rep., vol. 7, no. 1, Dec. 2017, doi: 10.1038/s41598-017-10481-0.
  • C. K. Kundu, M. T. Hossen, and R. Saha, “Coloration with nanoparticles: Scope for developing simultaneous colouring and functional properties onto textile surfaces—a short review,” Color. Technol., vol. 138, no. 5, pp. 443–455, Oct. 2022, doi: 10.1111/COTE.12621.
  • X. Zhang et al., “Bioinspired Flexible Kevlar/Hydrogel Composites with Antipuncture and Strain-Sensing Properties for Personal Protective Equipment,” ACS Appl. Mater. Interfaces, vol. 16, no. 34, pp. 45473–45486, Aug. 2024, doi: 10.1021/ACSAMI.4C08659.
  • P. G. Coelho et al., “Basic research methods and current trends of dental implant surfaces,” J. Biomed. Mater. Res. - Part B Appl. Biomater., vol. 88, no. 2, pp. 579–596, Feb. 2009, doi: 10.1002/JBM.B.31264.
  • P. Guermonprez, J. Valladeau, L. Zitvogel, C. Théry, and S. Amigorena, “Antigen presentation and T cell stimulation by dendritic cells,” Annu. Rev. Immunol., vol. 20, pp. 621–667, 2002, doi: 10.1146/ANNUREV.IMMUNOL.20.100301.064828.
  • A. Bigham et al., “A theragenerative bio-nanocomposite consisting of black phosphorus quantum dots for bone cancer therapy and regeneration,” Bioact. Mater., vol. 35, pp. 99–121, May 2024, doi: 10.1016/J.BIOACTMAT.2024.01.018.
  • N. Yiwen et al., “109-115 Infiltration of macrophages and their phenotype in the healing process of full-thickness wound in rat,” Chinese J. Burn., vol. 30, no. 2, pp. 109–115, 2014, doi: 10.3760/cma.j.issn.1009-2587.2014.02.004.
  • X. Qin and S. Subianto, “Electrospun nanofibers for filtration applications,” Electrospun Nanofibers, pp. 449–466, 2017, doi: 10.1016/B978-0-08-100907-9.00017-9.
  • I. Baldim et al., “Biofate and cellular interactions of lipid nanoparticles,” Nanoparticle Ther. Prod. Technol. Types Nanoparticles, Regul. Asp., pp. 211–246, Jan. 2022, doi: 10.1016/B978-0-12-820757-4.00015-6.
  • J. L. Hernandez et al., “Effect of tissue microenvironment on fibrous capsule formation to biomaterial-coated implants,” Biomaterials, vol. 273, Jun. 2021, doi: 10.1016/J.BIOMATERIALS.2021.120806.
  • J. Zheng et al., “Tumor mitochondrial oxidative phosphorylation stimulated by the nuclear receptor RORγ represents an effective therapeutic opportunity in osteosarcoma,” Cell Reports Med., vol. 5, no. 5, May 2024, doi: 10.1016/J.XCRM.2024.101519.
  • Y. Zhang et al., “ N 6 ‐Methyladenosine modification mediated by METTL3 promotes DNA‐PKcs expression to induce anlotinib resistance in osteosarcoma ,” Clin. Transl. Med., vol. 15, no. 2, Feb. 2025, doi: 10.1002/CTM2.70228.
  • P. Kazimierczak, M. Koziol, and A. Przekora, “The chitosan/agarose/nanoha bone scaffold-induced m2 macrophage polarization and its effect on osteogenic differentiation in vitro,” Int. J. Mol. Sci., vol. 22, no. 3, pp. 1–14, Feb. 2021, doi: 10.3390/IJMS22031109.
  • W. J. Geelhoed, L. Moroni, and J. I. Rotmans, “Utilizing the Foreign Body Response to Grow Tissue Engineered Blood Vessels in Vivo,” J. Cardiovasc. Transl. Res., vol. 10, no. 2, pp. 167–179, Apr. 2017, doi: 10.1007/S12265-017-9731-7.
  • A. F. J. De Kanter, K. R. Jongsma, M. C. Verhaar, and A. L. Bredenoord, “The Ethical Implications of Tissue Engineering for Regenerative Purposes: A Systematic Review,” Tissue Eng. - Part B Rev., vol. 29, no. 2, pp. 167–187, Apr. 2023, doi: 10.1089/ten.teb.2022.0033.
  • T. A\ugaçbozan et al., “the Synthesis of Nanoparticles and the Current Application in Different Domains,” J. Sci. Reports-C, no. 004, pp. 33–53, 2023.
  • H. Mu et al., “Methionine intervention induces PD-L1 expression to enhance the immune checkpoint therapy response in MTAP-deleted osteosarcoma,” Cell Reports Med., vol. 6, no. 3, Mar. 2025, doi: 10.1016/J.XCRM.2025.101977.
  • G. SADULLAHOĞLU, “Production and Characterization of B2O3 Added M-Type Barium Hexaferrite Composite Magnet,” Uluslararası Muhendis. Arastirma ve Gelistirme Derg., vol. 13, no. 2, pp. 382–389, Jun. 2021, doi: 10.29137/UMAGD.737894.
  • S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram, “A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise,” J. Adv. Res., vol. 7, no. 1, pp. 17–28, Jan. 2016, doi: 10.1016/J.JARE.2015.02.007.
  • S. Y. Kwak et al., “A Nanobionic Light-Emitting Plant,” Nano Lett., vol. 17, no. 12, pp. 7951–7961, Dec. 2017, doi: 10.1021/ACS.NANOLETT.7B04369.
  • M. J. R. Virlan et al., “Organic nanomaterials and their applications in the treatment of oral diseases,” Molecules, vol. 21, no. 2, Feb. 2016, doi: 10.3390/MOLECULES21020207.
  • L. Suo, H. Wu, P. Wang, Z. Xue, J. Gao, and J. Shen, “The improvement of periodontal tissue regeneration using a 3D-printed carbon nanotube/chitosan/sodium alginate composite scaffold,” J. Biomed. Mater. Res. - Part B Appl. Biomater., vol. 111, no. 1, pp. 73–84, Jan. 2023, doi: 10.1002/JBM.B.35133.
  • D. Yang, J. Xiao, B. Wang, L. Li, X. Kong, and J. Liao, “The immune reaction and degradation fate of scaffold in cartilage/bone tissue engineering,” Mater. Sci. Eng. C, vol. 104, Nov. 2019, doi: 10.1016/J.MSEC.2019.109927.
  • C. Farrera and B. Fadeel, “It takes two to tango: Understanding the interactions between engineered nanomaterials and the immune system,” Eur. J. Pharm. Biopharm., vol. 95, pp. 3–12, Sep. 2015, doi: 10.1016/J.EJPB.2015.03.007.
  • F. Razzi et al., “Immunomodulation of surface biofunctionalized 3D printed porous titanium implants,” Biomed. Mater., vol. 15, no. 3, May 2020, doi: 10.1088/1748-605X/AB7763.
  • L. Ma et al., “Multifunctional 3D-printed scaffolds eradiate orthotopic osteosarcoma and promote osteogenesis via microwave
  • thermo-chemotherapy combined with immunotherapy,” Biomaterials, vol. 301, Oct. 2023, doi: 10.1016/J.BIOMATERIALS.2023.122236.
  • N. M. Molino, M. Neek, J. A. Tucker, E. L. Nelson, and S. W. Wang, “Viral-mimicking protein nanoparticle vaccine for eliciting anti-tumor responses,” Biomaterials, vol. 86, pp. 83–91, Apr. 2016, doi: 10.1016/J.BIOMATERIALS.2016.01.056.
  • R. Yanzhang et al., “Ginger extract inhibits c-MET activation and suppresses osteosarcoma in vitro and in vivo,” Cancer Cell Int. , vol. 25, no. 1, Dec. 2025, doi: 10.1186/S12935-025-03759-1.
  • S. Liu et al., “Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications,” Mil. Med. Res., vol. 10, no. 1, Dec. 2023, doi: 10.1186/S40779-023-00448-W.
  • R. Mahmud and F. Nabi, “Application of Nanotechnology in the field of Textile,” IOSR J. Polym. Text. Eng., vol. 04, no. 01, pp. 01–06, Jan. 2017, doi: 10.9790/019X-0401010106.
  • J. S. Park et al., “The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β,” Biomaterials, vol. 32, no. 16, pp. 3921–3930, Jun. 2011, doi: 10.1016/J.BIOMATERIALS.2011.02.019.
  • S. R. Shin et al., “Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation,” ACS Nano, vol. 6, no. 1, pp. 362–372, Jan. 2012, doi: 10.1021/NN203711S.
  • M. M. Churchland, B. M. Yu, M. Sahani, and K. V. Shenoy, “Techniques for extracting single-trial activity patterns from large-scale neural recordings,” Curr. Opin. Neurobiol., vol. 17, no. 5, pp. 609–618, Oct. 2007, doi: 10.1016/j.conb.2007.11.001.
  • V. J. Chen, L. A. Smith, and P. X. Ma, “Bone regeneration on computer-designed nano-fibrous scaffolds,” Biomaterials, vol. 27, no. 21, pp. 3973–3979, Jul. 2006, doi: 10.1016/J.BIOMATERIALS.2006.02.043.
  • S. Fiering et al., “Nanomaterials and Their Impact on the Immune System,” Int. J. Mol. Sci, vol. 2023, 2008, doi: 10.3390/ijms24032008.
  • C. I. Idumah, “Influence of nanotechnology in polymeric textiles, applications, and fight against COVID-19,” J. Text. Inst., vol. 112, no. 12, pp. 2056–2076, 2021, doi: 10.1080/00405000.2020.1858600.
  • C. T. Laurencin, M. A. Attawia, H. E. Elgendy, and K. M. Herbert, “Tissue engineered bone-regeneration using degradable polymers: The formation of mineralized matrices,” Bone, vol. 19, no. 1 SUPPL., pp. S93–S99, 1996, doi: 10.1016/S8756-3282(96)00132-9.
  • K. M. Woo, J. Seo, R. Zhang, and P. X. Ma, “Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds,” Biomaterials, vol. 28, no. 16, pp. 2622–2630, Jun. 2007, doi: 10.1016/J.BIOMATERIALS.2007.02.004.
  • R. Zhang and P. X. Ma, “Biomimetic polymer/apatite composite scaffolds for mineralized tissue engineering,” Macromol. Biosci., vol. 4, no. 2, pp. 100–111, Feb. 2004, doi: 10.1002/MABI.200300017.
  • Q. P. Pham, U. Sharma, and A. G. Mikos, “Electrospun poly (ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: Characterization of scaffolds and measurement of cellular infiltration,” Biomacromolecules, vol. 7, no. 10, pp. 2796–2805, Oct. 2006, doi: 10.1021/BM060680J.
  • S. M. Jay, E. Skokos, F. Laiwalla, M. M. Krady, and T. R. Kyriakides, “Foreign body giant cell formation is preceded by lamellipodia formation and can be attenuated by inhibition of Rac1 activation,” Am. J. Pathol., vol. 171, no. 2, pp. 632–640, 2007, doi: 10.2353/AJPATH.2007.061213.
  • M. A. Maurer-Jones, Y. S. Lin, and C. L. Haynes, “Functional assessment of metal oxide nanoparticle toxicity in immune cells,” ACS Nano, vol. 4, no. 6, pp. 3363–3373, Jun. 2010, doi: 10.1021/NN9018834.
  • M. Valko, C. J. Rhodes, J. Moncol, M. Izakovic, and M. Mazur, “Free radicals, metals and antioxidants in oxidative stress-induced cancer,” Chem. Biol. Interact., vol. 160, no. 1, pp. 1–40, Mar. 2006, doi: 10.1016/J.CBI.2005.12.009.
  • H. J. Johnston, G. Hutchison, F. M. Christensen, S. Peters, S. Hankin, and V. Stone, “A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity,” Crit. Rev. Toxicol., vol. 40, no. 4, pp. 328–346, Apr. 2010, doi: 10.3109/10408440903453074.
  • I. Pujalté et al., “Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells,” Part. Fibre Toxicol., vol. 8, Mar. 2011, doi: 10.1186/1743-8977-8-10.
  • Q. Huo et al., “A facile nanoparticle immunoassay for cancer biomarker discovery,” J. Nanobiotechnology, vol. 9, May 2011, doi: 10.1186/1477-3155-9-20.
  • A. A. A. Aljabali and M. A. Obeid, “Inorganic-organic Nanomaterials for Therapeutics and Molecular Imaging Applications,” Nanosci. Nanotechnology-Asia, vol. 10, no. 6, pp. 748–765, Sep. 2019, doi: 10.2174/2210681209666190807145229.
  • K. Jin, Z. Luo, B. Zhang, and Z. Pang, “Biomimetic nanoparticles for inflammation targeting,” Acta Pharm. Sin. B, vol. 8, no. 1, pp. 23–33, Jan. 2018, doi: 10.1016/J.APSB.2017.12.002.
  • X. Rong et al., “Sono-activable and biocatalytic 3D-printed scaffolds for intelligently sequential therapies in osteosarcoma eradication and defect regeneration,” Nat. Commun. , vol. 16, no. 1, Dec. 2025, doi: 10.1038/S41467-025-61377-X.
  • M. J. Hawkins, P. Soon-Shiong, and N. Desai, “Protein nanoparticles as drug carriers in clinical medicine,” Adv. Drug Deliv. Rev., vol. 60, no. 8, pp. 876–885, May 2008, doi: 10.1016/J.ADDR.2007.08.044.
  • Y. M. Yu, Y. P. Lu, T. Zhang, Y. F. Zheng, Y. S. Liu, and D. D. Xia, “Biomaterials science and surface engineering strategies for dental peri-implantitis management,” Mil. Med. Res., vol. 11, no. 1, Dec. 2024, doi: 10.1186/s40779-024-00532-9.
  • M. A. Shah, B. M. Pirzada, G. Price, A. L. Shibiru, and A. Qurashi, “Applications of nanotechnology in smart textile industry: A critical review,” J. Adv. Res., vol. 38, pp. 55–75, May 2022, doi: 10.1016/J.JARE.2022.01.008.
  • M. Sarikaya, C. Tamerler, A. K. Y. Jen, K. Schulten, and F. Baneyx, “Molecular biomimetics: Nanotechnology through biology,” Nat. Mater., vol. 2, no. 9, pp. 577–585, 2003, doi: 10.1038/NMAT964.
  • S. Talebian et al., “Self-Healing Hydrogels: The Next Paradigm Shift in Tissue Engineering?,” Adv. Sci., vol. 6, no. 16, Aug. 2019, doi: 10.1002/ADVS.201801664.
  • E. Reinares-Lara, C. Olarte-Pascual, and J. Pelegrín-Borondo, “Do you want to be a cyborg? The moderating effect of ethics on neural implant acceptance,” Comput. Human Behav., vol. 85, pp. 43–53, Aug. 2018, doi: 10.1016/J.CHB.2018.03.032.
  • J. L. Tan, J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C. S. Chen, “Cells lying on a bed of microneedles: An approach to isolate mechanical force,” Proc. Natl. Acad. Sci. U. S. A., vol. 100, no. 4, pp. 1484–1489, Feb. 2003, doi: 10.1073/PNAS.0235407100.
  • M. Paul and N. Jose, “An Overview of Cyborg”, Accessed: Nov. 30, 2025. [Online]. Available: http://www.livescience.com/5558-powerful-ideas-
  • M. Fazil, M. Firdhous, and A. Pirapaharan, “Cyborg Technology in Bio Engineering: Enabling Technologies, Implications, Applications and Future Trends,” J. Hum. Centered Technol., vol. 4, no. 1, pp. 56–67, Feb. 2025, doi: 10.11113/HUMENTECH.V4N1.90.
  • Q. Ma, W. Jing, X. Liu, J. Liu, M. Liu, and J. Chen, “The global, regional, and national burden and its trends of inguinal, femoral, and abdominal hernia from 1990 to 2019: findings from the 2019 Global Burden of Disease Study - a cross-sectional study,” Int. J. Surg., vol. 109, no. 3, pp. 333–342, Mar. 2023, doi: 10.1097/JS9.0000000000000217.
  • M. J. Selgelid, “Moderate eugenics and human enhancement,” Med. Heal. Care Philos., vol. 17, no. 1, pp. 3–12, Feb. 2014, doi: 10.1007/S11019-013-9485-1.
  • F. N. Maran, I. Turk, B. Akkoyun, M. Talaat, and F. Meligy, “Nanotechnology , and its versatile applications in medicine , environment , energy , textiles , food industry,” Int. J. Boron Sci. Nanotechnol., no. 1, pp. 17–49, 2024.
  • S. F. Mause and C. Weber, “Microparticles: Protagonists of a novel communication network for intercellular information exchange,” Circ. Res., vol. 107, no. 9, pp. 1047–1057, Oct. 2010, doi: 10.1161/CIRCRESAHA.110.226456.
  • H. Abe, “Control of Nanostructure of Materials,” Nanoparticle Technol. Handb., pp. 169–253, May 2018, doi: 10.1016/B978-0-444-64110-6.00004-4.
Toplam 336 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mikro ve Nanosistemler, Nanomalzemeler, Nanoteknoloji (Diğer)
Bölüm Derleme
Yazarlar

Sudegül Özkul 0009-0006-3116-1255

Afnan Ashour Tumeh 0009-0003-7058-2966

Ediz Kayalı 0009-0007-1913-6417

Ruken Aydın 0009-0006-9870-9078

Juri Younso 0009-0001-0976-4416

Berk Sevimli 0009-0004-3214-134X

Damla Gül Aydoğmuş 0009-0004-0513-5323

İrem Türk 0009-0004-2630-9855

Fatma Nur Maran 0009-0005-0691-5185

Gönderilme Tarihi 18 Aralık 2025
Kabul Tarihi 22 Aralık 2025
Yayımlanma Tarihi 28 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 1 Sayı: 4

Kaynak Göster

APA Özkul, S., Tumeh, A. A., Kayalı, E., … Aydın, R. (2025). Nanobionic humans: the future of nano-material-supported implants and wearable technologies. International Journal of Boron Science and Nanotechnology, 1(4), 1-33.