Araştırma Makalesi
BibTex RIS Kaynak Göster

Türkiye’de Ekolojik Ayak İzinin Belirleyicileri: STIRPAT Modeli

Yıl 2024, Cilt: 39 Sayı: 3, 637 - 657
https://doi.org/10.24988/ije.1373210

Öz

İnsan kaynaklı ekolojik ayak izi, dünyanın taşıma kapasitesinin üzerine çıkmakta ve gelecek kuşakların yaşamlarını tehdit etmektedir. Ekolojik ayak izinin olumsuz etkisini azaltmak üzere politikalar geliştirilmesi ve fırsatlar yaratılması son derece önemlidir. Ekolojik ayak izinin kapsamı diğer çevre değişkenlerine göre daha geniştir ve literatürde henüz az sayıda çalışmaya konu olmuş bir kavramdır. Bu çalışmada insan faaliyetleri ile çevre ilişkisini açıklamaya yardımcı olan STIRPAT modeli ile ekolojik ayak izi kavramı bir araya getirilmiş, Türkiye’de insanın doğaya olumlu ve olumsuz etkisi analiz edilmeye çalışılmıştır. Türkiye’de 1973-2021 yılları arasında kişi başına düşen GSYİH, nüfus, enerji kullanımı, yeşil teknoloji patentleri ve ihracat ile ekolojik ayak izi arasındaki ilişki ARDL sınır testi ile incelenmiştir. Analiz sonuçları, değişkenler arasında uzun dönemli ve istatistiksel olarak anlamlı bir ilişki olduğunu göstermektedir. Bulgulara göre, kişi başına düşen GSYİH, nüfus ve enerji kullanımı ekolojik ayak izini artırmakta, yeşil teknoloji ve ihracat ise azaltmaktadır. Türkiye’nin son dönemde Paris Anlaşması’nı imzalayarak nötr karbon hedefi belirlediği ve Avrupa Yeşil Mutabakatı’na yönelik kriterleri uygulamaya başladığı dikkate alındığında, amaca uygun çevre politikalarına ihtiyacın arttığı görülmektedir. Bununla birlikte, Avrupa Yeşil Mutabakatı’na uyum politikalarının Türkiye’de sürekli artan ekolojik açığın azaltılmasına katkı yaraması da mümkündür. Çalışmadan elde edilen bulgulara göre Türkiye’de ekolojik ayak izinin azaltılması için tüketicinin çevre bilincinin artırılmasına, enerji verimliliğinin sağlanmasına, ihracatta ise çevre hassasiyetine ve yeşil teknoloji kullanımına ihtiyaç olduğu söylenebilir.

Kaynakça

  • Aguirre, M. ve Ibikunle, G. (2014). Determinants of renewable energy growth: A global sample analysis. Energy Policy, 69, 374-384.
  • Ahmed, Z., Asghar, M.M., Malik, M.N., Nawaz, K. (2020). Moving towards a sustainable environment: the dynamic linkage between natural resources, human capital, urbanization, economic growth, and ecological footprint in China. Resources Policy, 67, 101677.
  • Apergis, N., Payne, J. E. (2012). Renewable and non-renewable energy consumption-growth nexus: Evidence from a panel error correction model. Energy Economics, 34(3), 733-738.
  • Apergis, N., Eleftheriou, S., Payne, J.E. (2013). The relationship between international financial reporting standards, carbon emissions, and R&D expenditures: Evidence from European manufacturing firms. Ecological Economics, 88, 57-66.
  • Arrow, K.J. (1962). The economic implications of learning by doing, The Review of Economic Studies, 29, 155-73.
  • Avrupa Komisyonu (2021). https://ec.europa.eu/commission/presscorner/detail/en/qanda_21_3661; 20.12.2023.
  • Başoğlu, A. (2018). STIRPAT modeli kapsamında Türkiye’de ekolojik ayak izinin belirleyicileri. İktisat Seçme Yazılar, (Ed: Erdem, H.F ve Başoğlu, A.), 133-155.
  • Bongaarts, J. (1992). Population growth and global warming, Population and Development Review, 18, 299-319.
  • Brown, R. L., Durbin, J., Evans, J. M. (1975). Techniques for testing the constancy of regression relationships over time. Journal of the Royal Statistical Society. Series B (Methodological), 37(2), 149–192.
  • Chu, L.K. (2022). Determinants of ecological footprint in OCED countries: do environmental-related technologies reduce environmental degradation? Environmental Science and Pollution Research, 29, 23779–23793. https://doi.org/10.1007/s11356-021-17261-4
  • Commoner, B. (1971). Economic growth and ecology-a biologist’s view. Mountly Labor Review, 94(11), 3-13.
  • Danish, Ulucak, R., Khan, S.U. (2020). Determinants of the ecological footprint: Role of renewable energy, natural resources, and urbanization. Sustainable Cities and Society, 54, 101996.
  • Destek, M.A., Ulucak, R., Dogan, E. (2018). Analyzing the environmental Kuznets curve for the EU countries: the role of ecological footprint. Environmental Science and Pollution Research, 25, 29387–29396.
  • Dietz, T., Rosa, E.A. (1994). Rethinking the environmental impacts of population, affluence and technology. Human Ecology Review, 1(2), 277-300.
  • Dietz, T., Rosa, E.A. (1997). Effects of population and affluence on CO2 emissions. Proceedings of the National Academy of Sciences of the USA, 94, 175-179.
  • Dogan, E., Ulucak, R., Kocak, E., Isik, C. (2020). The use of ecological footprint in estimating the Environmental Kuznets Curve hypothesis for BRICST by considering cross-section dependence and heterogeneity. Science of The Total Environment, 723. 138063.
  • Ehrlich, P.R., Holdren, J.P. (1971). Impact of population growth, Science, 171, 1212–1217.
  • Engle, R.F., Granger, C. W. (1987). Co-integration and error correction: Representation, estimation, and testing. Econometrica, 55(2), 251-276.
  • G7 Germany (2022). G7 Statement on Climate Club. https://www.g7germany.de/resource/blob/974430/2057926/2a7cd9f10213a481924492942dd660a1/2022-06-28-g7-climate-club-data.pdf; 20.12.2023.
  • Global Footprint Network (2023). https://data.footprintnetwork.org/?_ga=2.25606709.925223553.1651752002-1174839785.1620499561#/abouttheData; (08.08.2023).
  • Grossman, G., Krueger, A.B. (1991). Environmental impacts of a North-American free trade agreement. NBER Working Paper 3914.
  • Gujarati, D.N., Porter, D.C. (2012). Temel Ekonometri (Çev: Ü. Şenesen, G.G. Şenesen), Literatür Yayıncılık, İstanbul.
  • Gupta, S., Saini, M., Sahoo, M. (2022). Determinants of ecological footprint and PM2.5: Role of urbanization, natural resources and technological innovation. Environmental Challenges, 7, 100467.
  • Hassan, S.T., Batool, B., Wang, P., Zhu, B., Sadiq, M. (2023). Impact of economic complexity index, globalization, and nuclear energy consumption on ecological footprint: First insights in OECD context. Energy 263(A). 125628.
  • Holdren, J.P., Ehrlich, P.R. (1974). Human population and global environment. American Scientist, 62, 282-292.
  • Hotak, S., Islami, M., Kakinaka, M., Kotani, K. (2020) Carbon emissions and carbon trade balances: International evidence from panel ARDL analysis. Environmental Science and Pollution Research, 27, 24115-24128.
  • Huang, Y., Hasee, M., Usman, M., Ozturk, İ. (2022). Dynamic association between ICT, renewable energy, economic complexity and ecological footprint: Is there any difference between E-7 (developing) and G-7 (developed) countries? Technology in Society, 68, 101853.
  • IPCC (2023) https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_SummaryForPolicymakers.pdf; (04.09.2023).
  • Javed, A., Rapposelli, A., Khan, F., Javed, A. (2023). The impact of green technology innovation, environmental taxes, and renewable energy consumption on ecological footprint in Italy: Fresh evidence from novel dynamic ARDL simulations. Technological Forecasting and Social Change, 191, 122534.
  • Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control, 12(2-3), 231-254.
  • Johansen, S., Juselius, K. (1990). Maximum likelihood estimation and inference on cointegration—with applications to the demand for money. Oxford Bulletin of Economics and Statistics, 52(2), 169-210.
  • Kassouri,Y., Altıntaş, H. (2020). Human well-being versus ecological footprint in MENA countries: A trade-off? Journal of Environmental Management, 263, 110405.
  • Kirikkaleli, D., Sofuoğlu, E., Ojekemi, O. (2023). Does patents on environmental technologies matter for the ecological footprint in the USA? Evidence from the novel Fourier ARDL approach. Geoscience Frontiers, 14(4), 10156.
  • Kremers, J.J., Ericsson, N. R., Dolado, J.J. (1992). The power of cointegration tests. Oxford Bulletin of Economics and Statistics, 54 (3), 325-348.
  • Liddle, B. (2004). Demographic dynamics and per capita environmental impact: Using panel regressions and household decompositions to examine population and transport. Population and Environment, 26 (1) 23-39.
  • Liu, Y. (2009). Exploring the relationship between urbanization and energy consumption in China using ARDL (autoregressive distributed lag) and FDM (factor decomposition model). Energy, 34(11), 1846-1854.
  • Lin, S., Zhao, D., Marinova, D. (2009). Analysis of the environmental impact of China based on STIRPAT model, Environmental Impact Assessment Review, 29(6), 341-347.
  • Ma, H., Liu, Y., Li, Z, Wangn, Q. (2022). Influencing factors and multi-scenario prediction of China's ecological footprint based on the STIRPAT model. Ecological Informatics, 69, 101664.
  • Mankiw, N.G., Romer, D., Weil, D.N. (1992). A contribution to the empirics of economic growth, Quarterly Journal of Economics, 107, 407-37.
  • Marques, A. C., Fuinhas, J. A. (2012). Is renewable energy effective in promoting growth? Energy Policy, 46, 434-442.
  • Nathaniel, S., Khan, S.A.R. (2020). The nexus between urbanization, renewable energy, trade, and ecological footprint in ASEAN countries. Journal of Cleaner Production, 272, 122709.
  • Nordhaus, W.D. (1974). Resource as a constraint on growth. The American Economic Review, 64(2), 22-26.
  • Nordhaus, W.D. (1992) An optimal transition path for controlling greenhouse gases. Science, 258, 1315–1319.
  • Nordhaus, W.D. (2015). Climate Clubs: Overcoming Free-riding in International Climate Policy. American Economic Review 105(4), 1339–1370.
  • Nordhaus, W.D. (2020). İklim Kumarı-Isınan Dünyada Risk, Belirsizlik ve İktisat. Doğan Kitap Yayınevi.
  • Oluç, İ. (2023). İnsani kalkınma ile karbonsuz ekolojik ayak izi ilişkisi: Sürdürülebilir kalkınmaya farklı bir bakış açısı. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 41(2), 271-293.
  • Parikh J., Shukla, V. (1995). Urbanization, energy use and greenhouse effects in economic development: results from a cross-national study of developing countries. Global Environmental Change, 5(2), 87-103.
  • Payne, J. E. (2012). The causal dynamics between us renewable energy consumption, output, emissions, and oil prices. Energy Sources Part B, 7, 323-330.
  • Rebelo, S. (1991). Long-run policy analysis and long-run growth. Journal of Political Economy, 99, 500–521.
  • Rees, W.E. (1992). Ecological footprints and approprieted carrying capacity: What urban economics leaves out. Environment and Urbanization, 4(2), 121-130.
  • Romer, P.M. (1986). Increasing returns and long-run growth. The Journal of Political Economy, 94, 1002-37.
  • Romer, P.M. (1990). Endogenous technological change. Journal of Political Economy, 98(5), 71-102.
  • Sachs, J. (2019). Sürdürülebilir Kalkınma Çağı. Yeditepe Üniversitesi Yayınları.
  • Sadorsky, P. (2009). Renewable Energy Consumption and Income in Emerging Economies. Energy Policy, 37(10), 4021-4028.
  • Salim, R.A., Shafiei, S. (2014). Urbanization and renewable and nonrenewable energy consumption in OECD countries: An empirical analysis. Economic Modelling, 38, 581-591.
  • Salim, R.A., Rafiq, S. (2012). Why do some emerging economies proactively accelerate the adoption of renewable energy? Energy Economics, 34, 1051-1057.
  • Salim, R., Rafiq, S., Shafiei, S., Yao, Y. (2019). Does urbanization increase pollutant emission and energy intensity? Evidence from some Asian developing economies. Applied Economics, 51(1), 1-17.
  • Sevüktekin, M., Çınar, M. (2017). Ekonometrik Zaman Serileri Analizi Eviews Uygulamaları. Dora Yayınları.
  • Shafiei, S., Salim, R.A. (2014). Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis. Energy Policy, 66, 547-556.
  • Shahbaz, M., Loganathan, N., Muzaffar, A.T., Ahmed, K., Jabran, M.A. (2016). How urbanization affects CO2 emissions in malaysia? the application of stirpat model. Renewable and Sustainable Energy Reviews, 57C, 83-93.
  • Shandra, J.M., London, B., Whooley, O.P., Williamson, J.B. (2004). International nongovernmental organizations and carbon dioxide emissions in the developing world: A quantitative, cross-national analysis. Sociological Inquiry, 74(4), 520-545.
  • Shen, L., Cheng, S., Gunson, A.J., Wan, H. (2005). Urbanization, sustainability and the utilization of energy and mineral resources in China. Cities, 22(4), 287-302.
  • Shi, A. (2003). The impact of population pressure on global carbon dioxide emissions, 1975–1996: evidence from pooled cross-country data. Ecological Economics, 44(1), 29-42.
  • Solarin S.A., Nathaniel S.P., Bekun F.V., Okunola A.M., Alhassan A. (2021). Towards achieving environmental sustainability: environmental quality versus economic growth in a developing economy on ecological footprint via dynamic simulations of ARDL. Environmental Science and Pollution Research, 28(14), 17942-17959. doi: 10.1007/s11356-020-11637-8. Epub 2021
  • Solow, R. (1956). A contribution to the theory of economic growth. Quarterly Journal of Economics, 70, 65–94.
  • Stern, P.C., Young, O.R., Druckman, D. (Eds.) (1992). Global environmental change: Understanding the human dimensions. National Academy Press, Washington, D.C.
  • Swan, R. (1956). Economic growth and capital accumulation. Economic Record, 32, 334-61.
  • Usman, A., Öztürk, İ., Naqvi, S.M., Zafar, S.M., Javed, M.I. (2022). Revealing the nexus between nuclear energy and ecological footprint in STIRPAT model of advanced economies: Fresh evidence from novel CS-ARDL model. Progress in Nuclear Energy, 148, 104220.
  • Usman, A., Öztürk, İ., Naqvi, S.M., Zafar, S.M. Javed, M.I. (2023). Green versus conventional growth in the EKC framework of top pollutant footprint countries: Evidence based on advanced panel data techniques. Geological Journal https://doi.org/10.1002/gj.4822
  • Voumik, L.C., Ridwan, M. (2023). Impact of FDI, industrialization, and education on the environment in Argentina: ARDL approach. Heliyon, 9, e12872
  • Wackernagel, M., Rees, W.E. (1996). Our ecological footprint: Reducing human impact on the earth. Gabriola Island, Canada: New Society Publishers.
  • Wackernagel, M., Onisto, L., Bello, P., Linares, A.C., Falfán, I.S.L., Garcı́a, J.M., Guerrero, A.I.S., Guerrero, M.G.S. (1999). National natural capital accounting with the ecological footprint concept. Ecological Economics, 29(3), 375-390.
  • Wang, Q., Yang, T., Li, R. (2023). Economic complexity and ecological footprint: The role of energy structure, industrial structure, and labor force. Journal of Cleaner Production, 412, 137389.
  • Wang, X.G. (2021) Determinants of ecological and carbon footprints to assess the framework of environmental sustainability in BRICS countries: A panel ARDL and causality estimation model. Environmental Research, 197, 111111.
  • Xu, C., Zha, W., Zhang, M., Cheng, B. (2021). Pollution haven or halo? The role of the energy transition in the impact of FDI on SO2 emissions. Science of The Total Environment, 763. 143002.
  • York, R., Rosa, E. A., Dietz, T. (2003a). Footprints on the earth: The environmental consequences of modernity. American Sociological Review, 68(2), 279–300. https://doi.org/10.2307/1519769
  • York, R., Rosa, E.A., Dietz, T. (2003b). STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecological Economics, 46, 351-365.
  • York, R. (2007). Demographic trends and energy consumption in European Union nations, 1960–2025. Social Science Research, 36(3), 855-872.

Determinants of Ecological Footprint in Türkiye: STIRPAT Model

Yıl 2024, Cilt: 39 Sayı: 3, 637 - 657
https://doi.org/10.24988/ije.1373210

Öz

Anthropogenically ecological footprint exceeds the earth's carrying capacity and threatens the lives of future generations. It is extremely important to develop policies and create opportunities to reduce the negative impact of the ecological footprint. The scope of the ecological footprint is broader than other environmental variables and it is a concept that has been the subject of few studies in the literature. In this study, the STIRPAT model, which helps to explain the relationship between human activities and the environment, and the concept of ecological footprint were brought together, and the positive and negative effects of humans on nature in Türkiye were tried to be analyzed. The relationship between GDP per capita, population, energy use, green technology patents, exports and ecological footprint in Türkiye between 1973 and 2021 was examined with the ARDL bounds test. The results of the test show that there is a long run and statistically significant relationship between the variables. According to the findings, GDP per capita, population and energy use increase the ecological footprint, while green technology and exports reduce it. Considering that Türkiye has recently set a neutral carbon target by signing the Paris Agreement and started to implement the criteria for the European Green Deal, it is seen that the need for appropriate environmental policies has increased. However, it is also possible that compliance policies with the European Green Deal will contribute to reducing the ever-increasing ecological deficit in Türkiye. According to the findings of the study, it can be said that in order to reduce the ecological footprint in Türkiye, there is a need to increase consumer environmental awareness, ensure energy efficiency, and environmental sensitivity and use of green technology in exports..

Kaynakça

  • Aguirre, M. ve Ibikunle, G. (2014). Determinants of renewable energy growth: A global sample analysis. Energy Policy, 69, 374-384.
  • Ahmed, Z., Asghar, M.M., Malik, M.N., Nawaz, K. (2020). Moving towards a sustainable environment: the dynamic linkage between natural resources, human capital, urbanization, economic growth, and ecological footprint in China. Resources Policy, 67, 101677.
  • Apergis, N., Payne, J. E. (2012). Renewable and non-renewable energy consumption-growth nexus: Evidence from a panel error correction model. Energy Economics, 34(3), 733-738.
  • Apergis, N., Eleftheriou, S., Payne, J.E. (2013). The relationship between international financial reporting standards, carbon emissions, and R&D expenditures: Evidence from European manufacturing firms. Ecological Economics, 88, 57-66.
  • Arrow, K.J. (1962). The economic implications of learning by doing, The Review of Economic Studies, 29, 155-73.
  • Avrupa Komisyonu (2021). https://ec.europa.eu/commission/presscorner/detail/en/qanda_21_3661; 20.12.2023.
  • Başoğlu, A. (2018). STIRPAT modeli kapsamında Türkiye’de ekolojik ayak izinin belirleyicileri. İktisat Seçme Yazılar, (Ed: Erdem, H.F ve Başoğlu, A.), 133-155.
  • Bongaarts, J. (1992). Population growth and global warming, Population and Development Review, 18, 299-319.
  • Brown, R. L., Durbin, J., Evans, J. M. (1975). Techniques for testing the constancy of regression relationships over time. Journal of the Royal Statistical Society. Series B (Methodological), 37(2), 149–192.
  • Chu, L.K. (2022). Determinants of ecological footprint in OCED countries: do environmental-related technologies reduce environmental degradation? Environmental Science and Pollution Research, 29, 23779–23793. https://doi.org/10.1007/s11356-021-17261-4
  • Commoner, B. (1971). Economic growth and ecology-a biologist’s view. Mountly Labor Review, 94(11), 3-13.
  • Danish, Ulucak, R., Khan, S.U. (2020). Determinants of the ecological footprint: Role of renewable energy, natural resources, and urbanization. Sustainable Cities and Society, 54, 101996.
  • Destek, M.A., Ulucak, R., Dogan, E. (2018). Analyzing the environmental Kuznets curve for the EU countries: the role of ecological footprint. Environmental Science and Pollution Research, 25, 29387–29396.
  • Dietz, T., Rosa, E.A. (1994). Rethinking the environmental impacts of population, affluence and technology. Human Ecology Review, 1(2), 277-300.
  • Dietz, T., Rosa, E.A. (1997). Effects of population and affluence on CO2 emissions. Proceedings of the National Academy of Sciences of the USA, 94, 175-179.
  • Dogan, E., Ulucak, R., Kocak, E., Isik, C. (2020). The use of ecological footprint in estimating the Environmental Kuznets Curve hypothesis for BRICST by considering cross-section dependence and heterogeneity. Science of The Total Environment, 723. 138063.
  • Ehrlich, P.R., Holdren, J.P. (1971). Impact of population growth, Science, 171, 1212–1217.
  • Engle, R.F., Granger, C. W. (1987). Co-integration and error correction: Representation, estimation, and testing. Econometrica, 55(2), 251-276.
  • G7 Germany (2022). G7 Statement on Climate Club. https://www.g7germany.de/resource/blob/974430/2057926/2a7cd9f10213a481924492942dd660a1/2022-06-28-g7-climate-club-data.pdf; 20.12.2023.
  • Global Footprint Network (2023). https://data.footprintnetwork.org/?_ga=2.25606709.925223553.1651752002-1174839785.1620499561#/abouttheData; (08.08.2023).
  • Grossman, G., Krueger, A.B. (1991). Environmental impacts of a North-American free trade agreement. NBER Working Paper 3914.
  • Gujarati, D.N., Porter, D.C. (2012). Temel Ekonometri (Çev: Ü. Şenesen, G.G. Şenesen), Literatür Yayıncılık, İstanbul.
  • Gupta, S., Saini, M., Sahoo, M. (2022). Determinants of ecological footprint and PM2.5: Role of urbanization, natural resources and technological innovation. Environmental Challenges, 7, 100467.
  • Hassan, S.T., Batool, B., Wang, P., Zhu, B., Sadiq, M. (2023). Impact of economic complexity index, globalization, and nuclear energy consumption on ecological footprint: First insights in OECD context. Energy 263(A). 125628.
  • Holdren, J.P., Ehrlich, P.R. (1974). Human population and global environment. American Scientist, 62, 282-292.
  • Hotak, S., Islami, M., Kakinaka, M., Kotani, K. (2020) Carbon emissions and carbon trade balances: International evidence from panel ARDL analysis. Environmental Science and Pollution Research, 27, 24115-24128.
  • Huang, Y., Hasee, M., Usman, M., Ozturk, İ. (2022). Dynamic association between ICT, renewable energy, economic complexity and ecological footprint: Is there any difference between E-7 (developing) and G-7 (developed) countries? Technology in Society, 68, 101853.
  • IPCC (2023) https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_SummaryForPolicymakers.pdf; (04.09.2023).
  • Javed, A., Rapposelli, A., Khan, F., Javed, A. (2023). The impact of green technology innovation, environmental taxes, and renewable energy consumption on ecological footprint in Italy: Fresh evidence from novel dynamic ARDL simulations. Technological Forecasting and Social Change, 191, 122534.
  • Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control, 12(2-3), 231-254.
  • Johansen, S., Juselius, K. (1990). Maximum likelihood estimation and inference on cointegration—with applications to the demand for money. Oxford Bulletin of Economics and Statistics, 52(2), 169-210.
  • Kassouri,Y., Altıntaş, H. (2020). Human well-being versus ecological footprint in MENA countries: A trade-off? Journal of Environmental Management, 263, 110405.
  • Kirikkaleli, D., Sofuoğlu, E., Ojekemi, O. (2023). Does patents on environmental technologies matter for the ecological footprint in the USA? Evidence from the novel Fourier ARDL approach. Geoscience Frontiers, 14(4), 10156.
  • Kremers, J.J., Ericsson, N. R., Dolado, J.J. (1992). The power of cointegration tests. Oxford Bulletin of Economics and Statistics, 54 (3), 325-348.
  • Liddle, B. (2004). Demographic dynamics and per capita environmental impact: Using panel regressions and household decompositions to examine population and transport. Population and Environment, 26 (1) 23-39.
  • Liu, Y. (2009). Exploring the relationship between urbanization and energy consumption in China using ARDL (autoregressive distributed lag) and FDM (factor decomposition model). Energy, 34(11), 1846-1854.
  • Lin, S., Zhao, D., Marinova, D. (2009). Analysis of the environmental impact of China based on STIRPAT model, Environmental Impact Assessment Review, 29(6), 341-347.
  • Ma, H., Liu, Y., Li, Z, Wangn, Q. (2022). Influencing factors and multi-scenario prediction of China's ecological footprint based on the STIRPAT model. Ecological Informatics, 69, 101664.
  • Mankiw, N.G., Romer, D., Weil, D.N. (1992). A contribution to the empirics of economic growth, Quarterly Journal of Economics, 107, 407-37.
  • Marques, A. C., Fuinhas, J. A. (2012). Is renewable energy effective in promoting growth? Energy Policy, 46, 434-442.
  • Nathaniel, S., Khan, S.A.R. (2020). The nexus between urbanization, renewable energy, trade, and ecological footprint in ASEAN countries. Journal of Cleaner Production, 272, 122709.
  • Nordhaus, W.D. (1974). Resource as a constraint on growth. The American Economic Review, 64(2), 22-26.
  • Nordhaus, W.D. (1992) An optimal transition path for controlling greenhouse gases. Science, 258, 1315–1319.
  • Nordhaus, W.D. (2015). Climate Clubs: Overcoming Free-riding in International Climate Policy. American Economic Review 105(4), 1339–1370.
  • Nordhaus, W.D. (2020). İklim Kumarı-Isınan Dünyada Risk, Belirsizlik ve İktisat. Doğan Kitap Yayınevi.
  • Oluç, İ. (2023). İnsani kalkınma ile karbonsuz ekolojik ayak izi ilişkisi: Sürdürülebilir kalkınmaya farklı bir bakış açısı. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 41(2), 271-293.
  • Parikh J., Shukla, V. (1995). Urbanization, energy use and greenhouse effects in economic development: results from a cross-national study of developing countries. Global Environmental Change, 5(2), 87-103.
  • Payne, J. E. (2012). The causal dynamics between us renewable energy consumption, output, emissions, and oil prices. Energy Sources Part B, 7, 323-330.
  • Rebelo, S. (1991). Long-run policy analysis and long-run growth. Journal of Political Economy, 99, 500–521.
  • Rees, W.E. (1992). Ecological footprints and approprieted carrying capacity: What urban economics leaves out. Environment and Urbanization, 4(2), 121-130.
  • Romer, P.M. (1986). Increasing returns and long-run growth. The Journal of Political Economy, 94, 1002-37.
  • Romer, P.M. (1990). Endogenous technological change. Journal of Political Economy, 98(5), 71-102.
  • Sachs, J. (2019). Sürdürülebilir Kalkınma Çağı. Yeditepe Üniversitesi Yayınları.
  • Sadorsky, P. (2009). Renewable Energy Consumption and Income in Emerging Economies. Energy Policy, 37(10), 4021-4028.
  • Salim, R.A., Shafiei, S. (2014). Urbanization and renewable and nonrenewable energy consumption in OECD countries: An empirical analysis. Economic Modelling, 38, 581-591.
  • Salim, R.A., Rafiq, S. (2012). Why do some emerging economies proactively accelerate the adoption of renewable energy? Energy Economics, 34, 1051-1057.
  • Salim, R., Rafiq, S., Shafiei, S., Yao, Y. (2019). Does urbanization increase pollutant emission and energy intensity? Evidence from some Asian developing economies. Applied Economics, 51(1), 1-17.
  • Sevüktekin, M., Çınar, M. (2017). Ekonometrik Zaman Serileri Analizi Eviews Uygulamaları. Dora Yayınları.
  • Shafiei, S., Salim, R.A. (2014). Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis. Energy Policy, 66, 547-556.
  • Shahbaz, M., Loganathan, N., Muzaffar, A.T., Ahmed, K., Jabran, M.A. (2016). How urbanization affects CO2 emissions in malaysia? the application of stirpat model. Renewable and Sustainable Energy Reviews, 57C, 83-93.
  • Shandra, J.M., London, B., Whooley, O.P., Williamson, J.B. (2004). International nongovernmental organizations and carbon dioxide emissions in the developing world: A quantitative, cross-national analysis. Sociological Inquiry, 74(4), 520-545.
  • Shen, L., Cheng, S., Gunson, A.J., Wan, H. (2005). Urbanization, sustainability and the utilization of energy and mineral resources in China. Cities, 22(4), 287-302.
  • Shi, A. (2003). The impact of population pressure on global carbon dioxide emissions, 1975–1996: evidence from pooled cross-country data. Ecological Economics, 44(1), 29-42.
  • Solarin S.A., Nathaniel S.P., Bekun F.V., Okunola A.M., Alhassan A. (2021). Towards achieving environmental sustainability: environmental quality versus economic growth in a developing economy on ecological footprint via dynamic simulations of ARDL. Environmental Science and Pollution Research, 28(14), 17942-17959. doi: 10.1007/s11356-020-11637-8. Epub 2021
  • Solow, R. (1956). A contribution to the theory of economic growth. Quarterly Journal of Economics, 70, 65–94.
  • Stern, P.C., Young, O.R., Druckman, D. (Eds.) (1992). Global environmental change: Understanding the human dimensions. National Academy Press, Washington, D.C.
  • Swan, R. (1956). Economic growth and capital accumulation. Economic Record, 32, 334-61.
  • Usman, A., Öztürk, İ., Naqvi, S.M., Zafar, S.M., Javed, M.I. (2022). Revealing the nexus between nuclear energy and ecological footprint in STIRPAT model of advanced economies: Fresh evidence from novel CS-ARDL model. Progress in Nuclear Energy, 148, 104220.
  • Usman, A., Öztürk, İ., Naqvi, S.M., Zafar, S.M. Javed, M.I. (2023). Green versus conventional growth in the EKC framework of top pollutant footprint countries: Evidence based on advanced panel data techniques. Geological Journal https://doi.org/10.1002/gj.4822
  • Voumik, L.C., Ridwan, M. (2023). Impact of FDI, industrialization, and education on the environment in Argentina: ARDL approach. Heliyon, 9, e12872
  • Wackernagel, M., Rees, W.E. (1996). Our ecological footprint: Reducing human impact on the earth. Gabriola Island, Canada: New Society Publishers.
  • Wackernagel, M., Onisto, L., Bello, P., Linares, A.C., Falfán, I.S.L., Garcı́a, J.M., Guerrero, A.I.S., Guerrero, M.G.S. (1999). National natural capital accounting with the ecological footprint concept. Ecological Economics, 29(3), 375-390.
  • Wang, Q., Yang, T., Li, R. (2023). Economic complexity and ecological footprint: The role of energy structure, industrial structure, and labor force. Journal of Cleaner Production, 412, 137389.
  • Wang, X.G. (2021) Determinants of ecological and carbon footprints to assess the framework of environmental sustainability in BRICS countries: A panel ARDL and causality estimation model. Environmental Research, 197, 111111.
  • Xu, C., Zha, W., Zhang, M., Cheng, B. (2021). Pollution haven or halo? The role of the energy transition in the impact of FDI on SO2 emissions. Science of The Total Environment, 763. 143002.
  • York, R., Rosa, E. A., Dietz, T. (2003a). Footprints on the earth: The environmental consequences of modernity. American Sociological Review, 68(2), 279–300. https://doi.org/10.2307/1519769
  • York, R., Rosa, E.A., Dietz, T. (2003b). STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecological Economics, 46, 351-365.
  • York, R. (2007). Demographic trends and energy consumption in European Union nations, 1960–2025. Social Science Research, 36(3), 855-872.
Toplam 78 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ekolojik İktisat, Kalkınma Ekonomisi - Makro
Bölüm Makaleler
Yazarlar

Mine Yılmazer 0000-0001-8674-792X

Erken Görünüm Tarihi 9 Temmuz 2024
Yayımlanma Tarihi
Gönderilme Tarihi 9 Ekim 2023
Kabul Tarihi 24 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 39 Sayı: 3

Kaynak Göster

APA Yılmazer, M. (2024). Türkiye’de Ekolojik Ayak İzinin Belirleyicileri: STIRPAT Modeli. İzmir İktisat Dergisi, 39(3), 637-657. https://doi.org/10.24988/ije.1373210

İzmir İktisat Dergisi
TR-DİZİN, DOAJ, EBSCO, ERIH PLUS, Index Copernicus, Ulrich’s Periodicals Directory, EconLit, Harvard Hollis, Google Scholar, OAJI, SOBIAD, CiteFactor, OJOP, Araştırmax, WordCat, OpenAIRE, Base, IAD, Academindex
tarafından taranmaktadır.

Dokuz Eylül Üniversitesi Yayınevi Web Sitesi
https://kutuphane.deu.edu.tr/yayinevi/

Dergi İletişim Bilgileri Sayfası
https://dergipark.org.tr/tr/pub/ije/contacts


İZMİR İKTİSAT DERGİSİ 2022 yılı 37. cilt 1. sayı ile birlikte sadece elektronik olarak yayınlanmaya başlamıştır.