Araştırma Makalesi
BibTex RIS Kaynak Göster

Kripto Para Piyasalarında Asimetrik Volatilitenin Tahmininde Doğru Koşullu Varyans Modelleri

Yıl 2024, Cilt: 39 Sayı: 4, 909 - 930
https://doi.org/10.24988/ije.1434189

Öz

Bu çalışma, 2023 yılı Eylül ayında işlem gören en yüksek hacimli 5 kripto para için karmaşık ve detaylı volatilite analizi yapmak üzerine Genelleştirilmiş Otoregresif Koşullu Heteroskedastiklik (GARCH) modeli ve türevleri üzerine testler içermektedir. Analizler, Python, R ve Eviews programlarıyla yapılarak sonuçların tutarlılığı test edilmiş ve doğrulanmıştır. Test süreçlerinde, kripto para piyasalarında volatilite tahmini açısından en doğru yöntemin hangisi olabileceği, çarpıklık, basıklık ve log-likelihood değerleri dikkate alınarak sınanmış ve model doğruluğu için Jarque-Bera, ADF gibi testler uygulanmıştır. Yapılan sınanmalar sonucunda volatilite analizinde kripto piyasalar için GARCH modellerinde EGARCH, GJR-GARCH ve TGARCH modellerinin ilgili kripto para birimlerinde volatilite ve piyasa şoklarını tespit etmede etkin olduğu bulunmuştur.

Kaynakça

  • Anceaume, E., Lajoie-Mazenc, T., Ludinard, R., and Sericola, B. (2016, October). Safety analysis of Bitcoin improvement proposals. In 2016 IEEE 15th International Symposium on Network Computing and Applications (NCA) (pp. 318-325). IEEE.
  • Balcilar, M., Gupta, R., and Pierdzioch, C. (2016). Does uncertainty move the gold price? New evidence from a nonparametric causality-in-quantiles test. Resources Policy, 49, 74-80. https://doi.org/10.1016/j.resourpol.2016.04.004
  • Bayer, D., Haber, S., and Stornetta, W. S. (1993). Improving the efficiency and reliability of digital time-stamping. In Sequences II: Methods in Communication, Security, and Computer Science (pp. 329-334). Springer New York.
  • Beneki, C., Koulis, A., Kyriazis, N. A., and Papadamou, S. (2019). Investigating volatility transmission and hedging properties between Bitcoin and Ethereum. Research in International Business and Finance, 48, 219-227.
  • Bera, A. K., and Jarque, C. M. (1982). Model specification tests: A simultaneous approach. Journal of Econometrics, 20(1), 59-82. https://doi.org/10.1016/0304-4076(82)90103-8
  • Deavours, C. A., and Kruh, L. (1985). Machine cryptography and modern cryptanalysis. Artech House.
  • Chaum, D. (1983, August). Blind signatures for untraceable payments. Advances in Cryptology: Proceedings of Crypto 82 (pp. 199-203). Boston, MA: Springer US.
  • Munger, C. T. (2023). Poor Charlie’s Almanack: The essential wit and wisdom of Charles T. Munger. Stripe Press.
  • Davidson, S., Filippi, P. D., and Potts, J. (2016). Economics of blockchain. Social Science Electronic Publishing. https://doi. org/10.2139/ssrn. 2744751.
  • Delfin-Vidal, R., and Romero-Meléndez, G. (2016). The fractal nature of bitcoin: Evidence from wavelet power spectra.Trend in Mathematical Economics. (pp. 73-98). Springer International Publishing.
  • Derman, E. (1999). Regimes of volatility. Risk,4, 55-59.
  • Dyhrberg, A. H. (2016). Bitcoin, gold and the dollar–A GARCH volatility analysis. Finance Research Letters, 16, 85-92.
  • Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal Of The Econometric Society, 987-1007.
  • Fung, K., Jeong, J., and Pereira, J. (2022). More to cryptos than bitcoin: A GARCH modelling of heterogeneous cryptocurrencies. Finance Research Letters, 47, 102544.
  • Ghaiti, K. (2021). The volatility of bitcoin, bitcoin cash, litecoin, dogecoin and ethereum (Doctoral dissertation), University of Ottawa.
  • Glosten, L. R., Jagannathan, R., and Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. The Journal of Finance, 48(5), 1779-1801.
  • Gronwald, Marc. (2014). The economics of bitcoins: market characteristics and price jumps. Cesifo Working Paper,5121. doi: 10.2139/ssrn.2548999.
  • Griffith, Ken. 2021. A quick history of cryptocurrencies bbtc-before bitcoin. Bitcoin Magazine. https://bitcoinmagazine.com/business/quick-history-cryptocurrencies-bbtc-bitcoin-1397682630
  • Grinberg, R. (2012). Bitcoin: An innovative alternative digital currency. Hastings Sci. and Tech. LJ, 4, 159.
  • Güring, P., and Grigg, I. (2011). Bitcoin and Gresham's Law-the economic inevitability of collapse. https://iang.org/papers/BitcoinBreachesGreshamsLaw.pdf
  • Haber, S., and Stornetta, W. S. (1991). How to time-stamp a digital document.Advanced in cryptology:Crypto 90. (pp. 437-455). Springer Berlin Heidelberg.
  • Khan, M., Kayani, U. N., Khan, M., Mughal, K. S., and Haseeb, M. (2023). COVID-19 pandemic and financial market volatility; evidence from GARCH models. Journal of Risk and Financial Management, 16(1), 50.
  • Merkle, R. C. (1987, August). A digital signature based on a conventional encryption function. Conference on the theory and application of cryptographic techniques (pp. 369-378). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Nadarajah, S., and Chu, J. (2017). On the inefficiency of Bitcoin. Economics Letters, 150, 6-9.
  • Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.
  • Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica: Journal of the econometric society, 347-370.
  • Ruoti, S., Kaiser, B., Yerukhimovich, A., Clark, J., and Cunningham, R. (2019). SoK: Blockchain technology and its potential use cases. arXiv preprint arXiv:1909.12454.
  • Sherman, A. T., Javani, F., Zhang, H., and Golaszewski, E. (2019). On the origins and variations of blockchain technologies. IEEE Security and Privacy, 17(1), 72-77.
  • Szabo, N. (1997). Formalizing and securing relationships on public networks. First Monday,2(1). https://doi.org/10.5210/fm.v2i9.548
  • Ural, M., and Demireli, E. (2020). Asymmetrıc Garch-Type And Half-Life Volatility Modelling Of Usd/Kzt Exchange Rate Returns. Eurasian Research Journal, 2(2), 7-18.
  • Yavuz, N. Ç. (2004). Durağanlığın Belirlenmesinde Kpss ve Adf Testleri: İmkb Ulusal-100 Endeksi İle Bir Uygulama. İstanbul Üniversitesi İktisat Fakültesi Mecmuası, 54(1),239-248.
  • Yermack, D. (2015). Is Bitcoin a real currency? An economic appraisal. Handbook of digital currency (pp. 31-43). Academic Press.
  • Zakoian, J. M. (1994). Threshold heteroskedastic models. Journal of Economic Dynamics and Control, 18(5), 931-955.
  • Kyriazis, Nicholas, Kalliopi Daskalou, Marios Arampatzis, Paraskevi Prassa, and Papaioannou Evangelia. 2019. Estimating the volatility of cryptocurrencies during bearish markets by employing garch models. Heliyon, 5(8):e02239. doi: 10.1016/j.heliyon.2019.e02239.
  • Ghaiti, Khaoula. 2021. The Volatility of Bitcoin, Bitcoin Cash, Litecoin, Dogecoin and Ethereum. uOttawa. https://ruor.uottawa.ca/items/7a748f6d-8f64-48de-95a7-0e482d266eb0
  • Güven, V., and Şahinöz, E. (2018). Blokzincir kripto paralar Bitcoin: Satoshi dünyayı değiştiriyor. İstanbul: Kronik Kitap.

Accurate Conditional Variance Models for Predicting Asymmetric Volatility in Cryptocurrency Markets

Yıl 2024, Cilt: 39 Sayı: 4, 909 - 930
https://doi.org/10.24988/ije.1434189

Öz

This study includes tests on the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model and its derivatives to conduct complex and detailed volatility analysis for the 5 highest-volume cryptocurrencies traded in September 2023. The tests have been conducted with Python, R, and Eviews software and analyses have been compared in terms of consistency and accuracy of the results across multiple software and programming languagse. In the testing process, observation of the volatility has been assessed by some variables such as skewness, kurtosis, and log-likelihood values, and these variables have been taken into consideration for testing. Tests such as Jarque-Bera and Augmented Dickey-Fuller (ADF) have been applied during the process to verify model correctness. The EGARCH, GJR-GARCH, and TGARCH models have been more effective in detecting volatility and market shocks in the relevant cryptocurrencies as a result of the tests conducted in the volatility analysis.

Kaynakça

  • Anceaume, E., Lajoie-Mazenc, T., Ludinard, R., and Sericola, B. (2016, October). Safety analysis of Bitcoin improvement proposals. In 2016 IEEE 15th International Symposium on Network Computing and Applications (NCA) (pp. 318-325). IEEE.
  • Balcilar, M., Gupta, R., and Pierdzioch, C. (2016). Does uncertainty move the gold price? New evidence from a nonparametric causality-in-quantiles test. Resources Policy, 49, 74-80. https://doi.org/10.1016/j.resourpol.2016.04.004
  • Bayer, D., Haber, S., and Stornetta, W. S. (1993). Improving the efficiency and reliability of digital time-stamping. In Sequences II: Methods in Communication, Security, and Computer Science (pp. 329-334). Springer New York.
  • Beneki, C., Koulis, A., Kyriazis, N. A., and Papadamou, S. (2019). Investigating volatility transmission and hedging properties between Bitcoin and Ethereum. Research in International Business and Finance, 48, 219-227.
  • Bera, A. K., and Jarque, C. M. (1982). Model specification tests: A simultaneous approach. Journal of Econometrics, 20(1), 59-82. https://doi.org/10.1016/0304-4076(82)90103-8
  • Deavours, C. A., and Kruh, L. (1985). Machine cryptography and modern cryptanalysis. Artech House.
  • Chaum, D. (1983, August). Blind signatures for untraceable payments. Advances in Cryptology: Proceedings of Crypto 82 (pp. 199-203). Boston, MA: Springer US.
  • Munger, C. T. (2023). Poor Charlie’s Almanack: The essential wit and wisdom of Charles T. Munger. Stripe Press.
  • Davidson, S., Filippi, P. D., and Potts, J. (2016). Economics of blockchain. Social Science Electronic Publishing. https://doi. org/10.2139/ssrn. 2744751.
  • Delfin-Vidal, R., and Romero-Meléndez, G. (2016). The fractal nature of bitcoin: Evidence from wavelet power spectra.Trend in Mathematical Economics. (pp. 73-98). Springer International Publishing.
  • Derman, E. (1999). Regimes of volatility. Risk,4, 55-59.
  • Dyhrberg, A. H. (2016). Bitcoin, gold and the dollar–A GARCH volatility analysis. Finance Research Letters, 16, 85-92.
  • Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal Of The Econometric Society, 987-1007.
  • Fung, K., Jeong, J., and Pereira, J. (2022). More to cryptos than bitcoin: A GARCH modelling of heterogeneous cryptocurrencies. Finance Research Letters, 47, 102544.
  • Ghaiti, K. (2021). The volatility of bitcoin, bitcoin cash, litecoin, dogecoin and ethereum (Doctoral dissertation), University of Ottawa.
  • Glosten, L. R., Jagannathan, R., and Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. The Journal of Finance, 48(5), 1779-1801.
  • Gronwald, Marc. (2014). The economics of bitcoins: market characteristics and price jumps. Cesifo Working Paper,5121. doi: 10.2139/ssrn.2548999.
  • Griffith, Ken. 2021. A quick history of cryptocurrencies bbtc-before bitcoin. Bitcoin Magazine. https://bitcoinmagazine.com/business/quick-history-cryptocurrencies-bbtc-bitcoin-1397682630
  • Grinberg, R. (2012). Bitcoin: An innovative alternative digital currency. Hastings Sci. and Tech. LJ, 4, 159.
  • Güring, P., and Grigg, I. (2011). Bitcoin and Gresham's Law-the economic inevitability of collapse. https://iang.org/papers/BitcoinBreachesGreshamsLaw.pdf
  • Haber, S., and Stornetta, W. S. (1991). How to time-stamp a digital document.Advanced in cryptology:Crypto 90. (pp. 437-455). Springer Berlin Heidelberg.
  • Khan, M., Kayani, U. N., Khan, M., Mughal, K. S., and Haseeb, M. (2023). COVID-19 pandemic and financial market volatility; evidence from GARCH models. Journal of Risk and Financial Management, 16(1), 50.
  • Merkle, R. C. (1987, August). A digital signature based on a conventional encryption function. Conference on the theory and application of cryptographic techniques (pp. 369-378). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Nadarajah, S., and Chu, J. (2017). On the inefficiency of Bitcoin. Economics Letters, 150, 6-9.
  • Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.
  • Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica: Journal of the econometric society, 347-370.
  • Ruoti, S., Kaiser, B., Yerukhimovich, A., Clark, J., and Cunningham, R. (2019). SoK: Blockchain technology and its potential use cases. arXiv preprint arXiv:1909.12454.
  • Sherman, A. T., Javani, F., Zhang, H., and Golaszewski, E. (2019). On the origins and variations of blockchain technologies. IEEE Security and Privacy, 17(1), 72-77.
  • Szabo, N. (1997). Formalizing and securing relationships on public networks. First Monday,2(1). https://doi.org/10.5210/fm.v2i9.548
  • Ural, M., and Demireli, E. (2020). Asymmetrıc Garch-Type And Half-Life Volatility Modelling Of Usd/Kzt Exchange Rate Returns. Eurasian Research Journal, 2(2), 7-18.
  • Yavuz, N. Ç. (2004). Durağanlığın Belirlenmesinde Kpss ve Adf Testleri: İmkb Ulusal-100 Endeksi İle Bir Uygulama. İstanbul Üniversitesi İktisat Fakültesi Mecmuası, 54(1),239-248.
  • Yermack, D. (2015). Is Bitcoin a real currency? An economic appraisal. Handbook of digital currency (pp. 31-43). Academic Press.
  • Zakoian, J. M. (1994). Threshold heteroskedastic models. Journal of Economic Dynamics and Control, 18(5), 931-955.
  • Kyriazis, Nicholas, Kalliopi Daskalou, Marios Arampatzis, Paraskevi Prassa, and Papaioannou Evangelia. 2019. Estimating the volatility of cryptocurrencies during bearish markets by employing garch models. Heliyon, 5(8):e02239. doi: 10.1016/j.heliyon.2019.e02239.
  • Ghaiti, Khaoula. 2021. The Volatility of Bitcoin, Bitcoin Cash, Litecoin, Dogecoin and Ethereum. uOttawa. https://ruor.uottawa.ca/items/7a748f6d-8f64-48de-95a7-0e482d266eb0
  • Güven, V., and Şahinöz, E. (2018). Blokzincir kripto paralar Bitcoin: Satoshi dünyayı değiştiriyor. İstanbul: Kronik Kitap.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ekonomik Modeller ve Öngörü, Zaman Serileri Analizi
Bölüm Makaleler
Yazarlar

Onur Çelebi 0009-0009-3177-3085

Erhan Demireli 0000-0002-3457-0699

Erken Görünüm Tarihi 11 Kasım 2024
Yayımlanma Tarihi
Gönderilme Tarihi 8 Şubat 2024
Kabul Tarihi 30 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 39 Sayı: 4

Kaynak Göster

APA Çelebi, O., & Demireli, E. (2024). Accurate Conditional Variance Models for Predicting Asymmetric Volatility in Cryptocurrency Markets. İzmir İktisat Dergisi, 39(4), 909-930. https://doi.org/10.24988/ije.1434189

İzmir İktisat Dergisi
TR-DİZİN, DOAJ, EBSCO, ERIH PLUS, Index Copernicus, Ulrich’s Periodicals Directory, EconLit, Harvard Hollis, Google Scholar, OAJI, SOBIAD, CiteFactor, OJOP, Araştırmax, WordCat, OpenAIRE, Base, IAD, Academindex
tarafından taranmaktadır.

Dokuz Eylül Üniversitesi Yayınevi Web Sitesi
https://kutuphane.deu.edu.tr/yayinevi/

Dergi İletişim Bilgileri Sayfası
https://dergipark.org.tr/tr/pub/ije/contacts


İZMİR İKTİSAT DERGİSİ 2022 yılı 37. cilt 1. sayı ile birlikte sadece elektronik olarak yayınlanmaya başlamıştır.