Derleme
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 8 Sayı: 2, 70 - 79, 30.06.2021
https://doi.org/10.31593/ijeat.882470

Öz

Proje Numarası

Alu/RUSA/Project Fellow –Science/2019

Kaynakça

  • Ahiska, R., and Dişlitaş, S. (2011). Computer controlled test system for measuring the parameters of the real thermoelectric module. Energy Conversion and Management, 52(1), 27-36.
  • Ahiska, R., and Mamur, H. (2016). Development and application of a new power analysis system for testing of geothermal thermoelectric generators. International Journal of Green Energy, 13(7), 672-681.
  • Ancik, Z., Hadas, Z., Vlach, R., Janak, L., Singule, V., and Prochazka, P. (2014). Simulation modelling of MEMS thermoelectric generator for aircraft applications. 16th International Power Electronics and Motion Control Conference and Exposition, 184-189.
  • Ancik, Z., Vlach, R., Janak, L., Kopecek, P., and Hadas, Z. (2013). Modeling, simulation and experimental testing of the MEMS thermoelectric generators in wide range of operational conditions. Smart Sensors, Actuators, and MEMS, 8763, 61-87.
  • Arora, R. (2020). Thermodynamic investigations with maximum power point tracking (MPPT) of hybrid thermoelectric generator-heat pump model. International Journal of Ambient Energy, 1-9.
  • Arora, R., and Arora, R. (2018). Multicriteria optimization based comprehensive comparative analyses of single-and two-stage (series/parallel) thermoelectric generators including the influence of Thomson effect. Journal of Renewable and Sustainable Energy, 10(4), 044701.
  • Arora, R., Kaushik, S. C., and Arora, R. (2015). Multi-objective and multi-parameter optimization of two-stage thermoelectric generator in electrically series and parallel configurations through NSGA-II. Energy, 91, 242-254.
  • Azad, P. (2019). Temperature Controlled Voltage Regulated Boost Converter for Thermoelectric Energy Harvesting. IETE Journal of Research, 1-8.
  • Babaelahi, M., and Jafari, H. (2019). New optimum design for cooling system in thermoelectric thermal devices. Extreme Mechanics Letters, 27, 1-7.
  • Balasooriya, U., and Balakrishnan, N. (2000). Reliability sampling plans for lognormal distribution, based on progressively-censored samples. IEEE Transactions on Reliability, 49(2), 199-203.
  • Cao, K., Batty, M., Huang, B., Liu, Y., Yu, L., and Chen, J. (2011). Spatial multi-objective land use optimization: extensions to the non-dominated sorting genetic algorithm-II. International Journal of Geographical Information Science, 25(12), 1949-1969.
  • Chen, W. H., Wu, P. H., and Lin, Y. L. (2018). Performance optimization of thermoelectric generators designed by multi-objective genetic algorithm. Applied energy, 209, 211-223.
  • Courant, R. (1928). On the partial difference equations of mathematical physics. Mathematische Annalen, 100, 32-74.
  • Dong, S., Shih, T. M., Lin, W., Cai, X., Chang, R. R. G., and Chen, Z. (2014). Time-dependent photovoltaic-thermoelectric hybrid systems. Numerical Heat Transfer, Part A: Applications, 66(4), 402-419.
  • Elzalik, M., Rezk, H., Mostafa, R., Thomas, J., & Shehata, E. G. (2020). An experimental investigation on electrical performance and characterization of thermoelectric generator. International Journal of Energy Research, 44(1), 128-143.
  • Faddouli, A., Labrim, H., Fadili, S., Habchi, A., Hartiti, B., Benaissa, M., and Benyoussef, A. (2020). Numerical analysis and performance investigation of new hybrid system integrating concentrated solar flat plate collector with a thermoelectric generator system. Renewable Energy, 147, 2077-2090.
  • Ferrario, A., Boldrini, S., Miozzo, A., and Fabrizio, M. (2019). Temperature dependent iterative model of thermoelectric generator including thermal losses in passive elements. Applied Thermal Engineering, 150, 620-627.
  • Garud, K. S., Seo, J. H., Cho, C. P., and Lee, M. Y. (2020). Artificial Neural Network and Adaptive Neuro-Fuzzy Interface System Modelling to Predict Thermal Performances of Thermoelectric Generator for Waste Heat Recovery. Symmetry, 12(2), 259-263.
  • Ge, Y., Liu, Z., Sun, H., and Liu, W. (2018). Optimal design of a segmented thermoelectric generator based on three-dimensional numerical simulation and multi-objective genetic algorithm. Energy, 147, 1060-1069.
  • Huesgen, T., Woias, P., & Kockmann, N. (2008). Design and fabrication of MEMS thermoelectric generators with high temperature efficiency. Sensors and Actuators A: Physical, 145, 423-429.
  • Indirani, S., Arjunan, S. P., Jeyashree, Y., Ram, G. N. S., Krishna, B. M., and Manohar, Y. B. (2019). Design and validation of MEMS based micro energy harvesting and thermal energy storage device. Materials Research Express, 6(11), 115511.
  • Janak, L., Hadas, Z., Ancik, Z., and Kopecek, P. (2014). Simulation of power management electronics and energy storage unit for mems thermoelectric generator. Proceedings of the 11th European Conference on Thermoelectrics, 189-195.
  • Jeong, Y. S., Kim, K. M., Kim, I. G., and Bang, I. C. (2015). Hybrid heat pipe based passive in-core cooling system for advanced nuclear power plant. Applied Thermal Engineering, 90, 609-618.
  • Kaila, M. M. (2015). Design and Performance of a Three-Stage Thermoelectric Cooler. IETE Journal of Research, 15(10), 671-675.
  • Kanagaraj, N., Rezk, H., and Gomaa, M. R. (2020). A Variable Fractional Order Fuzzy Logic Control Based MPPT Technique for Improving Energy Conversion Efficiency of Thermoelectric Power Generator. Energies, 13(17), 4531.
  • Kane, A., Verma, V., and Singh, B. (2012). Temperature dependent analysis of thermoelectric module using Matlab/SIMULINK. In 2012 IEEE International Conference on Power and Energy. 632-637.
  • Keri, A. J. F., Mehraban, A. S., Lombard, X., Eiriachy, A., and Edris, A. A. (1999). Unified power flow controller (UPFC): modeling and analysis. IEEE Transactions on Power Delivery, 14(2), 648-654.
  • Khalili, A., and Kromp, K. (1991). Statistical properties of Weibull estimators. Journal of materials science, 26(24), 6741-6752.
  • Khamila, K. N., Sabria, M. F. M., Yusop, A. M., Mohamedc, R., & Sharuddinb, M. S. (2020). Modelling and Simulation of the Performance Analysis for Peltier Module and Seebeck Module using MATLAB/Simulink. Jurnal Kejuruteraan, 32(2), 231-238.
  • Kim, C. N. (2018). Development of a numerical method for the performance analysis of thermoelectric generators with thermal and electric contact resistance. Applied thermal engineering, 130, 408-417.
  • Kim, M. S., Kim, M. K., Jo, S. E., Joo, C., & Kim, Y. J. (2016). Refraction-assisted solar thermoelectric generator based on phase-change lens. Scientific reports, 6(1), 1-9.
  • Korotkov, A., Loboda, V., Dzyubanenko, S., and Bakulin, E. (2018). Fabrication and Testing of MEMS Technology Based Thermoelectric Generator. 7th Electronic System-Integration Technology Conference, 1-4.
  • Kuriakose, S., and Shunmugam, M. S. (2005). Multi-objective optimization of wire-electro discharge machining process by non-dominated sorting genetic algorithm. Journal of materials processing technology, 170(12), 133-141.
  • Lai, C. D., Xie, M., and Murthy, D. N. P. (2003). A modified Weibull distribution. IEEE Transactions on reliability, 52(1), 33-37.
  • Lee, U., Park, S., and Lee, I. (2020). Robust design optimization (RDO) of thermoelectric generator system using non-dominated sorting genetic algorithm II (NSGA-II). Energy, 196, 117090.
  • Leonov, Vladimir, et al. (2005). Thermoelectric MEMS generators as a power supply for a body area network. The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 1- 5.
  • Li, W., Paul, M. C., Montecucco, A., Siviter, J., Knox, A. R., Sweet, T., and Gregory, D. H. (2017). Multiphysics simulations of thermoelectric generator modules with cold and hot blocks and effects of some factors. Case studies in thermal engineering, 10, 63-72.
  • Liu, Q., Tang, R., Ren, H., and Pei, Y. (2020). Optimizing multicast routing tree on application layer via an encoding-free non-dominated sorting genetic algorithm. Applied Intelligence, 50(3), 759-777.
  • Liu, J., Zhang, Y., Zhang, D., Jiao, S., Zhang, Z., and Zhou, Z. (2020). Model development and performance evaluation of thermoelectric generator with radiative cooling heat sink. Energy Conversion and Management, 216, 112923.
  • Lu, T., Zhang, X., Zhang, J., Ning, P., Li, Y., and Niu, P. (2019). Multi-objective optimization of thermoelectric cooler using genetic algorithms. AIP Advances, 9(9), 095105.
  • Maduabuchi, C. C., & Mgbemene, C. A. (2020). Numerical Study of a Phase Change Material Integrated Solar Thermoelectric Generator. Journal of Electronic Materials, 49(10), 5917-5936.
  • Manikandan, S., and Kaushik, S. C. (2015). Thermodynamic studies and maximum power point tracking in thermoelectric generator–thermoelectric cooler combined system. Cryogenics, 67(4), 52-62.
  • Meng, J. H., Wu, H. C., Wang, L., Lu, G., Zhang, K., and Yan, W. M. (2020). Thermal management of a flexible controlled thermoelectric energy conversion-utilization system using a multi-objective optimization. Applied Thermal Engineering, 179, 115721.
  • Meng, J. H., Zhang, X. X., and Wang, X. D. (2014). Multi-objective and multi-parameter optimization of a thermoelectric generator module. Energy, 71, 367-376.
  • Min Chen; Lasse A. R., Thomas J. C., John K. P., (2009). “Numerical Modeling of Thermoelectric Generators with Varying material Properties in a Circuit Simulator”, IEEE Transactions on Energy Conversion, 24(1), 112-124.
  • Min, G. (2013). Thermoelectric module design under a given thermal input: theory and example. Journal of electronic materials, 42(7), 2239-2242.
  • Mitrani, D., Tomé, J. A., Salazar, J., Turó, A., García, M. J., and Chávez, J. A. (2004). Methodology for extracting thermoelectric module parameters. In Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference. 564-568.
  • Moh'd A, A. N., Tashtoush, B. M., and Jaradat, A. A. (2015). Modeling and simulation of thermoelectric device working as a heat pump and an electric generator under Mediterranean climate. Energy, 90, 1239-1250.
  • Mohammadnia, A., and Ziapour, B. M. (2020). Investigation effect of a spectral beam splitter on performance of a hybrid CPV/Stirling/TEG solar power system. Applied Thermal Engineering, 180, 115799.
  • Montecucco, A., Buckle, J. R., and Knox, A. R. (2012). Solution to the 1-D unsteady heat conduction equation with internal Joule heat generation for thermoelectric devices. Applied Thermal Engineering, 35(3), 177-184.
  • Montecucco, A., and Knox, A. R. (2014). Accurate simulation of thermoelectric power generating systems. Applied Energy, 111(8), 166-172.
  • Muthu, G., Shanmugam, S., and Veerappan, A. R. (2015). Numerical modeling of year-round performance of a solar parabolic dish thermoelectric generator. Journal of Electronic Materials, 44(8), 2631-2637.
  • Omer, G., Yavuz, A. H., Ahiska, R., & Calisal, K. E. (2020). Smart thermoelectric waste heat generator: Design, simulation and cost analysis. Sustainable Energy Technologies and Assessments, 37(2), 100623.
  • Panda, S., and Yegireddy, N. K. (2013). Automatic generation control of multi-area power system using multi-objective non-dominated sorting genetic algorithm-II. International Journal of Electrical Power & Energy Systems, 53(9), 54-63.
  • Rad, M. K., Rezania, A., Omid, M., Rajabipour, A., and Rosendahl, L. (2019). Study on material properties effect for maximization of thermoelectric power generation. Renewable energy, 138, 236-242.
  • Rowe, D. M., and Min, G. (1998). Evaluation of thermoelectric modules for power generation. Journal of power sources, 73(2), 193-198.
  • Saleh, A. M., Mueller Jr, D. W., and Abu-Mulaweh, H. I. (2013). Flat-plate solar collector in transient operation: modeling and measurements. International Mechanical Engineering Congress and Exposition 56352, 09-036.
  • Sattar, S. (2020). Measuring Probability of Failure of Thermoelectric Legs through Lognormal and Weibull Distribution. Journal of Physics: Conference Series, 1560(1), 012025.
  • Soltani, S., Kasaeian, A., Sokhansefat, T., and Shafii, M. B. (2018). Performance investigation of a hybrid photovoltaic/thermoelectric system integrated with parabolic trough collector. Energy Conversion and Management, 159, 371-380.
  • Soman, K. (2018). Design and Development of a MEMS Stacked Thermoelectric Microwatt Generator. 3rd International Conference on Internet of Things: Smart Innovation and Usages, 1-5.
  • Suzuki, R. O., and Tanaka, D. (2003). Mathematical simulation of thermoelectric power generation with the multi-panels. Journal of Power Sources, 122(2), 201-209.
  • Tambunan, D. S., Sibagariang, Y. P., Ambarita, H., Napitupulu, F. H., and Kawai, H. (2018). Numerical study on the effects of absorptivity on performance of flat plate solar collector of a water heater. Journal of Physics: Conference Series. 978(1). 012099.
  • Thankakan, R., and Samuel Nadar, E. R. (2019). Investigation of Thermoelectric Generator with Power Converter for Energy Harvesting Applications. IETE Journal of Research, 1-13.
  • Thankakan, R., and Nadar, E. R. S. (2020). Modeling and Analysis of Thermoelectric Energy Harvesting System with High-Gain Power Converter. Journal of Control, Automation and Electrical Systems, 31(2), 367-376.
  • Tsai, H. L., and Lin, J. M. (2010). Model building and simulation of thermoelectric module using Matlab/Simulink. Journal of Electronic Materials, 39(9), 2105-2112.
  • Wu, C. (1996). Analysis of waste-heat thermoelectric power generators. Applied Thermal Engineering, 16(1), 63-69.
  • Yan, J., Liao, X., Ji, S., and Zhang, S. (2018). MEMS-based thermoelectric–photoelectric integrated power generator. Journal of Microelectromechanical Systems, 28(1), 1-3.
  • Yin, E., Li, Q., and Xuan, Y. (2018). Effect of non-uniform illumination on performance of solar thermoelectric generators. Frontiers in Energy, 12(2), 239-248.
  • Yu, J., and Zhao, H. (2007). A numerical model for thermoelectric generator with the parallel-plate heat exchanger. Journal of Power Sources, 172(1), 428-434.
  • Zhan, Z., ElKabbash, M., Li, Z., Li, X., Zhang, J., Rutledge, J.,and Guo, C. (2019). Enhancing thermoelectric output power via radiative cooling with nanoporous alumina. Nano Energy, 65, 104060.
  • Zhao, D., Xu, Y., Gouttebroze, S., Friis, J., and Li, Y. (2020). Modelling the age-hardening precipitation by a revised Langer and Schwartz approach with log-normal size distribution. Metallurgical and Materials Transactions A, 51(9), 4838-4852.
  • Zima, W., and Dziewa, P. (2011). Modelling of liquid flat-plate solar collector operation in transient states. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 225(1), 53-62

A review on recent opportunities in MATLAB software based modelling for thermoelectric applications

Yıl 2021, Cilt: 8 Sayı: 2, 70 - 79, 30.06.2021
https://doi.org/10.31593/ijeat.882470

Öz

TThe thermoelectric application is one of most popular energy harvesting application from waste heat. The thermoelectric generators, thermoelectric coolers, and thermoelectric modular devices criterion comes in both sustainable energy as well as renewability of electrical energy from waste heat sinks. The recovery operations are optimized with the help of modeling using MATLAB software. The material science based thermoelectric applications can be modeled with the help of MATLAB simulink modeling. The numerical and algorithmic method of MATLAB modeling is for the development of hybrid thermoelectric coolers and generators (solar thermoelectric generators, radiative cooler, heat sinks). Later, the use of MATLAB software gives opportunities to develop the cost effective and high power thermoelectric generators. The emerging commercial device making is also discussed for thermoelectric generator using MATLAB optimization.

Destekleyen Kurum

RUSA Theme based project fellowship

Proje Numarası

Alu/RUSA/Project Fellow –Science/2019

Teşekkür

G. UDHAYA SANKAR THANK RUSA FOR FINANCIAL SUPPORT

Kaynakça

  • Ahiska, R., and Dişlitaş, S. (2011). Computer controlled test system for measuring the parameters of the real thermoelectric module. Energy Conversion and Management, 52(1), 27-36.
  • Ahiska, R., and Mamur, H. (2016). Development and application of a new power analysis system for testing of geothermal thermoelectric generators. International Journal of Green Energy, 13(7), 672-681.
  • Ancik, Z., Hadas, Z., Vlach, R., Janak, L., Singule, V., and Prochazka, P. (2014). Simulation modelling of MEMS thermoelectric generator for aircraft applications. 16th International Power Electronics and Motion Control Conference and Exposition, 184-189.
  • Ancik, Z., Vlach, R., Janak, L., Kopecek, P., and Hadas, Z. (2013). Modeling, simulation and experimental testing of the MEMS thermoelectric generators in wide range of operational conditions. Smart Sensors, Actuators, and MEMS, 8763, 61-87.
  • Arora, R. (2020). Thermodynamic investigations with maximum power point tracking (MPPT) of hybrid thermoelectric generator-heat pump model. International Journal of Ambient Energy, 1-9.
  • Arora, R., and Arora, R. (2018). Multicriteria optimization based comprehensive comparative analyses of single-and two-stage (series/parallel) thermoelectric generators including the influence of Thomson effect. Journal of Renewable and Sustainable Energy, 10(4), 044701.
  • Arora, R., Kaushik, S. C., and Arora, R. (2015). Multi-objective and multi-parameter optimization of two-stage thermoelectric generator in electrically series and parallel configurations through NSGA-II. Energy, 91, 242-254.
  • Azad, P. (2019). Temperature Controlled Voltage Regulated Boost Converter for Thermoelectric Energy Harvesting. IETE Journal of Research, 1-8.
  • Babaelahi, M., and Jafari, H. (2019). New optimum design for cooling system in thermoelectric thermal devices. Extreme Mechanics Letters, 27, 1-7.
  • Balasooriya, U., and Balakrishnan, N. (2000). Reliability sampling plans for lognormal distribution, based on progressively-censored samples. IEEE Transactions on Reliability, 49(2), 199-203.
  • Cao, K., Batty, M., Huang, B., Liu, Y., Yu, L., and Chen, J. (2011). Spatial multi-objective land use optimization: extensions to the non-dominated sorting genetic algorithm-II. International Journal of Geographical Information Science, 25(12), 1949-1969.
  • Chen, W. H., Wu, P. H., and Lin, Y. L. (2018). Performance optimization of thermoelectric generators designed by multi-objective genetic algorithm. Applied energy, 209, 211-223.
  • Courant, R. (1928). On the partial difference equations of mathematical physics. Mathematische Annalen, 100, 32-74.
  • Dong, S., Shih, T. M., Lin, W., Cai, X., Chang, R. R. G., and Chen, Z. (2014). Time-dependent photovoltaic-thermoelectric hybrid systems. Numerical Heat Transfer, Part A: Applications, 66(4), 402-419.
  • Elzalik, M., Rezk, H., Mostafa, R., Thomas, J., & Shehata, E. G. (2020). An experimental investigation on electrical performance and characterization of thermoelectric generator. International Journal of Energy Research, 44(1), 128-143.
  • Faddouli, A., Labrim, H., Fadili, S., Habchi, A., Hartiti, B., Benaissa, M., and Benyoussef, A. (2020). Numerical analysis and performance investigation of new hybrid system integrating concentrated solar flat plate collector with a thermoelectric generator system. Renewable Energy, 147, 2077-2090.
  • Ferrario, A., Boldrini, S., Miozzo, A., and Fabrizio, M. (2019). Temperature dependent iterative model of thermoelectric generator including thermal losses in passive elements. Applied Thermal Engineering, 150, 620-627.
  • Garud, K. S., Seo, J. H., Cho, C. P., and Lee, M. Y. (2020). Artificial Neural Network and Adaptive Neuro-Fuzzy Interface System Modelling to Predict Thermal Performances of Thermoelectric Generator for Waste Heat Recovery. Symmetry, 12(2), 259-263.
  • Ge, Y., Liu, Z., Sun, H., and Liu, W. (2018). Optimal design of a segmented thermoelectric generator based on three-dimensional numerical simulation and multi-objective genetic algorithm. Energy, 147, 1060-1069.
  • Huesgen, T., Woias, P., & Kockmann, N. (2008). Design and fabrication of MEMS thermoelectric generators with high temperature efficiency. Sensors and Actuators A: Physical, 145, 423-429.
  • Indirani, S., Arjunan, S. P., Jeyashree, Y., Ram, G. N. S., Krishna, B. M., and Manohar, Y. B. (2019). Design and validation of MEMS based micro energy harvesting and thermal energy storage device. Materials Research Express, 6(11), 115511.
  • Janak, L., Hadas, Z., Ancik, Z., and Kopecek, P. (2014). Simulation of power management electronics and energy storage unit for mems thermoelectric generator. Proceedings of the 11th European Conference on Thermoelectrics, 189-195.
  • Jeong, Y. S., Kim, K. M., Kim, I. G., and Bang, I. C. (2015). Hybrid heat pipe based passive in-core cooling system for advanced nuclear power plant. Applied Thermal Engineering, 90, 609-618.
  • Kaila, M. M. (2015). Design and Performance of a Three-Stage Thermoelectric Cooler. IETE Journal of Research, 15(10), 671-675.
  • Kanagaraj, N., Rezk, H., and Gomaa, M. R. (2020). A Variable Fractional Order Fuzzy Logic Control Based MPPT Technique for Improving Energy Conversion Efficiency of Thermoelectric Power Generator. Energies, 13(17), 4531.
  • Kane, A., Verma, V., and Singh, B. (2012). Temperature dependent analysis of thermoelectric module using Matlab/SIMULINK. In 2012 IEEE International Conference on Power and Energy. 632-637.
  • Keri, A. J. F., Mehraban, A. S., Lombard, X., Eiriachy, A., and Edris, A. A. (1999). Unified power flow controller (UPFC): modeling and analysis. IEEE Transactions on Power Delivery, 14(2), 648-654.
  • Khalili, A., and Kromp, K. (1991). Statistical properties of Weibull estimators. Journal of materials science, 26(24), 6741-6752.
  • Khamila, K. N., Sabria, M. F. M., Yusop, A. M., Mohamedc, R., & Sharuddinb, M. S. (2020). Modelling and Simulation of the Performance Analysis for Peltier Module and Seebeck Module using MATLAB/Simulink. Jurnal Kejuruteraan, 32(2), 231-238.
  • Kim, C. N. (2018). Development of a numerical method for the performance analysis of thermoelectric generators with thermal and electric contact resistance. Applied thermal engineering, 130, 408-417.
  • Kim, M. S., Kim, M. K., Jo, S. E., Joo, C., & Kim, Y. J. (2016). Refraction-assisted solar thermoelectric generator based on phase-change lens. Scientific reports, 6(1), 1-9.
  • Korotkov, A., Loboda, V., Dzyubanenko, S., and Bakulin, E. (2018). Fabrication and Testing of MEMS Technology Based Thermoelectric Generator. 7th Electronic System-Integration Technology Conference, 1-4.
  • Kuriakose, S., and Shunmugam, M. S. (2005). Multi-objective optimization of wire-electro discharge machining process by non-dominated sorting genetic algorithm. Journal of materials processing technology, 170(12), 133-141.
  • Lai, C. D., Xie, M., and Murthy, D. N. P. (2003). A modified Weibull distribution. IEEE Transactions on reliability, 52(1), 33-37.
  • Lee, U., Park, S., and Lee, I. (2020). Robust design optimization (RDO) of thermoelectric generator system using non-dominated sorting genetic algorithm II (NSGA-II). Energy, 196, 117090.
  • Leonov, Vladimir, et al. (2005). Thermoelectric MEMS generators as a power supply for a body area network. The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 1- 5.
  • Li, W., Paul, M. C., Montecucco, A., Siviter, J., Knox, A. R., Sweet, T., and Gregory, D. H. (2017). Multiphysics simulations of thermoelectric generator modules with cold and hot blocks and effects of some factors. Case studies in thermal engineering, 10, 63-72.
  • Liu, Q., Tang, R., Ren, H., and Pei, Y. (2020). Optimizing multicast routing tree on application layer via an encoding-free non-dominated sorting genetic algorithm. Applied Intelligence, 50(3), 759-777.
  • Liu, J., Zhang, Y., Zhang, D., Jiao, S., Zhang, Z., and Zhou, Z. (2020). Model development and performance evaluation of thermoelectric generator with radiative cooling heat sink. Energy Conversion and Management, 216, 112923.
  • Lu, T., Zhang, X., Zhang, J., Ning, P., Li, Y., and Niu, P. (2019). Multi-objective optimization of thermoelectric cooler using genetic algorithms. AIP Advances, 9(9), 095105.
  • Maduabuchi, C. C., & Mgbemene, C. A. (2020). Numerical Study of a Phase Change Material Integrated Solar Thermoelectric Generator. Journal of Electronic Materials, 49(10), 5917-5936.
  • Manikandan, S., and Kaushik, S. C. (2015). Thermodynamic studies and maximum power point tracking in thermoelectric generator–thermoelectric cooler combined system. Cryogenics, 67(4), 52-62.
  • Meng, J. H., Wu, H. C., Wang, L., Lu, G., Zhang, K., and Yan, W. M. (2020). Thermal management of a flexible controlled thermoelectric energy conversion-utilization system using a multi-objective optimization. Applied Thermal Engineering, 179, 115721.
  • Meng, J. H., Zhang, X. X., and Wang, X. D. (2014). Multi-objective and multi-parameter optimization of a thermoelectric generator module. Energy, 71, 367-376.
  • Min Chen; Lasse A. R., Thomas J. C., John K. P., (2009). “Numerical Modeling of Thermoelectric Generators with Varying material Properties in a Circuit Simulator”, IEEE Transactions on Energy Conversion, 24(1), 112-124.
  • Min, G. (2013). Thermoelectric module design under a given thermal input: theory and example. Journal of electronic materials, 42(7), 2239-2242.
  • Mitrani, D., Tomé, J. A., Salazar, J., Turó, A., García, M. J., and Chávez, J. A. (2004). Methodology for extracting thermoelectric module parameters. In Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference. 564-568.
  • Moh'd A, A. N., Tashtoush, B. M., and Jaradat, A. A. (2015). Modeling and simulation of thermoelectric device working as a heat pump and an electric generator under Mediterranean climate. Energy, 90, 1239-1250.
  • Mohammadnia, A., and Ziapour, B. M. (2020). Investigation effect of a spectral beam splitter on performance of a hybrid CPV/Stirling/TEG solar power system. Applied Thermal Engineering, 180, 115799.
  • Montecucco, A., Buckle, J. R., and Knox, A. R. (2012). Solution to the 1-D unsteady heat conduction equation with internal Joule heat generation for thermoelectric devices. Applied Thermal Engineering, 35(3), 177-184.
  • Montecucco, A., and Knox, A. R. (2014). Accurate simulation of thermoelectric power generating systems. Applied Energy, 111(8), 166-172.
  • Muthu, G., Shanmugam, S., and Veerappan, A. R. (2015). Numerical modeling of year-round performance of a solar parabolic dish thermoelectric generator. Journal of Electronic Materials, 44(8), 2631-2637.
  • Omer, G., Yavuz, A. H., Ahiska, R., & Calisal, K. E. (2020). Smart thermoelectric waste heat generator: Design, simulation and cost analysis. Sustainable Energy Technologies and Assessments, 37(2), 100623.
  • Panda, S., and Yegireddy, N. K. (2013). Automatic generation control of multi-area power system using multi-objective non-dominated sorting genetic algorithm-II. International Journal of Electrical Power & Energy Systems, 53(9), 54-63.
  • Rad, M. K., Rezania, A., Omid, M., Rajabipour, A., and Rosendahl, L. (2019). Study on material properties effect for maximization of thermoelectric power generation. Renewable energy, 138, 236-242.
  • Rowe, D. M., and Min, G. (1998). Evaluation of thermoelectric modules for power generation. Journal of power sources, 73(2), 193-198.
  • Saleh, A. M., Mueller Jr, D. W., and Abu-Mulaweh, H. I. (2013). Flat-plate solar collector in transient operation: modeling and measurements. International Mechanical Engineering Congress and Exposition 56352, 09-036.
  • Sattar, S. (2020). Measuring Probability of Failure of Thermoelectric Legs through Lognormal and Weibull Distribution. Journal of Physics: Conference Series, 1560(1), 012025.
  • Soltani, S., Kasaeian, A., Sokhansefat, T., and Shafii, M. B. (2018). Performance investigation of a hybrid photovoltaic/thermoelectric system integrated with parabolic trough collector. Energy Conversion and Management, 159, 371-380.
  • Soman, K. (2018). Design and Development of a MEMS Stacked Thermoelectric Microwatt Generator. 3rd International Conference on Internet of Things: Smart Innovation and Usages, 1-5.
  • Suzuki, R. O., and Tanaka, D. (2003). Mathematical simulation of thermoelectric power generation with the multi-panels. Journal of Power Sources, 122(2), 201-209.
  • Tambunan, D. S., Sibagariang, Y. P., Ambarita, H., Napitupulu, F. H., and Kawai, H. (2018). Numerical study on the effects of absorptivity on performance of flat plate solar collector of a water heater. Journal of Physics: Conference Series. 978(1). 012099.
  • Thankakan, R., and Samuel Nadar, E. R. (2019). Investigation of Thermoelectric Generator with Power Converter for Energy Harvesting Applications. IETE Journal of Research, 1-13.
  • Thankakan, R., and Nadar, E. R. S. (2020). Modeling and Analysis of Thermoelectric Energy Harvesting System with High-Gain Power Converter. Journal of Control, Automation and Electrical Systems, 31(2), 367-376.
  • Tsai, H. L., and Lin, J. M. (2010). Model building and simulation of thermoelectric module using Matlab/Simulink. Journal of Electronic Materials, 39(9), 2105-2112.
  • Wu, C. (1996). Analysis of waste-heat thermoelectric power generators. Applied Thermal Engineering, 16(1), 63-69.
  • Yan, J., Liao, X., Ji, S., and Zhang, S. (2018). MEMS-based thermoelectric–photoelectric integrated power generator. Journal of Microelectromechanical Systems, 28(1), 1-3.
  • Yin, E., Li, Q., and Xuan, Y. (2018). Effect of non-uniform illumination on performance of solar thermoelectric generators. Frontiers in Energy, 12(2), 239-248.
  • Yu, J., and Zhao, H. (2007). A numerical model for thermoelectric generator with the parallel-plate heat exchanger. Journal of Power Sources, 172(1), 428-434.
  • Zhan, Z., ElKabbash, M., Li, Z., Li, X., Zhang, J., Rutledge, J.,and Guo, C. (2019). Enhancing thermoelectric output power via radiative cooling with nanoporous alumina. Nano Energy, 65, 104060.
  • Zhao, D., Xu, Y., Gouttebroze, S., Friis, J., and Li, Y. (2020). Modelling the age-hardening precipitation by a revised Langer and Schwartz approach with log-normal size distribution. Metallurgical and Materials Transactions A, 51(9), 4838-4852.
  • Zima, W., and Dziewa, P. (2011). Modelling of liquid flat-plate solar collector operation in transient states. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 225(1), 53-62
Toplam 72 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Endüstri Mühendisliği
Bölüm Review Article
Yazarlar

G. Udhaya Sankar 0000-0002-1416-9590

Ganesa Moorthy C. 0000-0003-3119-7531

C. T. Ramasamy Bu kişi benim 0000-0001-7765-1432

Raj Kumar G. Bu kişi benim 0000-0002-7430-9903

Proje Numarası Alu/RUSA/Project Fellow –Science/2019
Yayımlanma Tarihi 30 Haziran 2021
Gönderilme Tarihi 18 Şubat 2021
Kabul Tarihi 24 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 2

Kaynak Göster

APA Sankar, G. U., C., G. M., Ramasamy, C. T., G., R. K. (2021). A review on recent opportunities in MATLAB software based modelling for thermoelectric applications. International Journal of Energy Applications and Technologies, 8(2), 70-79. https://doi.org/10.31593/ijeat.882470
AMA Sankar GU, C. GM, Ramasamy CT, G. RK. A review on recent opportunities in MATLAB software based modelling for thermoelectric applications. IJEAT. Haziran 2021;8(2):70-79. doi:10.31593/ijeat.882470
Chicago Sankar, G. Udhaya, Ganesa Moorthy C., C. T. Ramasamy, ve Raj Kumar G. “A Review on Recent Opportunities in MATLAB Software Based Modelling for Thermoelectric Applications”. International Journal of Energy Applications and Technologies 8, sy. 2 (Haziran 2021): 70-79. https://doi.org/10.31593/ijeat.882470.
EndNote Sankar GU, C. GM, Ramasamy CT, G. RK (01 Haziran 2021) A review on recent opportunities in MATLAB software based modelling for thermoelectric applications. International Journal of Energy Applications and Technologies 8 2 70–79.
IEEE G. U. Sankar, G. M. C., C. T. Ramasamy, ve R. K. G., “A review on recent opportunities in MATLAB software based modelling for thermoelectric applications”, IJEAT, c. 8, sy. 2, ss. 70–79, 2021, doi: 10.31593/ijeat.882470.
ISNAD Sankar, G. Udhaya vd. “A Review on Recent Opportunities in MATLAB Software Based Modelling for Thermoelectric Applications”. International Journal of Energy Applications and Technologies 8/2 (Haziran 2021), 70-79. https://doi.org/10.31593/ijeat.882470.
JAMA Sankar GU, C. GM, Ramasamy CT, G. RK. A review on recent opportunities in MATLAB software based modelling for thermoelectric applications. IJEAT. 2021;8:70–79.
MLA Sankar, G. Udhaya vd. “A Review on Recent Opportunities in MATLAB Software Based Modelling for Thermoelectric Applications”. International Journal of Energy Applications and Technologies, c. 8, sy. 2, 2021, ss. 70-79, doi:10.31593/ijeat.882470.
Vancouver Sankar GU, C. GM, Ramasamy CT, G. RK. A review on recent opportunities in MATLAB software based modelling for thermoelectric applications. IJEAT. 2021;8(2):70-9.