Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 8 Sayı: 4, 197 - 202, 31.12.2021
https://doi.org/10.31593/ijeat.803960

Öz

Destekleyen Kurum

ICAT20 ISTANBUL-0290

Proje Numarası

ICAT20 ISTANBUL-0290

Kaynakça

  • S. Amidi, "https://stanford.edu/~shervine/l/tr/teaching/cs-230/cheatsheet-convolutional-neural-networks," [Online].
  • C. Roemer, "https://cp4space.wordpress.com/page/2/," [Online].
  • F. Chollet, Deep Learning with Python, Manning, 2017.
  • H. A. Song and Y. Lee, "Hierarchical Representation Using NMF," International Conference on Neural Information Processing, pp. 466-473, 2013.
  • A. Gülcü and Z. Kuş, "Konvolüsyonel Sinir Ağlarında Hiper-Parametre Optimizasyonu Yöntemlerinin İncelenmesi," Gazi Üniversitesi Fen Bilimleri Dergisi , pp. 503-522, 2019.
  • İ. Kurtoğlu, G. A. Canlı, M. O. Canlı and Ö. S. Tuna, "Dünyada ve Ülkemizde İnsansız Sualtı Araçları(İSAA-AUV&ROV) Tasarım ve Uygulamaları," GİDB|DERGİ, vol. 4, pp. 43-75, 2015.
  • M. Dongfeng, C. Gui, Y. Lei and L. Zhigang, "Deepwater Pipeline Damage and Research on Countermeasure," Aquatic Procedia, pp. 180-190, 2015.
  • K. A. Uysal and N. Cansever, "Doğalgaz ve Petrol Boru Hatlarında Hidrojenin Neden Olduğu Çatlamalar," in 3rd International Non-Destructive Testing Symposium and Exhibition, İstanbul, 2008.
  • M. Graf, A. Liessem and K. R. Pöpperling, Review of the HIC Test Requirements for Linepipe over the years 1975 to 2000, Germany: Europipe, 1999.
  • A. Jernelöv, "The Threats from Oil Spills: Now, Then, and in the Future," AMBIO, no. 39, pp. 353-366, 2010.

Leakage detection in underwater oil and natural gas pipelines using convolutional neural networks

Yıl 2021, Cilt: 8 Sayı: 4, 197 - 202, 31.12.2021
https://doi.org/10.31593/ijeat.803960

Öz

Underwater oil and natural gas pipelines are an underwater transport infrastructure known to be reliable, fast, and efficient, preferred for the transmission of energy to far distances. The rapid and continuous increase in demand for energy due to population growth, industrial developments, and global growth requires economic and environmental solutions for the safe transmission and control of energy sources such as oil and natural gas. These lines are damaged due to their work in corrosive ambient conditions, natural elements such as sudden change of air and water temperatures, tectonic activities, and external elements such as blows caused by fishing equipment and military exercises. Therefore, it is necessary to determine the damages without requiring more hardware, saving time, and cost. In this study, underwater oil and natural gas pipelines were detected using convolutional neural networks and the detection performance of artificial neural network was analyzed. Underwater pipelines are detected using convolutional neural networks with 97.63% accuracy. A reliable, fast, efficient, controlled, and sustainable model is established to prevent potential damage to underwater pipelines from becoming an environmental threat to water and air pollution and living creatures in the underwater ecosystem with this study.

Proje Numarası

ICAT20 ISTANBUL-0290

Kaynakça

  • S. Amidi, "https://stanford.edu/~shervine/l/tr/teaching/cs-230/cheatsheet-convolutional-neural-networks," [Online].
  • C. Roemer, "https://cp4space.wordpress.com/page/2/," [Online].
  • F. Chollet, Deep Learning with Python, Manning, 2017.
  • H. A. Song and Y. Lee, "Hierarchical Representation Using NMF," International Conference on Neural Information Processing, pp. 466-473, 2013.
  • A. Gülcü and Z. Kuş, "Konvolüsyonel Sinir Ağlarında Hiper-Parametre Optimizasyonu Yöntemlerinin İncelenmesi," Gazi Üniversitesi Fen Bilimleri Dergisi , pp. 503-522, 2019.
  • İ. Kurtoğlu, G. A. Canlı, M. O. Canlı and Ö. S. Tuna, "Dünyada ve Ülkemizde İnsansız Sualtı Araçları(İSAA-AUV&ROV) Tasarım ve Uygulamaları," GİDB|DERGİ, vol. 4, pp. 43-75, 2015.
  • M. Dongfeng, C. Gui, Y. Lei and L. Zhigang, "Deepwater Pipeline Damage and Research on Countermeasure," Aquatic Procedia, pp. 180-190, 2015.
  • K. A. Uysal and N. Cansever, "Doğalgaz ve Petrol Boru Hatlarında Hidrojenin Neden Olduğu Çatlamalar," in 3rd International Non-Destructive Testing Symposium and Exhibition, İstanbul, 2008.
  • M. Graf, A. Liessem and K. R. Pöpperling, Review of the HIC Test Requirements for Linepipe over the years 1975 to 2000, Germany: Europipe, 1999.
  • A. Jernelöv, "The Threats from Oil Spills: Now, Then, and in the Future," AMBIO, no. 39, pp. 353-366, 2010.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği
Bölüm Research Article
Yazarlar

Ayşegül Avcı 0000-0002-9051-3816

Seda Kartal 0000-0003-4756-5490

Proje Numarası ICAT20 ISTANBUL-0290
Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 1 Ekim 2020
Kabul Tarihi 20 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 4

Kaynak Göster

APA Avcı, A., & Kartal, S. (2021). Leakage detection in underwater oil and natural gas pipelines using convolutional neural networks. International Journal of Energy Applications and Technologies, 8(4), 197-202. https://doi.org/10.31593/ijeat.803960
AMA Avcı A, Kartal S. Leakage detection in underwater oil and natural gas pipelines using convolutional neural networks. IJEAT. Aralık 2021;8(4):197-202. doi:10.31593/ijeat.803960
Chicago Avcı, Ayşegül, ve Seda Kartal. “Leakage Detection in Underwater Oil and Natural Gas Pipelines Using Convolutional Neural Networks”. International Journal of Energy Applications and Technologies 8, sy. 4 (Aralık 2021): 197-202. https://doi.org/10.31593/ijeat.803960.
EndNote Avcı A, Kartal S (01 Aralık 2021) Leakage detection in underwater oil and natural gas pipelines using convolutional neural networks. International Journal of Energy Applications and Technologies 8 4 197–202.
IEEE A. Avcı ve S. Kartal, “Leakage detection in underwater oil and natural gas pipelines using convolutional neural networks”, IJEAT, c. 8, sy. 4, ss. 197–202, 2021, doi: 10.31593/ijeat.803960.
ISNAD Avcı, Ayşegül - Kartal, Seda. “Leakage Detection in Underwater Oil and Natural Gas Pipelines Using Convolutional Neural Networks”. International Journal of Energy Applications and Technologies 8/4 (Aralık 2021), 197-202. https://doi.org/10.31593/ijeat.803960.
JAMA Avcı A, Kartal S. Leakage detection in underwater oil and natural gas pipelines using convolutional neural networks. IJEAT. 2021;8:197–202.
MLA Avcı, Ayşegül ve Seda Kartal. “Leakage Detection in Underwater Oil and Natural Gas Pipelines Using Convolutional Neural Networks”. International Journal of Energy Applications and Technologies, c. 8, sy. 4, 2021, ss. 197-02, doi:10.31593/ijeat.803960.
Vancouver Avcı A, Kartal S. Leakage detection in underwater oil and natural gas pipelines using convolutional neural networks. IJEAT. 2021;8(4):197-202.