Derleme
BibTex RIS Kaynak Göster

Use of Algae as Foods or Food Ingredients and Their Effects on Health

Yıl 2020, Cilt: 2 Sayı: 2, 97 - 110, 20.12.2020

Öz

Problems such as food shortages and malnutrition that may be encountered with the increasing population have prompted mankind to seek out alternative food sources. In this context, algae are not only able to provide a sustainable food supply; they also attract attention with their high nutritional content and health benefits and are considered as candidates for functional foods with these properties. It is stated that consuming foods on a daily basis into which are incorporated functional ingredients produced by algae improves health and reduces the risk of chronic disease. Algae, having been evaluated as a food for centuries in Asia, have begun to be used in almost every region of the world as both a food and a food additive or food supplement. Aside from the food industry, algae are among the essential sources that are used in many fields such as medicine, pharmaceutics, agriculture, animal nutrition, waste treatment, cosmetics, and biodiesel production. In this review, information related to the general properties and important ingredients of algae, their usage as food or in foods, and their health benefits have been summarized.

Kaynakça

  • Abu-Ghannam, N., Shannon, E. (2017). Seaweed carotenoid fucoxanthin as functional Food. In: Microbial Functional Foods and Nutraceuticals. Gupta, V. K., Treichel, H., Shapaval, V., Antonio de Oliveira, L., Tuohy, M.G. (eds.), John Wiley & Sons, UK, 39-64.
  • Afonso, N.C., Catarino, M.D., Silva, A.M.S., Cardoso, S.M. (2019). Brown macroalgae as valuable food ingredients. Antioxidants, 8(9): 365-390.
  • Ak, B., Avşaroğlu, E., Işık, O., Özyurt, G., Kafkas, E., Etyemez, M., Uslu, L. (2016). Nutritional and physicochemical characteristics of bread enriched with microalgae Spirulina platensis. International Journal of Engineering Research and Application, 6(12): 30-38.
  • Ak, İ. (2015). Sucul ortamın ekonomik bitkileri; makro algler. Dünya Gıda, 12: 88-97.
  • Ak, İ., Cirik, S. (2017). Mavi-Yeşil algler (siyanobakteriler) ve termalizm. Su Ürünleri Dergisi, 34(2): 227-233.
  • Aktar, S., Cebe, G.E. (2010). Alglerin genel özellikleri, kullanım alanları ve eczacılıkta önemi. Ankara Eczacılık Fakültesi Dergisi, 39(3): 237-264.
  • Akyıl, S., İlter, I., Koç, M., Kaymak-Ertekin, F. (2016). Alglerden elde edilen yüksek değerlikli bileşiklerin biyoaktif/biyolojik uygulama alanları. Akademik Gıda, 14(4): 418-423.
  • Alam, T., Najam, L., Al Harrasi, A. (2018). Extraction of natural pigments from marine algae. Journal of Agricultural and Marine Sciences, 23: 81-91.
  • Ambati, R.R., Gogisetty, D., Aswathanarayana, R.G., Ravi, S., Bikkina, P.N., Bo, L., Yuepeng, S. (2019). Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects. Critical Reviews in Food Science and Nutrition, 59(12): 1880-1902.
  • Aratboni, H.A., Rafiei, N., Garcia-Granados, R., Alemzadeh, A., Morones-Ramírez, J.R. (2019). Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microbial Cell Factories, 18: 178-194.
  • Arufe, S., Della Valle, G., Chiron, H., Chenlo, F., Sineiro, J., Moreira, R. (2018). Effect of brown seaweed powder on physical and textural properties of wheat bread. European Food Research and Technology, 244: 1-10.
  • Barka, A., Blecker, C. (2016). Microalgae as a potential source of single-cell proteins. A review. Biotechnology, Agronomy, Society and Environment, 20(3): 427-436.
  • Barkallah, M., Dammak, M., Louati, I., Hentati, F., Hadrich, B., Mechichi, T., Ayadi M.A., Fendri, I., Attia, H., Abdelkafi, S. (2017). Effect of Spirulina platensis fortification on physicochemical, textural, antioxidant and sensory properties of yogurt during fermentation and storage. Lebensmittel-Wissenschaft & Technologie, 84: 323-330.
  • Baytaşoğlu, H., Başusta, N. (2015). Deniz canlılarının tıp ve eczacılık alanlarında kullanılması. Yunus Araştırma Bülteni, 2: 71-80.
  • Begum, H., Yusoff, F.MD., Banerjee, S., Khatoon, H., Shariff, M. (2016). Availability and utilization of pigments from microalgae. Critical Reviews in Food Science and Nutrition, 56(13): 2209-2222.
  • Bleakley, S., Hayes M. (2017). Algal Proteins: extraction, application, and challenges concerning production. Foods, 6(5): 33-66.
  • Caporgno, M.P., Haberkorn, I., Böcker, L., Mathys, A. (2019). Cultivation of Chlorella protothecoides under different growth modes and its utilisation in oil/water emulsions. Bioresource Technology, 288: 121476. https://doi.org/10.1016/j.biortech.2019.121476
  • Caporgno, M.P., Mathys, A. (2018). Trends in microalgae incorporation into innovative food products with potential health benefits. Frontiers in Nutrition, 5: 58. https://doi.org/10.3389/fnut.2018.00058
  • Chacón-Lee, T., González-Mariño, G. (2010). Microalgae for “healthy” foods—possibilities and challenges. Comprehensive Reviews in Food Science and Food Safety, 9: 655-675.
  • Charrier, B., Abreu, M.H., Araujo, R., Bruhn, A., Coates, J.C., De Clerck, O., Katsaros, C., Robaina, R.R., Wichard, T. (2017). Furthering knowledge of seaweed growth and development to facilitate sustainable aquaculture. New Phytologist, 216: 967–975.
  • Chen, Z., Wang, L., Qiu, S., Ge, S. (2018). Determination of microalgal lipid content and fatty acid for biofuel production. Hindawi BioMed Research International, https://doi.org/10.1155/2018/1503126.
  • Cho, T.J., Rhee, M.S. (2020). Health functionality and quality control of laver (Porphyra, Pyropia): Current issues and future perspectives as an edible seaweed. Marine Drugs, 18(1): 14.
  • Christaki, E., Florou-Paneri, P., Bonos, E. (2011). Microalgae: a novel ingredient in nutrition. International Journal of Food Sciences and Nutrition, 62(8): 794-799.
  • Circuncisão, A.R., Catarino, M.D., Cardoso, S.M., Silva, A.M.S. (2018). Minerals from macroalgae origin: health benefits and rsiks for consumers. Marine Drugs, 16(11): 400-429.
  • Cornish, M.L., Garbary, D.J. (2010). Antioxidants from macroalgae: potential applications in human health and nutrition. Algae, 25(4): 155-171.
  • Costard, G. S., Machado, R. R., Barbarino, E., Martino, R. C., Lourenço, S.O. (2012). Chemical composition of five marine microalgae that occur on the Brazilian coast. International Journal of Fisheries and Aquaculture, 4(9): 191-201.
  • Demiriz, T. (2008). Bazı alglerin antibakteriyel etkileri (Yüksek Lisans Tezi). Ankara Üniversitesi Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, Ankara, 60 s.
  • De Marco, E.R., Steffolani, M.E., Martínez, C.S., León, A.E. (2014). Effects of spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT-Food Science and Technology, 58(1): 102-108.
  • De Morais, M.G., Vaz, B.S., De Morais, E.G., Costa, J.A.V. (2015). Biologically active metabolites synthesized by microalgae. Biomed Research International, https://doi.org/10.1155/2015/835761
  • De Quirós, A.R.B., Lage-Yusty, M.A., López-Hernández, J. (2010). Determination of phenolic compounds in macroalgae for human consumption. Food Chemistry, 121(2): 634-638.
  • Dineshkumar, R., Narendran, R., Jayasingam, P., Sampathkumar, P. (2017). Cultivation and chemical composition of microalgaoğure Chlorella vulgaris and its antibacterial activity against human pathogens. Journal of Aquaculture & Marine Biology, 5(3): 00119. https://doi.org/10.15406/jamb.2017.05.00119
  • Duan, E. (2013). Bazı deniz makroalglerinden (Ulva sp. Cystoseria sp.) fermente sıvı organik gübre üretimi ve taze fasulye (Phaseolus vulgaris) verimine etkisinin belirlenmesi (Yüksek Lisans Tezi). Giresun Üniversitesi Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, Giresun, 64 s.
  • Dumlupınar, Y.M. (2012). İzmir ilinde gelişen bazı mavi-yeşil alglerin (Cyanophyta: Cyanobacteria) izolasyonu ve kültürü (Yüksek Lisans Tezi). Ege Üniversitesi Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, İzmir, 48 s.
  • Durucan, F., Turna, İ.İ. (2014). Antalya ili batı kıyıları (Lara-Kalkan)’nın ekonomik amaçlı deniz algleri. SDU Journal of Science, 9(2): 1-11.
  • Elcik, H., Çakmakçı, M. (2017). Mikroalg üretimi ve mikroalglerden biyoyakıt eldesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 32(3): 795-820.
  • El-Baz, F.K., Abdo, S.M., Hussein, A.M.S. (2017). Microalgae Dunaliella salina for use as food supplement to improve pasta quality. International Journal of Pharmaceutical Sciences Review and Research, 46(2): 45-51.
  • El Gamal, A.A. (2010). Biological importance of marine algae. Saudi Pharmaceutical Journal, 18(1): 1-25.
  • El Nakib, D.M., Ibrahim, M.M., Mahmoud, N.S., Abd El Rahman, E.N., Ghaly, A.E. (2019). Incorporation of Spirulina (Athrospira platensis) in traditional Egyptian cookies as a source of natural bioactive molecules and functional ingredients: Preparation and sensory evaluation of nutrition snack for school children. European Journal of Nutrition & Food Safety, 9(4): 372-297.
  • Food and Agriculture Organization of the United Nations (2018). The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable development goals. Rome. Erişim adresi: http://www.fao.org/3/i9540en/i9540en.pdf (accessed 25.09.2020)
  • Food and Agriculture Organization of the United Nations (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome. Erişim adresi: http://www.fao.org/3/ca9229en/CA9229EN.pdf (accessed 25.09.2020)
  • Fernandes, I., Pinto, R. (2019). Fatty acids polyunsaturated as bioactive compounds of microalgae: Contribution to human health. Global Journal of Nutrition and Food Science, 2(1): https://doi.org/10.33552/GJNFS.2019.02.000526
  • Ferreira, V.S., Sant’Anna, C. (2017). Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World Journal of Microbiology and Biotechnology, 33(20): https://doi.org/10.1007/s11274-016-2181-6
  • Fitzgerald, C., Gallagher, E., Tasdemir, D., Hayes, M. (2011). Heart health peptides from macroalgae and their potential use in functional foods. Journal of Agricultural and Food Chemistry, 59(13): 6829-6836.
  • Folarin, O., Sharma, L. (2017). Algae as functional food. International Journal of Home Science, 3(2): 166-170.
  • Garcia-Vaquero, M., Hayes, M. (2016). Red and green macroalgae for fish and animal feed and human functional food development. Food Reviews International, 32(1): 15-45.
  • Gomez-Zavaglia, A., Lage, M.A.P., Jimenez-Lopez, C., Mejuto, J.C., Simal-Gandara, J. (2019). The potential of seaweeds as a source of functional ıngredients of prebiotic and antioxidant value. Antioxidants, 8(9): 406.
  • Gouveia, L., Batista, A.P., Sousa, I., Raymundo, A., Bandarra, R.M. (2008). Microalgae in novel food products. In: Food Chemistry Research Developments. Papadopoulos, K.N (ed.), Nova Science Publishers, 1-37.
  • Graça, C., Fradinho, P., Sousa, I., Raymundo, A. (2018). Impact of Chlorella vulgaris on the rheology of wheat flour dough and bread texture. LWT- Food Science and Technology, 89: 466-474.
  • Gupta, S., Gupta, C., Garg, A.P., Prakash, D. (2017). Probiotic efficiency of blue green algae on probiotics microorganisms. Journal of Microbiology and Experimentation, 4(4): 00120. https://doi.org/10.15406/jmen.2017.04.00120
  • Guschina, I.A., Harwood, J.L. (2006). Lipids and lipid meatbolism in eukaryotic algae. Progress in Lipid Research, 45(2): 160-186.
  • Gümüş, B., Ünlüsayın, M. (2016). Tüketilebilir iki makroalg ekstraktının antimikrobiyal aktivitelerinin belirlenmesi. Ege Journal of Fisheries and Aquatic Sciences, 33(4): 389-395.
  • Güner, H. (1994). Algler: İlkel su bitkileri. Bilim ve Teknik, 322(9): 72-77.
  • Güroy, B. (2020). Determination of the phycocyanin, protein content and sensory properties of muffins containing Spirulina powder or fresh Spirulina. Journal of Food and Feed Science – Technology, 23 (1): 10-18.
  • Hu, J., Nagarajan, D., Zhang, Q., Chang, J.S., Lee, D.J. (2018). Heterotropic cultivation of microalgae for pigment production: A review. Biotechnology Advances, 36(1): 54-67.
  • Ibañez, E., Cifuentes, A. (2012). Benefits of using algae as natural sources of functional ingredients. Journal of the Science of Food and Agriculture, 93: 703-709.
  • Isaka, S., Cho, K., Nakazono, S., Abu, R., Ueno, M., Kim, D., Oda, T. (2015). Antioxidant and anti-inflammatory activities of porphyran isolated from discolored nori (Porphyra yezoensis). International Journal of Biological Macromolecules, 74: 68-75.
  • Jibril, S.M., Jakada, B. H., Umar, H.Y., Ahmad, T.A. (2016). Importance of some algal species as a source of food and supplement. International Journal of Current Microbiology and Applied Sciences, 5(5): 186-193.
  • Kazir, M., Abuhassire, Y., Robin, A., Nahor, O., Luo, J., Israel, A., Golberg, A., Livney, Y. D. (2019). Extraction of proteins from two marine macroalgae, Ulva sp. and Gracilaria sp., for food application, and evaluating digestibility, amino acid composition and antioxidant properties of the protein concentrates. Food Hydrocolloids, 87: 194-203.
  • Kelman, D., Kromkowski Posner, E., Mc Dermid, K.J., Tabandera, N.K., Wright, P.R., Wright, A.D. (2012). Antioxidant activity of Hawaiian marine algae. Marine Drugs, 10(2): 403-416.
  • Khan, M.I., Shin, J.H., Kim, J.D. (2018). The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17: 36. https://doi.org/10.1186/s12934-018-0879-x
  • Kılınç, B., Cirik, S., Turan, G., Tekogul, H., Koru, E. (2013). Seaweeds for Food and Industrial Applications. In: Food Industry. Muzzalupo, I. (ed.), doi: dx.doi.org/10.5772/53172. Erişim adresi: https://www.intechopen.com/books/food-industry/seaweeds-for-food-and-industrial-applications (accessed 26.09.2020).
  • Kumari, P., Kumar, M., Reddy, C.R.K., Cha, B. (2013). Algal lipids, fatty acids and sterols. In: Functional ingredients from algae for foods and nutraceuticals. Domíngues, H. (ed.), Woodhead Publishing, 87-134
  • Lafarga, T. (2019). Effect of microalgal biomass incorporation into foods: Nutritional and sensorial attributes of the end products. Algal Research, 41: 101566. https://doi.org/10.1016/j.algal.2019.101566
  • Levine, I.A., Cheney, D. (1998). North American Porphyra cultivation. In: New Developments in Marine Biotechnology Gal, Y.L., Halvorson, H.O. (eds,), Springer, Boston MA, 141-144.
  • Lordan, C., Thapa, D., Ross, R.P., Cotter, P.D. (2020). Potential for enriching next-generation health-promoting gut bacteria through prebiotics and dietary components. Gut Microbes, 11(1): 1-20.
  • Maghraby, D.M.E., Fakhry, E.M. (2015). Lipid content and fatty acid composition of Mediterranean macro-algae as dynamic factors for biodiesel production. Oceanologia, 57(1): 86-92.
  • Malik, P., Kempanna, C., Murthy, N., Anjum, A. (2013). Quality characteristics of yoghurt enriched with Spirulina powder. Mysore Journal of Agricultural Science, 47 (2): 354-359.
  • Mata, T.M., Martins, A.A., Caetano, N.S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1): 217-232.
  • Milledge, J. J., Harvey, P.J. (2016). Potential process ‘hurdles’ in the use of macroalgae as feedstock for biofuel production in the British Isles. Journal of Chemical Technology and Biotechnology, 91: 2221-2234.
  • Mimouni, V., Ulmann, L., Haimeur, A., Guéno, F., Meskini, N., Tremblin, G. (2015). Marine microalgae used as food supplements and their implication in preventing cardiovascular diseases. Oilseeds and Fats Crops and Lipids, 22(4): D409. https://doi.org/10.1051/ocl/2015015
  • Niccolai, A., Zittelli, G.C., Rodolfi, L., Biondi, N., Tredici, M.R. (2019). Microalgae of interest as food source: Biochemical composition and digestibility. Algal Research, 42: 101617. https://doi.org/10.1016/j.algal.2019.101617
  • Oğur, S. (2016). Kurutulmuş alglerin besin değeri ve gıda olarak kullanımı. Su Ürünleri Dergisi, 3(1): 67-79.
  • Onacık-Gür, S., Żbikowska, A., Majewska, B. (2018). Effect of Spirulina (Spirulina platensis) addition on textural and quality properties of cookies. Italian Journal of Food Science, 30: 1-12.
  • Osman, N.A., El-Manawy, I.M., Amin, A.S. (2011). Nutritional composition and mineral content of five macroalgae from red sea. Egyptian Journal of Phycology, 12: 89-102.
  • O’Sullivan, L., Murphy, B., McLoughlin, P., Duggan, P., Lawlor, P.G., Hughes, H., Gardiner, G.E. (2010). Prebiotics from marine macroalgae for human and animal health applications. Marine Drugs, 8(7): 2038-2064.
  • Öztürk, F., Hamzaçebi, S. (2019). Farklı çözgenlerle elde edilmiş Ulva lactuca ekstraktlarının antibakteriyal aktivitesi. Acta Aquatica Turcica, 15(3): 272-279.
  • Øverland, M., Mydland, L.T., Skrede, A. (2019). Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. Journal of the Science of Food and Agriculture, 99: 13-24.
  • Paes, C.R.P.S., Faria, G.R., Tinoco, N.A.B., Castro, D.J.F.A., Barbarino, E., Lourenço, S.O. (2016). Growth, nutrient uptake and chemical composition of Chlorella sp. and Nannochloropsis oculata under nitrogen starvation. Latin American Journal of Aquatic Research, 44(2): 275-292.
  • Paiva, L., Lima, E., Neto, A.I., Marcone, M., Baptista, J. (2016). Health promoting ingredients from four selected Azorean macroalgae. Food Research International, 89(1): 432-438.
  • Paiva, L., Lima, E., Neto, A.I., Marcone, M., Baptista, J. (2017). Nutritional and functional bioactivity value of selected Azorean macroalgae: Ulva compressa, Ulva rigida, Gelidium microdon, and Pterocladiella capillacea. Journal of Food Science, 82(7): 1757-1764.
  • Paiva, L., Lima, E., Patarra, R.F., Neto, A.I., Baptista, J. (2014). Edible Azorean macroalgae as source of rich nutrients with impact on human health. Food Chemistry, 164: 128-135.
  • Pérez-Legaspi, I.A., Valadez-Rocha, V., Ortega-Clemente, L.A., Jiménez-García, M.I. (2019). Microalgal pigment induction and transfer in aquaculture. Reviews in Aquaculture, 1-21. https://doi.org/10.1111/raq.12384
  • Poveda-Castillo, G.D.C., Rodrigo, D., Martínez, A., Pina-Pérez, M.C. (2018). Bioactivity of fucoidan as an antimicrobial agent in a new functional beverage. Beverages, 4(3): 64.
  • Prabhasankar, P., GAnesan, P., Bhaskar, N., Hirose, A., Stephen, N., Gowda, L.R., Hosokawa, M., Miyashita, K. (2009). Edible Japanese seaweed, wakame (Undaria pinnatifida) as an ingredient in pasta: Chemical, functional and structural evaluation. Food Chemistry, 115(2): 501-508.
  • Ragonese, C., Tedone, L., Beccari, M., Torre, G., Cichello, F., Cacciola, F., Dugo, P., Mondello, L. (2014). Characterization of lipid fraction of marine macroalgae by means of chromatography techniques coupled to mass spectrometry. Food Chemistry, 145: 932-940.
  • Ranga Rao, A., Ravishankar, G.A. (2018). Algae as source of functional ingredients for health benefits. Agricultural Research & Technology, 14(2): 555911. https://doi.org/10.19080/ARTOAJ.2018.14.555911
  • Raposo M.F, de Morais A.M., de Morais R.M. (2015). Carotenoids from marine microalgae: A valuable natural source for the prevention of chronic diseases. Marine Drugs, 13(8): 5128-5155.
  • Różyło, R., Hassoon, W.H., Gawlik-Dziki, U., Siastała, M., Dziki, D. (2017). Study on the physical and antioxidant properties of gluten-free bread with brown algae. CYTA – Journal of Food, 15(2): 196-203.
  • Rücker, J., Stüken, A., Nixdorf, B., Fastner, J., Chorus, I., Wiedner, C. (2007). Concentrations of particulate and dissolved cylindrospermopsin in 21 Aphanizomenon-dominated temperate lakes. Toxicon, 50(6): 800-809.
  • Saharan, V., Jood, S. (2017). Vitamins, minerals, protein digestibility and antioxidant activity of bread enriched with spirulina platensis powder. International Journal of Agricultural Sciences, 7(3): 1292-1297.
  • Sahay, S.M.I., Arunachalam, K., Nair, B.B., Jalayakshmy. (2016). Biochemical characterization of eight marine microalgae grown in batch cultures. Journal of Algal Biomass Utilization, 7(3): 19-41.
  • Sahni, P., Sharma, S., Singh, B. (2019). Evaluation and quality assessment of defatted microalgae meal of Chlorella as an alternative food ingredient in cookies. Nutrition and Food Science, 49(2): 221-231.
  • Sathasivam, R., Radhakrishnan, R., Hashem, A., Abd_Allah, E.F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26(4): 709-722.
  • Selmo, M.S., Salas-Mellado, M.M. (2014). Technological quality of bread from rice flour with Spirulina. International Food Research Journal, 21(4): 1523-1528.
  • Singh, P., Singh, R., Jha, A., Rasane, P., Gautam, A.K. (2015). Optimization of a process for high fibre and high protein biscuit. Journal of Food Science and Technology, 52: 1394-1403.
  • Sotiroudis, T.G., Sotiroudis, G.T. (2013). Health aspects of Spirulina (Arthrospira) microalga food supplement. Journal of The Serbian Chemical Society, 78(3): 395-405.
  • Stiger-Pouvreau, V., Bourgougnon, N., Deslandes, E. (2018). Carbohydrates from Seaweeds. In: Seaweed in Health and Disease Prevention. Fleurence, J., Levine, I. (eds.), 223-274. ISBN 978-0-12-802772-1,
  • Sudhakar, K., Mamat, R., Samykano, M., Azmi, W.H., Ishak, W.F.W., Yusaf, T. (2018). An overview of marine macroalgae as bioresource. Renewable and Sustainable Energy Reviews, 91: 165-179.
  • Tabarsa, M., Rezaei, M., Ramezanpour, Z., Waaland, J.R. (2012). Chemical compositions of the marine algae Gracilaria salicornia (Rhodophyta) and Ulva lactuca (Chlorophyta) as a potential food source. Journal of the Science of Food and Agriculture, 92: 2500-2506.
  • Tertychnaya, T.N., Manzhesov, V.I., Andrianov, E.A., Yakovleva, S.F. (2020). New aspects of application of microalgae Dunaliella Salina in the formula of enriched bread. IOP Conf. Series: Earth and Environmental Science, 422: 012021. https://doi.org/10.1088/1755-1315/422/1/012021
  • The Society of Food Hygiene and Technology (2012). Understanding Halal. Erişim adresi: http://www.sofht.co.uk/wp-content/uploads/2016/hifs/understanding-halal/index.html (accessed 26.09.2020)
  • Tohamy, M.M., Ali, M.A., Shaaban, H.A.G., Mohamad, A.G., Hasanain, A.M. (2018). Production of functional spreadable processed cheese using Chlorella vulgaris. Acta Scientiarum Polonorum Technologia Alimentaria, 17(4): 347-358.
  • Turan, G., Cirik, S. (2018). Thallassoterapi uygulamaları için kültür koşullarında yetiştirilen makroalglerin vitamin kompozisyonunun belirlenmesi. Ege Üniversitesi Su Ürünleri Dergisi, 35(2): 151-156.
  • Ünver Alçay, A., Bostan, K., Dinçel, E., Varlık, C. (2017). Alglerin insan gıdası olarak kullanımı. Aydın Gastronomy, 1(1): 47-59.
  • Vázquez-Rodríguez, J.A., Amaya-Guerra, C.A. (2016). Ulva genus as alternative crop: nutritional and functional properties. In: P. Konvalina (Ed.), Alternative Crops and Cropping Systems, doi: 10.5772/62787 Erişim adresi: https://www.intechopen.com/books/alternative-crops-and-cropping-systems/ulva-genus-as-alternative-crop-nutritional-and-functional-properties (accessed 26.09.2020).
  • Villarruel-López, A., Ascencio, F., Nuño, K. (2017). Microalgae, a potential natural functional food source – a review. Polish Journal of Food and Nutrition Sciences, 67(4): 251-263.
  • Vimala, T., Poonghuzhali, T.V. (2015). Estimation of pigments from seaweeds by using acetone and DMSO. International Journal of Science and Research, 4(10): 1850-1854.
  • Wells, M.L., Potin, P., Craigie, J.S., Raven, J.A., Merchant, S.S., Helliwell, K.E., Smith, A.G., Camire, M.E., Brawley, S.H. (2017). Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, 29: 949-982.
  • Wild, K.J., Trautmann, A., Katzenmeyer, M., Steingaẞ, H., Posten, C., Rodehutscord, M. (2019). Chemical composition and nutritional characteristics for ruminants of the microlagae Chlorella vulgaris obtained using different cultivation conditions. Algal Research, 38: 101385. https://doi.org/10.1016/j.algal.2018.101385
  • Yeşilova, K. (2014). Karadeniz’in batı kıyılarındaki baskın makroalglerde protein, karbonhidrat ve yağ içeriklerinin mevsimsel araştırılması (Yüksek Lisans Tezi). İstanbul Üniversitesi Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, İstanbul, 62 s.
  • Yu-Qing, T., Mahmood, K., Shehzadi, R., Ashraf, M.F. (2016). Ulva Lactuca and its polysaccharides: Food and biomedical aspects. Journal of Biology, Agriculture and Healthcare, 6 (1): 140-151.
  • Yüksel, K. (2009). İzmir ili ve çevresinde bulunan termal sularda gelişen bazı termofilik mavi-yeşil alglerin (siyanobakterilerin) izolasyonu ve moleküler yöntemlerle tayini (Yüksek Lisans Tezi). Ege Üniversitesi Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, İzmir, 82 s.

Alglerin Gıda veya Gıda Bileşeni Olarak Kullanımı ve Sağlık Üzerine Etkileri

Yıl 2020, Cilt: 2 Sayı: 2, 97 - 110, 20.12.2020

Öz

Artan nüfusla birlikte karşılaşılabilecek gıda yetersizliği ve dengesiz beslenme gibi sorunlar insanoğlunu alternatif kaynaklar bulmaya itmiştir. Bu bağlamda, algler sürdürülebilir gıda arzını sağlayabilmenin yanı sıra, yüksek besin içerikleri ve sağlık açısından faydalı yönleriyle dikkat çekmekte ve bu özellikleriyle aynı zamanda fonksiyonel gıda olmaya aday ürünler olarak değerlendirilmektedir. Alglerin ürettiği fonksiyonel bileşenlerin ilave edildiği gıdaların günlük olarak tüketilmesi sağlığı iyileştirip kronik hastalık riskini azaltabilmektedir. Asya ülkelerinde yüzyıllardır gıda olarak değerlendirilen algler artık dünyanın hemen hemen her bölgesinde gerek doğrudan gıda gerekse gıda katkı maddesi veya gıda takviyesi olarak kullanılmaya başlanmıştır. Algler gıda endüstrisi dışında tıp, eczacılık, tarım, hayvan beslenmesi, atıkların arıtılması, kozmetik, biyodizel üretimi gibi pek çok alanda yararlanılan önemli kaynaklar arasında yer almaktadır. Bu derlemede alglerin genel özellikleri, önemli bileşim öğeleri, doğrudan gıda olarak ya da gıdalarda kullanımlarına yönelik ve sağlığa faydalarıyla ilgili bilgiler özetlenmiştir.

Kaynakça

  • Abu-Ghannam, N., Shannon, E. (2017). Seaweed carotenoid fucoxanthin as functional Food. In: Microbial Functional Foods and Nutraceuticals. Gupta, V. K., Treichel, H., Shapaval, V., Antonio de Oliveira, L., Tuohy, M.G. (eds.), John Wiley & Sons, UK, 39-64.
  • Afonso, N.C., Catarino, M.D., Silva, A.M.S., Cardoso, S.M. (2019). Brown macroalgae as valuable food ingredients. Antioxidants, 8(9): 365-390.
  • Ak, B., Avşaroğlu, E., Işık, O., Özyurt, G., Kafkas, E., Etyemez, M., Uslu, L. (2016). Nutritional and physicochemical characteristics of bread enriched with microalgae Spirulina platensis. International Journal of Engineering Research and Application, 6(12): 30-38.
  • Ak, İ. (2015). Sucul ortamın ekonomik bitkileri; makro algler. Dünya Gıda, 12: 88-97.
  • Ak, İ., Cirik, S. (2017). Mavi-Yeşil algler (siyanobakteriler) ve termalizm. Su Ürünleri Dergisi, 34(2): 227-233.
  • Aktar, S., Cebe, G.E. (2010). Alglerin genel özellikleri, kullanım alanları ve eczacılıkta önemi. Ankara Eczacılık Fakültesi Dergisi, 39(3): 237-264.
  • Akyıl, S., İlter, I., Koç, M., Kaymak-Ertekin, F. (2016). Alglerden elde edilen yüksek değerlikli bileşiklerin biyoaktif/biyolojik uygulama alanları. Akademik Gıda, 14(4): 418-423.
  • Alam, T., Najam, L., Al Harrasi, A. (2018). Extraction of natural pigments from marine algae. Journal of Agricultural and Marine Sciences, 23: 81-91.
  • Ambati, R.R., Gogisetty, D., Aswathanarayana, R.G., Ravi, S., Bikkina, P.N., Bo, L., Yuepeng, S. (2019). Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects. Critical Reviews in Food Science and Nutrition, 59(12): 1880-1902.
  • Aratboni, H.A., Rafiei, N., Garcia-Granados, R., Alemzadeh, A., Morones-Ramírez, J.R. (2019). Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microbial Cell Factories, 18: 178-194.
  • Arufe, S., Della Valle, G., Chiron, H., Chenlo, F., Sineiro, J., Moreira, R. (2018). Effect of brown seaweed powder on physical and textural properties of wheat bread. European Food Research and Technology, 244: 1-10.
  • Barka, A., Blecker, C. (2016). Microalgae as a potential source of single-cell proteins. A review. Biotechnology, Agronomy, Society and Environment, 20(3): 427-436.
  • Barkallah, M., Dammak, M., Louati, I., Hentati, F., Hadrich, B., Mechichi, T., Ayadi M.A., Fendri, I., Attia, H., Abdelkafi, S. (2017). Effect of Spirulina platensis fortification on physicochemical, textural, antioxidant and sensory properties of yogurt during fermentation and storage. Lebensmittel-Wissenschaft & Technologie, 84: 323-330.
  • Baytaşoğlu, H., Başusta, N. (2015). Deniz canlılarının tıp ve eczacılık alanlarında kullanılması. Yunus Araştırma Bülteni, 2: 71-80.
  • Begum, H., Yusoff, F.MD., Banerjee, S., Khatoon, H., Shariff, M. (2016). Availability and utilization of pigments from microalgae. Critical Reviews in Food Science and Nutrition, 56(13): 2209-2222.
  • Bleakley, S., Hayes M. (2017). Algal Proteins: extraction, application, and challenges concerning production. Foods, 6(5): 33-66.
  • Caporgno, M.P., Haberkorn, I., Böcker, L., Mathys, A. (2019). Cultivation of Chlorella protothecoides under different growth modes and its utilisation in oil/water emulsions. Bioresource Technology, 288: 121476. https://doi.org/10.1016/j.biortech.2019.121476
  • Caporgno, M.P., Mathys, A. (2018). Trends in microalgae incorporation into innovative food products with potential health benefits. Frontiers in Nutrition, 5: 58. https://doi.org/10.3389/fnut.2018.00058
  • Chacón-Lee, T., González-Mariño, G. (2010). Microalgae for “healthy” foods—possibilities and challenges. Comprehensive Reviews in Food Science and Food Safety, 9: 655-675.
  • Charrier, B., Abreu, M.H., Araujo, R., Bruhn, A., Coates, J.C., De Clerck, O., Katsaros, C., Robaina, R.R., Wichard, T. (2017). Furthering knowledge of seaweed growth and development to facilitate sustainable aquaculture. New Phytologist, 216: 967–975.
  • Chen, Z., Wang, L., Qiu, S., Ge, S. (2018). Determination of microalgal lipid content and fatty acid for biofuel production. Hindawi BioMed Research International, https://doi.org/10.1155/2018/1503126.
  • Cho, T.J., Rhee, M.S. (2020). Health functionality and quality control of laver (Porphyra, Pyropia): Current issues and future perspectives as an edible seaweed. Marine Drugs, 18(1): 14.
  • Christaki, E., Florou-Paneri, P., Bonos, E. (2011). Microalgae: a novel ingredient in nutrition. International Journal of Food Sciences and Nutrition, 62(8): 794-799.
  • Circuncisão, A.R., Catarino, M.D., Cardoso, S.M., Silva, A.M.S. (2018). Minerals from macroalgae origin: health benefits and rsiks for consumers. Marine Drugs, 16(11): 400-429.
  • Cornish, M.L., Garbary, D.J. (2010). Antioxidants from macroalgae: potential applications in human health and nutrition. Algae, 25(4): 155-171.
  • Costard, G. S., Machado, R. R., Barbarino, E., Martino, R. C., Lourenço, S.O. (2012). Chemical composition of five marine microalgae that occur on the Brazilian coast. International Journal of Fisheries and Aquaculture, 4(9): 191-201.
  • Demiriz, T. (2008). Bazı alglerin antibakteriyel etkileri (Yüksek Lisans Tezi). Ankara Üniversitesi Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, Ankara, 60 s.
  • De Marco, E.R., Steffolani, M.E., Martínez, C.S., León, A.E. (2014). Effects of spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT-Food Science and Technology, 58(1): 102-108.
  • De Morais, M.G., Vaz, B.S., De Morais, E.G., Costa, J.A.V. (2015). Biologically active metabolites synthesized by microalgae. Biomed Research International, https://doi.org/10.1155/2015/835761
  • De Quirós, A.R.B., Lage-Yusty, M.A., López-Hernández, J. (2010). Determination of phenolic compounds in macroalgae for human consumption. Food Chemistry, 121(2): 634-638.
  • Dineshkumar, R., Narendran, R., Jayasingam, P., Sampathkumar, P. (2017). Cultivation and chemical composition of microalgaoğure Chlorella vulgaris and its antibacterial activity against human pathogens. Journal of Aquaculture & Marine Biology, 5(3): 00119. https://doi.org/10.15406/jamb.2017.05.00119
  • Duan, E. (2013). Bazı deniz makroalglerinden (Ulva sp. Cystoseria sp.) fermente sıvı organik gübre üretimi ve taze fasulye (Phaseolus vulgaris) verimine etkisinin belirlenmesi (Yüksek Lisans Tezi). Giresun Üniversitesi Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, Giresun, 64 s.
  • Dumlupınar, Y.M. (2012). İzmir ilinde gelişen bazı mavi-yeşil alglerin (Cyanophyta: Cyanobacteria) izolasyonu ve kültürü (Yüksek Lisans Tezi). Ege Üniversitesi Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, İzmir, 48 s.
  • Durucan, F., Turna, İ.İ. (2014). Antalya ili batı kıyıları (Lara-Kalkan)’nın ekonomik amaçlı deniz algleri. SDU Journal of Science, 9(2): 1-11.
  • Elcik, H., Çakmakçı, M. (2017). Mikroalg üretimi ve mikroalglerden biyoyakıt eldesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 32(3): 795-820.
  • El-Baz, F.K., Abdo, S.M., Hussein, A.M.S. (2017). Microalgae Dunaliella salina for use as food supplement to improve pasta quality. International Journal of Pharmaceutical Sciences Review and Research, 46(2): 45-51.
  • El Gamal, A.A. (2010). Biological importance of marine algae. Saudi Pharmaceutical Journal, 18(1): 1-25.
  • El Nakib, D.M., Ibrahim, M.M., Mahmoud, N.S., Abd El Rahman, E.N., Ghaly, A.E. (2019). Incorporation of Spirulina (Athrospira platensis) in traditional Egyptian cookies as a source of natural bioactive molecules and functional ingredients: Preparation and sensory evaluation of nutrition snack for school children. European Journal of Nutrition & Food Safety, 9(4): 372-297.
  • Food and Agriculture Organization of the United Nations (2018). The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable development goals. Rome. Erişim adresi: http://www.fao.org/3/i9540en/i9540en.pdf (accessed 25.09.2020)
  • Food and Agriculture Organization of the United Nations (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome. Erişim adresi: http://www.fao.org/3/ca9229en/CA9229EN.pdf (accessed 25.09.2020)
  • Fernandes, I., Pinto, R. (2019). Fatty acids polyunsaturated as bioactive compounds of microalgae: Contribution to human health. Global Journal of Nutrition and Food Science, 2(1): https://doi.org/10.33552/GJNFS.2019.02.000526
  • Ferreira, V.S., Sant’Anna, C. (2017). Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World Journal of Microbiology and Biotechnology, 33(20): https://doi.org/10.1007/s11274-016-2181-6
  • Fitzgerald, C., Gallagher, E., Tasdemir, D., Hayes, M. (2011). Heart health peptides from macroalgae and their potential use in functional foods. Journal of Agricultural and Food Chemistry, 59(13): 6829-6836.
  • Folarin, O., Sharma, L. (2017). Algae as functional food. International Journal of Home Science, 3(2): 166-170.
  • Garcia-Vaquero, M., Hayes, M. (2016). Red and green macroalgae for fish and animal feed and human functional food development. Food Reviews International, 32(1): 15-45.
  • Gomez-Zavaglia, A., Lage, M.A.P., Jimenez-Lopez, C., Mejuto, J.C., Simal-Gandara, J. (2019). The potential of seaweeds as a source of functional ıngredients of prebiotic and antioxidant value. Antioxidants, 8(9): 406.
  • Gouveia, L., Batista, A.P., Sousa, I., Raymundo, A., Bandarra, R.M. (2008). Microalgae in novel food products. In: Food Chemistry Research Developments. Papadopoulos, K.N (ed.), Nova Science Publishers, 1-37.
  • Graça, C., Fradinho, P., Sousa, I., Raymundo, A. (2018). Impact of Chlorella vulgaris on the rheology of wheat flour dough and bread texture. LWT- Food Science and Technology, 89: 466-474.
  • Gupta, S., Gupta, C., Garg, A.P., Prakash, D. (2017). Probiotic efficiency of blue green algae on probiotics microorganisms. Journal of Microbiology and Experimentation, 4(4): 00120. https://doi.org/10.15406/jmen.2017.04.00120
  • Guschina, I.A., Harwood, J.L. (2006). Lipids and lipid meatbolism in eukaryotic algae. Progress in Lipid Research, 45(2): 160-186.
  • Gümüş, B., Ünlüsayın, M. (2016). Tüketilebilir iki makroalg ekstraktının antimikrobiyal aktivitelerinin belirlenmesi. Ege Journal of Fisheries and Aquatic Sciences, 33(4): 389-395.
  • Güner, H. (1994). Algler: İlkel su bitkileri. Bilim ve Teknik, 322(9): 72-77.
  • Güroy, B. (2020). Determination of the phycocyanin, protein content and sensory properties of muffins containing Spirulina powder or fresh Spirulina. Journal of Food and Feed Science – Technology, 23 (1): 10-18.
  • Hu, J., Nagarajan, D., Zhang, Q., Chang, J.S., Lee, D.J. (2018). Heterotropic cultivation of microalgae for pigment production: A review. Biotechnology Advances, 36(1): 54-67.
  • Ibañez, E., Cifuentes, A. (2012). Benefits of using algae as natural sources of functional ingredients. Journal of the Science of Food and Agriculture, 93: 703-709.
  • Isaka, S., Cho, K., Nakazono, S., Abu, R., Ueno, M., Kim, D., Oda, T. (2015). Antioxidant and anti-inflammatory activities of porphyran isolated from discolored nori (Porphyra yezoensis). International Journal of Biological Macromolecules, 74: 68-75.
  • Jibril, S.M., Jakada, B. H., Umar, H.Y., Ahmad, T.A. (2016). Importance of some algal species as a source of food and supplement. International Journal of Current Microbiology and Applied Sciences, 5(5): 186-193.
  • Kazir, M., Abuhassire, Y., Robin, A., Nahor, O., Luo, J., Israel, A., Golberg, A., Livney, Y. D. (2019). Extraction of proteins from two marine macroalgae, Ulva sp. and Gracilaria sp., for food application, and evaluating digestibility, amino acid composition and antioxidant properties of the protein concentrates. Food Hydrocolloids, 87: 194-203.
  • Kelman, D., Kromkowski Posner, E., Mc Dermid, K.J., Tabandera, N.K., Wright, P.R., Wright, A.D. (2012). Antioxidant activity of Hawaiian marine algae. Marine Drugs, 10(2): 403-416.
  • Khan, M.I., Shin, J.H., Kim, J.D. (2018). The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17: 36. https://doi.org/10.1186/s12934-018-0879-x
  • Kılınç, B., Cirik, S., Turan, G., Tekogul, H., Koru, E. (2013). Seaweeds for Food and Industrial Applications. In: Food Industry. Muzzalupo, I. (ed.), doi: dx.doi.org/10.5772/53172. Erişim adresi: https://www.intechopen.com/books/food-industry/seaweeds-for-food-and-industrial-applications (accessed 26.09.2020).
  • Kumari, P., Kumar, M., Reddy, C.R.K., Cha, B. (2013). Algal lipids, fatty acids and sterols. In: Functional ingredients from algae for foods and nutraceuticals. Domíngues, H. (ed.), Woodhead Publishing, 87-134
  • Lafarga, T. (2019). Effect of microalgal biomass incorporation into foods: Nutritional and sensorial attributes of the end products. Algal Research, 41: 101566. https://doi.org/10.1016/j.algal.2019.101566
  • Levine, I.A., Cheney, D. (1998). North American Porphyra cultivation. In: New Developments in Marine Biotechnology Gal, Y.L., Halvorson, H.O. (eds,), Springer, Boston MA, 141-144.
  • Lordan, C., Thapa, D., Ross, R.P., Cotter, P.D. (2020). Potential for enriching next-generation health-promoting gut bacteria through prebiotics and dietary components. Gut Microbes, 11(1): 1-20.
  • Maghraby, D.M.E., Fakhry, E.M. (2015). Lipid content and fatty acid composition of Mediterranean macro-algae as dynamic factors for biodiesel production. Oceanologia, 57(1): 86-92.
  • Malik, P., Kempanna, C., Murthy, N., Anjum, A. (2013). Quality characteristics of yoghurt enriched with Spirulina powder. Mysore Journal of Agricultural Science, 47 (2): 354-359.
  • Mata, T.M., Martins, A.A., Caetano, N.S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1): 217-232.
  • Milledge, J. J., Harvey, P.J. (2016). Potential process ‘hurdles’ in the use of macroalgae as feedstock for biofuel production in the British Isles. Journal of Chemical Technology and Biotechnology, 91: 2221-2234.
  • Mimouni, V., Ulmann, L., Haimeur, A., Guéno, F., Meskini, N., Tremblin, G. (2015). Marine microalgae used as food supplements and their implication in preventing cardiovascular diseases. Oilseeds and Fats Crops and Lipids, 22(4): D409. https://doi.org/10.1051/ocl/2015015
  • Niccolai, A., Zittelli, G.C., Rodolfi, L., Biondi, N., Tredici, M.R. (2019). Microalgae of interest as food source: Biochemical composition and digestibility. Algal Research, 42: 101617. https://doi.org/10.1016/j.algal.2019.101617
  • Oğur, S. (2016). Kurutulmuş alglerin besin değeri ve gıda olarak kullanımı. Su Ürünleri Dergisi, 3(1): 67-79.
  • Onacık-Gür, S., Żbikowska, A., Majewska, B. (2018). Effect of Spirulina (Spirulina platensis) addition on textural and quality properties of cookies. Italian Journal of Food Science, 30: 1-12.
  • Osman, N.A., El-Manawy, I.M., Amin, A.S. (2011). Nutritional composition and mineral content of five macroalgae from red sea. Egyptian Journal of Phycology, 12: 89-102.
  • O’Sullivan, L., Murphy, B., McLoughlin, P., Duggan, P., Lawlor, P.G., Hughes, H., Gardiner, G.E. (2010). Prebiotics from marine macroalgae for human and animal health applications. Marine Drugs, 8(7): 2038-2064.
  • Öztürk, F., Hamzaçebi, S. (2019). Farklı çözgenlerle elde edilmiş Ulva lactuca ekstraktlarının antibakteriyal aktivitesi. Acta Aquatica Turcica, 15(3): 272-279.
  • Øverland, M., Mydland, L.T., Skrede, A. (2019). Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. Journal of the Science of Food and Agriculture, 99: 13-24.
  • Paes, C.R.P.S., Faria, G.R., Tinoco, N.A.B., Castro, D.J.F.A., Barbarino, E., Lourenço, S.O. (2016). Growth, nutrient uptake and chemical composition of Chlorella sp. and Nannochloropsis oculata under nitrogen starvation. Latin American Journal of Aquatic Research, 44(2): 275-292.
  • Paiva, L., Lima, E., Neto, A.I., Marcone, M., Baptista, J. (2016). Health promoting ingredients from four selected Azorean macroalgae. Food Research International, 89(1): 432-438.
  • Paiva, L., Lima, E., Neto, A.I., Marcone, M., Baptista, J. (2017). Nutritional and functional bioactivity value of selected Azorean macroalgae: Ulva compressa, Ulva rigida, Gelidium microdon, and Pterocladiella capillacea. Journal of Food Science, 82(7): 1757-1764.
  • Paiva, L., Lima, E., Patarra, R.F., Neto, A.I., Baptista, J. (2014). Edible Azorean macroalgae as source of rich nutrients with impact on human health. Food Chemistry, 164: 128-135.
  • Pérez-Legaspi, I.A., Valadez-Rocha, V., Ortega-Clemente, L.A., Jiménez-García, M.I. (2019). Microalgal pigment induction and transfer in aquaculture. Reviews in Aquaculture, 1-21. https://doi.org/10.1111/raq.12384
  • Poveda-Castillo, G.D.C., Rodrigo, D., Martínez, A., Pina-Pérez, M.C. (2018). Bioactivity of fucoidan as an antimicrobial agent in a new functional beverage. Beverages, 4(3): 64.
  • Prabhasankar, P., GAnesan, P., Bhaskar, N., Hirose, A., Stephen, N., Gowda, L.R., Hosokawa, M., Miyashita, K. (2009). Edible Japanese seaweed, wakame (Undaria pinnatifida) as an ingredient in pasta: Chemical, functional and structural evaluation. Food Chemistry, 115(2): 501-508.
  • Ragonese, C., Tedone, L., Beccari, M., Torre, G., Cichello, F., Cacciola, F., Dugo, P., Mondello, L. (2014). Characterization of lipid fraction of marine macroalgae by means of chromatography techniques coupled to mass spectrometry. Food Chemistry, 145: 932-940.
  • Ranga Rao, A., Ravishankar, G.A. (2018). Algae as source of functional ingredients for health benefits. Agricultural Research & Technology, 14(2): 555911. https://doi.org/10.19080/ARTOAJ.2018.14.555911
  • Raposo M.F, de Morais A.M., de Morais R.M. (2015). Carotenoids from marine microalgae: A valuable natural source for the prevention of chronic diseases. Marine Drugs, 13(8): 5128-5155.
  • Różyło, R., Hassoon, W.H., Gawlik-Dziki, U., Siastała, M., Dziki, D. (2017). Study on the physical and antioxidant properties of gluten-free bread with brown algae. CYTA – Journal of Food, 15(2): 196-203.
  • Rücker, J., Stüken, A., Nixdorf, B., Fastner, J., Chorus, I., Wiedner, C. (2007). Concentrations of particulate and dissolved cylindrospermopsin in 21 Aphanizomenon-dominated temperate lakes. Toxicon, 50(6): 800-809.
  • Saharan, V., Jood, S. (2017). Vitamins, minerals, protein digestibility and antioxidant activity of bread enriched with spirulina platensis powder. International Journal of Agricultural Sciences, 7(3): 1292-1297.
  • Sahay, S.M.I., Arunachalam, K., Nair, B.B., Jalayakshmy. (2016). Biochemical characterization of eight marine microalgae grown in batch cultures. Journal of Algal Biomass Utilization, 7(3): 19-41.
  • Sahni, P., Sharma, S., Singh, B. (2019). Evaluation and quality assessment of defatted microalgae meal of Chlorella as an alternative food ingredient in cookies. Nutrition and Food Science, 49(2): 221-231.
  • Sathasivam, R., Radhakrishnan, R., Hashem, A., Abd_Allah, E.F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26(4): 709-722.
  • Selmo, M.S., Salas-Mellado, M.M. (2014). Technological quality of bread from rice flour with Spirulina. International Food Research Journal, 21(4): 1523-1528.
  • Singh, P., Singh, R., Jha, A., Rasane, P., Gautam, A.K. (2015). Optimization of a process for high fibre and high protein biscuit. Journal of Food Science and Technology, 52: 1394-1403.
  • Sotiroudis, T.G., Sotiroudis, G.T. (2013). Health aspects of Spirulina (Arthrospira) microalga food supplement. Journal of The Serbian Chemical Society, 78(3): 395-405.
  • Stiger-Pouvreau, V., Bourgougnon, N., Deslandes, E. (2018). Carbohydrates from Seaweeds. In: Seaweed in Health and Disease Prevention. Fleurence, J., Levine, I. (eds.), 223-274. ISBN 978-0-12-802772-1,
  • Sudhakar, K., Mamat, R., Samykano, M., Azmi, W.H., Ishak, W.F.W., Yusaf, T. (2018). An overview of marine macroalgae as bioresource. Renewable and Sustainable Energy Reviews, 91: 165-179.
  • Tabarsa, M., Rezaei, M., Ramezanpour, Z., Waaland, J.R. (2012). Chemical compositions of the marine algae Gracilaria salicornia (Rhodophyta) and Ulva lactuca (Chlorophyta) as a potential food source. Journal of the Science of Food and Agriculture, 92: 2500-2506.
  • Tertychnaya, T.N., Manzhesov, V.I., Andrianov, E.A., Yakovleva, S.F. (2020). New aspects of application of microalgae Dunaliella Salina in the formula of enriched bread. IOP Conf. Series: Earth and Environmental Science, 422: 012021. https://doi.org/10.1088/1755-1315/422/1/012021
  • The Society of Food Hygiene and Technology (2012). Understanding Halal. Erişim adresi: http://www.sofht.co.uk/wp-content/uploads/2016/hifs/understanding-halal/index.html (accessed 26.09.2020)
  • Tohamy, M.M., Ali, M.A., Shaaban, H.A.G., Mohamad, A.G., Hasanain, A.M. (2018). Production of functional spreadable processed cheese using Chlorella vulgaris. Acta Scientiarum Polonorum Technologia Alimentaria, 17(4): 347-358.
  • Turan, G., Cirik, S. (2018). Thallassoterapi uygulamaları için kültür koşullarında yetiştirilen makroalglerin vitamin kompozisyonunun belirlenmesi. Ege Üniversitesi Su Ürünleri Dergisi, 35(2): 151-156.
  • Ünver Alçay, A., Bostan, K., Dinçel, E., Varlık, C. (2017). Alglerin insan gıdası olarak kullanımı. Aydın Gastronomy, 1(1): 47-59.
  • Vázquez-Rodríguez, J.A., Amaya-Guerra, C.A. (2016). Ulva genus as alternative crop: nutritional and functional properties. In: P. Konvalina (Ed.), Alternative Crops and Cropping Systems, doi: 10.5772/62787 Erişim adresi: https://www.intechopen.com/books/alternative-crops-and-cropping-systems/ulva-genus-as-alternative-crop-nutritional-and-functional-properties (accessed 26.09.2020).
  • Villarruel-López, A., Ascencio, F., Nuño, K. (2017). Microalgae, a potential natural functional food source – a review. Polish Journal of Food and Nutrition Sciences, 67(4): 251-263.
  • Vimala, T., Poonghuzhali, T.V. (2015). Estimation of pigments from seaweeds by using acetone and DMSO. International Journal of Science and Research, 4(10): 1850-1854.
  • Wells, M.L., Potin, P., Craigie, J.S., Raven, J.A., Merchant, S.S., Helliwell, K.E., Smith, A.G., Camire, M.E., Brawley, S.H. (2017). Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, 29: 949-982.
  • Wild, K.J., Trautmann, A., Katzenmeyer, M., Steingaẞ, H., Posten, C., Rodehutscord, M. (2019). Chemical composition and nutritional characteristics for ruminants of the microlagae Chlorella vulgaris obtained using different cultivation conditions. Algal Research, 38: 101385. https://doi.org/10.1016/j.algal.2018.101385
  • Yeşilova, K. (2014). Karadeniz’in batı kıyılarındaki baskın makroalglerde protein, karbonhidrat ve yağ içeriklerinin mevsimsel araştırılması (Yüksek Lisans Tezi). İstanbul Üniversitesi Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, İstanbul, 62 s.
  • Yu-Qing, T., Mahmood, K., Shehzadi, R., Ashraf, M.F. (2016). Ulva Lactuca and its polysaccharides: Food and biomedical aspects. Journal of Biology, Agriculture and Healthcare, 6 (1): 140-151.
  • Yüksel, K. (2009). İzmir ili ve çevresinde bulunan termal sularda gelişen bazı termofilik mavi-yeşil alglerin (siyanobakterilerin) izolasyonu ve moleküler yöntemlerle tayini (Yüksek Lisans Tezi). Ege Üniversitesi Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, İzmir, 82 s.
Toplam 112 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Derleme Makale
Yazarlar

Aybüke Sasa 0000-0002-7094-3069

Fatiha Şentürk 0000-0001-6406-0633

Yeşim Üstündağ 0000-0002-4483-4686

Fundagül Erem 0000-0003-1562-0686

Yayımlanma Tarihi 20 Aralık 2020
Kabul Tarihi 8 Kasım 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 2 Sayı: 2

Kaynak Göster

APA Sasa, A., Şentürk, F., Üstündağ, Y., Erem, F. (2020). Alglerin Gıda veya Gıda Bileşeni Olarak Kullanımı ve Sağlık Üzerine Etkileri. Uluslararası Mühendislik Tasarım Ve Teknoloji Dergisi, 2(2), 97-110.