BibTex RIS Kaynak Göster

MULTIFRACTAL BEHAVIOUR IN NATURAL GAS PRICES BY USING MF-DFA AND WTMM METHODS

Yıl 2013, Cilt: 5 Sayı: 1, 44 - 55, 01.06.2013

Öz

We make a comparative study of Multifractal Detrended Fluctuation Analysis (MF-DFA) and the Wavelet Transform Modulus Maxima (WTMM) method to detect multifractal character of natural gas daily returns. We give a brief introduction on above methods and compare their effectiveness. The results from this methodoligies show that behaviour of natural gas daily returns were multifractal. The major sources of multifractality are long-range correlations of small and large fluctuations and Fat-tail distributions of the series

Kaynakça

  • B.B. Manderlbrot,The Fractal Geometry ofNature, FreemanWH,New York, 1982.
  • W.Kantelhardt, S.A.Zschiegner, E.Koscienlny-Bunde, S. Havlin,Multifractal detrended fluctuation analysis of nonstationary time series,Physica A316 (2002) _114.
  • Muzy, J. F., Bacry, E. & Arneodo, A. (1994) The multifractal formalism revisited with wavelets. Int. J. Bifurc. Chaos. 4, 245-302. (1994)
  • Struzik. Z. R. (2000) Determining local singularity strengths and their spectra with the wavelet transform. Fractals 8, 163-179
  • Andrejs Puckovs, Andrejs Matvejevs, Wavelet Transform Modulus Maxima Approach for World Stock Index Multifractal Analysis.University,Information Technology and Management Science. pp76-86. Espen Ihlen (2012),”Introduction to multifractal detrended fluctuation analysis in
  • Matlab”,Frontiers in Physiology K. Matia, Y. Ashkenazy, H.E. Stanley, Multifractal properties of price fluctuations of stock and commodities, Europhysics Letter 61 (2003) 422–428.
  • Mallat, S. G. and Hwang, W. L. (1990). Technical Report #549, Computer
  • Science Department, New York University, unpublished. Muzy, J. F., Bacry, E. and Arneodo, A. (1991). Wavelets and multifractal formalism for singular signals: Application to turbulence data. Physical Review Letters, 67(25), 3515–3518.
  • Yalamova, R. (2003). Wavelet MRA of index patterns around financial market shocks. Ph.D. thesis, Kent State University.
Yıl 2013, Cilt: 5 Sayı: 1, 44 - 55, 01.06.2013

Öz

Kaynakça

  • B.B. Manderlbrot,The Fractal Geometry ofNature, FreemanWH,New York, 1982.
  • W.Kantelhardt, S.A.Zschiegner, E.Koscienlny-Bunde, S. Havlin,Multifractal detrended fluctuation analysis of nonstationary time series,Physica A316 (2002) _114.
  • Muzy, J. F., Bacry, E. & Arneodo, A. (1994) The multifractal formalism revisited with wavelets. Int. J. Bifurc. Chaos. 4, 245-302. (1994)
  • Struzik. Z. R. (2000) Determining local singularity strengths and their spectra with the wavelet transform. Fractals 8, 163-179
  • Andrejs Puckovs, Andrejs Matvejevs, Wavelet Transform Modulus Maxima Approach for World Stock Index Multifractal Analysis.University,Information Technology and Management Science. pp76-86. Espen Ihlen (2012),”Introduction to multifractal detrended fluctuation analysis in
  • Matlab”,Frontiers in Physiology K. Matia, Y. Ashkenazy, H.E. Stanley, Multifractal properties of price fluctuations of stock and commodities, Europhysics Letter 61 (2003) 422–428.
  • Mallat, S. G. and Hwang, W. L. (1990). Technical Report #549, Computer
  • Science Department, New York University, unpublished. Muzy, J. F., Bacry, E. and Arneodo, A. (1991). Wavelets and multifractal formalism for singular signals: Application to turbulence data. Physical Review Letters, 67(25), 3515–3518.
  • Yalamova, R. (2003). Wavelet MRA of index patterns around financial market shocks. Ph.D. thesis, Kent State University.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA56SZ47JJ
Bölüm Makaleler
Yazarlar

Cumhur Taş Bu kişi benim

Gazanfer Ünal Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2013
Yayımlandığı Sayı Yıl 2013 Cilt: 5 Sayı: 1

Kaynak Göster

APA Taş, C., & Ünal, G. (2013). MULTIFRACTAL BEHAVIOUR IN NATURAL GAS PRICES BY USING MF-DFA AND WTMM METHODS. International Journal of Economics and Finance Studies, 5(1), 44-55.
AMA Taş C, Ünal G. MULTIFRACTAL BEHAVIOUR IN NATURAL GAS PRICES BY USING MF-DFA AND WTMM METHODS. IJEFS. Haziran 2013;5(1):44-55.
Chicago Taş, Cumhur, ve Gazanfer Ünal. “MULTIFRACTAL BEHAVIOUR IN NATURAL GAS PRICES BY USING MF-DFA AND WTMM METHODS”. International Journal of Economics and Finance Studies 5, sy. 1 (Haziran 2013): 44-55.
EndNote Taş C, Ünal G (01 Haziran 2013) MULTIFRACTAL BEHAVIOUR IN NATURAL GAS PRICES BY USING MF-DFA AND WTMM METHODS. International Journal of Economics and Finance Studies 5 1 44–55.
IEEE C. Taş ve G. Ünal, “MULTIFRACTAL BEHAVIOUR IN NATURAL GAS PRICES BY USING MF-DFA AND WTMM METHODS”, IJEFS, c. 5, sy. 1, ss. 44–55, 2013.
ISNAD Taş, Cumhur - Ünal, Gazanfer. “MULTIFRACTAL BEHAVIOUR IN NATURAL GAS PRICES BY USING MF-DFA AND WTMM METHODS”. International Journal of Economics and Finance Studies 5/1 (Haziran 2013), 44-55.
JAMA Taş C, Ünal G. MULTIFRACTAL BEHAVIOUR IN NATURAL GAS PRICES BY USING MF-DFA AND WTMM METHODS. IJEFS. 2013;5:44–55.
MLA Taş, Cumhur ve Gazanfer Ünal. “MULTIFRACTAL BEHAVIOUR IN NATURAL GAS PRICES BY USING MF-DFA AND WTMM METHODS”. International Journal of Economics and Finance Studies, c. 5, sy. 1, 2013, ss. 44-55.
Vancouver Taş C, Ünal G. MULTIFRACTAL BEHAVIOUR IN NATURAL GAS PRICES BY USING MF-DFA AND WTMM METHODS. IJEFS. 2013;5(1):44-55.