Araştırma Makalesi
BibTex RIS Kaynak Göster

Innovative Microorganisms in Waste Oil Contaminated Soil Cleaning: Effective Microorganisms (EM) Based Treatment

Yıl 2025, Sayı: Advanced Online Publication, 88 - 98

Öz

With increasing industrial activities, pollution also increases and the environment is adversely affected. Especially heavy metal wastes maintain their existence in nature for a long time and seriously pollute the environment. Petroleum-based wastes such as waste oil contain heavy metals and pose a major threat to the environment. In addition to the physical and chemical treatment of heavy metals and other pollutions, more economical biotechnological methods have been developed and applied in recent years. In this thesis, it has been investigated whether soil pollution can be treated by applying effective microorganisms in the treatment of soil sample contaminated with waste oil. It is thought that effective microorganism technology in soil sample containing waste oil containing heavy metals in high concentration is applicable because it is economical. In the study, 80% of the total petroleum hydrocarbons in the soil were removed.

Kaynakça

  • REFERENCES [1] Erpul, G., & Akgöz, R. (2025). Integration of soil health concept into national policies and strategies in Türkiye, Journal of Soil Science and Plant Nutrition, 13(1) 81 – 95.
  • [2] İbik, T. (2025). The impact of the transportation sector on air pollution and environmental sustainability: example of the mediterranean region, Süleyman Demirel University Visionary Journal, 16(45), 324-342.
  • [3] Kürtül, K., Durğar, N., Körz, G., Kazan, M. A., & Özbek, H. U. (2025). Green future: Exploring environmental awareness and sensitivity, Multidisciplinary Approaches with Geography, 3(1), 21-32.
  • [4] Dindar, E., Cihan, N., Şağban, F. O. T., & Başkaya, H. S. (2017). Effect of sewage sludge application on enzyme activities in soils contaminated with crude oil and waste oil, Uludağ University, Journal of Engineering Faculty, 22(1). DOI: 10.17482/uumfd.305207
  • [5] Tiwaria, R., Agrawala, P., Bawaa, S., Karadbhajneb, V., & Agrawal, A. J. (2023). Soil contamination by waste transformer oil: A review, Materials Today: Proceedings, 72, 306–310. https://doi.org/10.1016/j.matpr.2022.07.403
  • [6] Caetano, G., Machado, R.deM., Correia, M. J. N., & Marrucho, I. M. (2024). Remediation of soils contaminated with total petroleum hydrocarbons through soil washing with surfactant solutions, Envıronmental Technology, 45(15), 2969–2982. https://doi.org/10.1080/09593330.2023.2198733
  • [7] Tran, H.-T., Vub, C.-T., Lina, C., Buic, X.-T., Huanga, W.-Y., Voa, T.-D.-H., Hoanga, H.-G., & Liu, W.Y. (2018). Remediation of highly fuel oil-contaminated soil by food waste composting and its volatile organic compound (VOC) emission, Bioresource Technology Reports, 4, 145-152. https://doi.org/10.1016/j.biteb.2018.10.010
  • [8] Fowzia, A., & Fakhruddin, ANM. (2018). A Review on environmental contamination of petroleum hydrocarbons and its biodegradation, Int J Environ Sci Nat Res., 11(3): 555811. DOI: 10.19080/IJESNR.2018.11.555811.
  • [9] Rai, C. J., Prakash, B., Girisha, S. K., Khedkar, G. D., Kushala, K. B., & Murthy, H. C. A. (2024). Evaluation of biofilm formation by bacteria isolated from engine oil-contaminated soil and exploring its bioremediation potential in vitro, Journal of the Indian Chemical Society, 101: 101249. https://doi.org/10.1016/j.jics.2024.101249
  • [10] Ossai, I. C., Hamid, F. S., & Hassan, A. (2022). Micronised keratinous wastes as co-substrates, and source of nutrients and microorganisms for trichoremediation of petroleum hydrocarbon polluted soil, Biocatalysis and Agricultural Biotechnology, 43:102346. https://doi.org/10.1016/j.bcab.2022.102346
  • [11] Piotrowska, A., & Boruszko, D. (2024). Potential of effective microorganisms in the aspect of sustainable development, Rocznik Ochrona Środowiska, 26, 106-114. https://doi.org/10.54740/ros.2024.011
  • [12] Dag, N., & Arıcı, O. K. (2021). Heavy metals in soils Pb (Lead), Hg (Mercury), Cd (Cadmium), As (Arsenic) effects on human health, International Journal of Environmental Trends (IJENT), 5 (2), 48-59.
  • [13] Novakovskiy, A. B., Kanev, V. A., & Markarova, M. Y. (2021). Long‑term dynamics of plant communities after biological remediation of oil‑contaminated soils in far North. Scientifc Reports, 11:4888. https://doi.org/10.1038/s41598-021-84226-5
  • [14] Qv, M., Bao, J., Wang, W., Dai, D., Wu, Q., Li, S., & Zhu, L. (2024). Bentonite addition enhances the biodegradation of petroleum pollutants and bacterial community succession during the aerobic co-composting of waste heavy oil with agricultural wastes, Journal of Hazardous Materials, 462: 132655. https://doi.org/10.1016/j.jhazmat.2023.132655
  • [15] Zhang, Y., Wang, B.-Y., Zhang, J., Liu, Y.-H., Tang, D.-Y., Zhao, J., & Dai, C.-C. (2023). By reconstructing a multifunctional intensive microbiome, effective microorganisms (EM) improve the ecological environment of rice–crayfish cocropping, Agriculture, Ecosystems and Environment, 357: 108698. https://doi.org/10.1016/j.agee.2023.108698
  • [16] Nayak, N., Sar, K., Sahoo B. K., & Mahapatra, P. (2020). Beneficial effect of effective microorganism on crop and soil- a review, Journal of Pharmacognosy and Phytochemistry, 9(4), 3070-3074. [17] Piotrowska, A., & Boruszko, D. (2022). The effect of using effective microorganisms on the changes in the chemical composition of spring wheat, Journal of Ecological Engineering, 23(6), 50–57. https://doi.org/10.12911/22998993/147874
  • [18] Tomczyk, P., Wierzchowski, P. S., Dobrzyński, J., Kulkova, I., Wróbel, B., Wiatkowski, M., Kuriqi, A., Skorulski, W., Kabat, T., Prycik, M., Gruss, L., & Drobnik, J. (2024). Efective microorganism water treatment method for rapid eutrophic reservoir restoration, Environmental Science and Pollution Research, 31:2377–2393. https://doi.org/10.1007/s11356-023-31354-2
  • [19] Książek-Trela, P., Figura, D., Węzka, D., & Szpyrka, E. (2024). Degradation of a mixture of 13 polycyclic aromatic hydrocarbons by commercial effective microorganisms, Open Life Sciences, 19: 20220831. https://doi.org/10.1515/biol-2022-0831
  • [20] Anna Piotrowska, A., & Boruszko, D. (2025). Soil micropollutants after using methods supporting the bioremediation process, Desalination and Water Treatment, 321: 100963.
  • [21] Leonora, E., Ngilangil, L. E., & Vilar, D. A. (2020). Effective microorganisms as remediation for marginal soil in the philippines, Chemıcal Engıneerıng Transactıons, 78. DOI: 10.3303/CET2078043
  • [22] Ukela, E. D., & Nwuzoma, O. A. (2023). Effectiveness of effective microorganisms (EM) for bioremediation of hydrocarbon polluted soils- a systematic review, Journal of Agriculture, Environmental Resources and Management, 5(5), 650-1220; 866-874.
  • [23] Verma, N. P., Dhannidevi, S. B., & Patry, A. S. (2017). Role of microorganisms for the sustainable use of soil pollution abutment in agriculture lands, International Journal of Current Microbiology and Applied Sciences, 6(11): 335-350.
  • [24] Das, M., & Adholeya, A. (2011). Role of microorganisms in remediation of contaminated soil, Microorganisms in Environmental Management, Chapter First Online: 01 January 2011, 81–111.
  • [25] Pamukoglu, M. Y., & Fikret Kargi, F. (2007). Effects of operating parameters on kinetics of copper(II) ion biosorption onto pre-treated powdered waste sludge (PWS), Enzyme and Microbial Technology, 42 (1), 76-82. https://doi.org/10.1016/j.enzmictec.2007.08.004
  • [26] Pamukoglu, M. Y., & Fikret Kargi, F. (2009). Removal of Cu(II) ions by biosorption onto powdered waste sludge (PWS) prior to biological treatment in an activated sludge unit: A statistical design approach, Bioresource Technology, 100(8), 2348-2354. https://doi.org/10.1016/j.biortech.2008.11.032
  • [27] Gürdal, E.G. (2021). A Research on waste mineral oils and oily wastewater treatment methods, Nevşehir Journal of Science and Technology, 10(2), 73-84.
  • [28] Resmi Gazete, (2023). Waste Oil Management Regulation, Official Gazette, 7.5.34051-12/1/2023. [29] Gök, G., & Akıncı, G. (2020). The Performance of slurry phase reactors on the treatment of polycyclic aromatic hydrocarbons from soils, Water Air Soil Pollut, 231: 368. https://doi.org/10.1007/s11270-020-04729-1
  • [30] Ezeagu, G. G., Omotosho, A. O., & Suleiman K. O. (2023). Effective microorganisms, their products and uses - a review, Nile Journal of Engineering and Applied Science. https://doi.org/10.5455/NJEAS.147954
  • [31] Dindar, E., Cihan, N., Topaç Şağban, F. O., & Başkaya, H. S. (2017). Fractionation of soil organic nitrogen species in soils contaminated with waste mineral oil, Journal of the Faculty of Engineering and Architecture of Gazi University, 32:3, 767-775.
  • [32] Sönmez, S., Kaplan, M., Sönmez, N. K., & Kaya, H. (2006). Effects of high level copper applications to soil on pH and nutrient element contents of soil, Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 19(1), 151-158.
  • [33] Cenkseven, Ş. (2013). Seasonal comparison of organic matter mineralization in different aged Eucalyptus Camaldulensis Dehn. plantations in east Mediterranean region, PhD Thesis, Çukurova University, Institute of Science and Technology, Adana.
  • [34] Özyağcı, M. (2021). Determination of the oil and gas potential of surroundings of Kastamonu and Sinop provinces using TPH (Total Oil Hydrocarbons) in water and soil analyses, Master's Thesis, Istanbul Technical University, Institute of Graduate Education, Istanbul.
  • [35] Özdemir, A. (2018). The use of TPH (total petroleum hydrocarbons) analysis in water for oil and gas exploration: first important results from Turkey, Journal of Engineering Sciences and Design, 6(4), 615-636.

ATIK YAĞLARLA KİRLENMİŞ TOPRAK TEMİZLİĞİNDE YENİLİKÇİ MİKROORGANİZMALAR: ETKİN MİKROORGANİZMALAR (EM) TABANLI ARITMA

Yıl 2025, Sayı: Advanced Online Publication, 88 - 98

Öz

Artan endüstriyel faaliyetler ile birlikte kirlilikler de artmakta ve çevrede bundan olumsuz etkilenmektedir. Özellikle ağır metal özellikli atıklar doğada uzun süre varlığını korumakta ve bulunduğu ortamı ciddi düzeyde kirletmektedir. Atık yağ gibi petrol kökenli atıkların içerisinde ağır metaller bulunmakta ve çevre için başlıca tehdit oluşturmaktadır. Ağır metal ve diğer kirliliklerin fiziksel ve kimyasal arıtımının yanında son yıllarda daha ekonomik biyoteknolojik metotlar da geliştirilerek uygulanmaktadır. Bu çalışmada, atık yağ ile kirletilen toprak numunesinin arıtımında etkin mikroorganizmalar uygulanarak toprak kirliliğinin arıtılıp arıtılamayacağı araştırılmıştır. Yüksek konsantrasyonda ağır metal içeren atık yağ ihtiva eden toprak numunesinde etkin mikroorganizma teknolojisi ekonomik olmasından dolayı uygulanabilir olduğu düşünülmektedir. Yapılan çalışmada topraktaki toplam petrol hidrokarbonların %80 oranında giderimi gerçekleşmiştir.

Kaynakça

  • REFERENCES [1] Erpul, G., & Akgöz, R. (2025). Integration of soil health concept into national policies and strategies in Türkiye, Journal of Soil Science and Plant Nutrition, 13(1) 81 – 95.
  • [2] İbik, T. (2025). The impact of the transportation sector on air pollution and environmental sustainability: example of the mediterranean region, Süleyman Demirel University Visionary Journal, 16(45), 324-342.
  • [3] Kürtül, K., Durğar, N., Körz, G., Kazan, M. A., & Özbek, H. U. (2025). Green future: Exploring environmental awareness and sensitivity, Multidisciplinary Approaches with Geography, 3(1), 21-32.
  • [4] Dindar, E., Cihan, N., Şağban, F. O. T., & Başkaya, H. S. (2017). Effect of sewage sludge application on enzyme activities in soils contaminated with crude oil and waste oil, Uludağ University, Journal of Engineering Faculty, 22(1). DOI: 10.17482/uumfd.305207
  • [5] Tiwaria, R., Agrawala, P., Bawaa, S., Karadbhajneb, V., & Agrawal, A. J. (2023). Soil contamination by waste transformer oil: A review, Materials Today: Proceedings, 72, 306–310. https://doi.org/10.1016/j.matpr.2022.07.403
  • [6] Caetano, G., Machado, R.deM., Correia, M. J. N., & Marrucho, I. M. (2024). Remediation of soils contaminated with total petroleum hydrocarbons through soil washing with surfactant solutions, Envıronmental Technology, 45(15), 2969–2982. https://doi.org/10.1080/09593330.2023.2198733
  • [7] Tran, H.-T., Vub, C.-T., Lina, C., Buic, X.-T., Huanga, W.-Y., Voa, T.-D.-H., Hoanga, H.-G., & Liu, W.Y. (2018). Remediation of highly fuel oil-contaminated soil by food waste composting and its volatile organic compound (VOC) emission, Bioresource Technology Reports, 4, 145-152. https://doi.org/10.1016/j.biteb.2018.10.010
  • [8] Fowzia, A., & Fakhruddin, ANM. (2018). A Review on environmental contamination of petroleum hydrocarbons and its biodegradation, Int J Environ Sci Nat Res., 11(3): 555811. DOI: 10.19080/IJESNR.2018.11.555811.
  • [9] Rai, C. J., Prakash, B., Girisha, S. K., Khedkar, G. D., Kushala, K. B., & Murthy, H. C. A. (2024). Evaluation of biofilm formation by bacteria isolated from engine oil-contaminated soil and exploring its bioremediation potential in vitro, Journal of the Indian Chemical Society, 101: 101249. https://doi.org/10.1016/j.jics.2024.101249
  • [10] Ossai, I. C., Hamid, F. S., & Hassan, A. (2022). Micronised keratinous wastes as co-substrates, and source of nutrients and microorganisms for trichoremediation of petroleum hydrocarbon polluted soil, Biocatalysis and Agricultural Biotechnology, 43:102346. https://doi.org/10.1016/j.bcab.2022.102346
  • [11] Piotrowska, A., & Boruszko, D. (2024). Potential of effective microorganisms in the aspect of sustainable development, Rocznik Ochrona Środowiska, 26, 106-114. https://doi.org/10.54740/ros.2024.011
  • [12] Dag, N., & Arıcı, O. K. (2021). Heavy metals in soils Pb (Lead), Hg (Mercury), Cd (Cadmium), As (Arsenic) effects on human health, International Journal of Environmental Trends (IJENT), 5 (2), 48-59.
  • [13] Novakovskiy, A. B., Kanev, V. A., & Markarova, M. Y. (2021). Long‑term dynamics of plant communities after biological remediation of oil‑contaminated soils in far North. Scientifc Reports, 11:4888. https://doi.org/10.1038/s41598-021-84226-5
  • [14] Qv, M., Bao, J., Wang, W., Dai, D., Wu, Q., Li, S., & Zhu, L. (2024). Bentonite addition enhances the biodegradation of petroleum pollutants and bacterial community succession during the aerobic co-composting of waste heavy oil with agricultural wastes, Journal of Hazardous Materials, 462: 132655. https://doi.org/10.1016/j.jhazmat.2023.132655
  • [15] Zhang, Y., Wang, B.-Y., Zhang, J., Liu, Y.-H., Tang, D.-Y., Zhao, J., & Dai, C.-C. (2023). By reconstructing a multifunctional intensive microbiome, effective microorganisms (EM) improve the ecological environment of rice–crayfish cocropping, Agriculture, Ecosystems and Environment, 357: 108698. https://doi.org/10.1016/j.agee.2023.108698
  • [16] Nayak, N., Sar, K., Sahoo B. K., & Mahapatra, P. (2020). Beneficial effect of effective microorganism on crop and soil- a review, Journal of Pharmacognosy and Phytochemistry, 9(4), 3070-3074. [17] Piotrowska, A., & Boruszko, D. (2022). The effect of using effective microorganisms on the changes in the chemical composition of spring wheat, Journal of Ecological Engineering, 23(6), 50–57. https://doi.org/10.12911/22998993/147874
  • [18] Tomczyk, P., Wierzchowski, P. S., Dobrzyński, J., Kulkova, I., Wróbel, B., Wiatkowski, M., Kuriqi, A., Skorulski, W., Kabat, T., Prycik, M., Gruss, L., & Drobnik, J. (2024). Efective microorganism water treatment method for rapid eutrophic reservoir restoration, Environmental Science and Pollution Research, 31:2377–2393. https://doi.org/10.1007/s11356-023-31354-2
  • [19] Książek-Trela, P., Figura, D., Węzka, D., & Szpyrka, E. (2024). Degradation of a mixture of 13 polycyclic aromatic hydrocarbons by commercial effective microorganisms, Open Life Sciences, 19: 20220831. https://doi.org/10.1515/biol-2022-0831
  • [20] Anna Piotrowska, A., & Boruszko, D. (2025). Soil micropollutants after using methods supporting the bioremediation process, Desalination and Water Treatment, 321: 100963.
  • [21] Leonora, E., Ngilangil, L. E., & Vilar, D. A. (2020). Effective microorganisms as remediation for marginal soil in the philippines, Chemıcal Engıneerıng Transactıons, 78. DOI: 10.3303/CET2078043
  • [22] Ukela, E. D., & Nwuzoma, O. A. (2023). Effectiveness of effective microorganisms (EM) for bioremediation of hydrocarbon polluted soils- a systematic review, Journal of Agriculture, Environmental Resources and Management, 5(5), 650-1220; 866-874.
  • [23] Verma, N. P., Dhannidevi, S. B., & Patry, A. S. (2017). Role of microorganisms for the sustainable use of soil pollution abutment in agriculture lands, International Journal of Current Microbiology and Applied Sciences, 6(11): 335-350.
  • [24] Das, M., & Adholeya, A. (2011). Role of microorganisms in remediation of contaminated soil, Microorganisms in Environmental Management, Chapter First Online: 01 January 2011, 81–111.
  • [25] Pamukoglu, M. Y., & Fikret Kargi, F. (2007). Effects of operating parameters on kinetics of copper(II) ion biosorption onto pre-treated powdered waste sludge (PWS), Enzyme and Microbial Technology, 42 (1), 76-82. https://doi.org/10.1016/j.enzmictec.2007.08.004
  • [26] Pamukoglu, M. Y., & Fikret Kargi, F. (2009). Removal of Cu(II) ions by biosorption onto powdered waste sludge (PWS) prior to biological treatment in an activated sludge unit: A statistical design approach, Bioresource Technology, 100(8), 2348-2354. https://doi.org/10.1016/j.biortech.2008.11.032
  • [27] Gürdal, E.G. (2021). A Research on waste mineral oils and oily wastewater treatment methods, Nevşehir Journal of Science and Technology, 10(2), 73-84.
  • [28] Resmi Gazete, (2023). Waste Oil Management Regulation, Official Gazette, 7.5.34051-12/1/2023. [29] Gök, G., & Akıncı, G. (2020). The Performance of slurry phase reactors on the treatment of polycyclic aromatic hydrocarbons from soils, Water Air Soil Pollut, 231: 368. https://doi.org/10.1007/s11270-020-04729-1
  • [30] Ezeagu, G. G., Omotosho, A. O., & Suleiman K. O. (2023). Effective microorganisms, their products and uses - a review, Nile Journal of Engineering and Applied Science. https://doi.org/10.5455/NJEAS.147954
  • [31] Dindar, E., Cihan, N., Topaç Şağban, F. O., & Başkaya, H. S. (2017). Fractionation of soil organic nitrogen species in soils contaminated with waste mineral oil, Journal of the Faculty of Engineering and Architecture of Gazi University, 32:3, 767-775.
  • [32] Sönmez, S., Kaplan, M., Sönmez, N. K., & Kaya, H. (2006). Effects of high level copper applications to soil on pH and nutrient element contents of soil, Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 19(1), 151-158.
  • [33] Cenkseven, Ş. (2013). Seasonal comparison of organic matter mineralization in different aged Eucalyptus Camaldulensis Dehn. plantations in east Mediterranean region, PhD Thesis, Çukurova University, Institute of Science and Technology, Adana.
  • [34] Özyağcı, M. (2021). Determination of the oil and gas potential of surroundings of Kastamonu and Sinop provinces using TPH (Total Oil Hydrocarbons) in water and soil analyses, Master's Thesis, Istanbul Technical University, Institute of Graduate Education, Istanbul.
  • [35] Özdemir, A. (2018). The use of TPH (total petroleum hydrocarbons) analysis in water for oil and gas exploration: first important results from Turkey, Journal of Engineering Sciences and Design, 6(4), 615-636.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Toprak Kirliliği ve Kontrolü
Bölüm Araştırma Makalesi
Yazarlar

Gülden Gök

Merve Kireç

Gönderilme Tarihi 29 Eylül 2025
Kabul Tarihi 18 Kasım 2025
Erken Görünüm Tarihi 28 Kasım 2025
Yayımlandığı Sayı Yıl 2025 Sayı: Advanced Online Publication

Kaynak Göster

APA Gök, G., & Kireç, M. (2025). Innovative Microorganisms in Waste Oil Contaminated Soil Cleaning: Effective Microorganisms (EM) Based Treatment. Uluslararası Çevresel Eğilimler Dergisi(Advanced Online Publication), 88-98.
AMA Gök G, Kireç M. Innovative Microorganisms in Waste Oil Contaminated Soil Cleaning: Effective Microorganisms (EM) Based Treatment. IJENT. Kasım 2025;(Advanced Online Publication):88-98.
Chicago Gök, Gülden, ve Merve Kireç. “Innovative Microorganisms in Waste Oil Contaminated Soil Cleaning: Effective Microorganisms (EM) Based Treatment”. Uluslararası Çevresel Eğilimler Dergisi, sy. Advanced Online Publication (Kasım 2025): 88-98.
EndNote Gök G, Kireç M (01 Kasım 2025) Innovative Microorganisms in Waste Oil Contaminated Soil Cleaning: Effective Microorganisms (EM) Based Treatment. Uluslararası Çevresel Eğilimler Dergisi Advanced Online Publication 88–98.
IEEE G. Gök ve M. Kireç, “Innovative Microorganisms in Waste Oil Contaminated Soil Cleaning: Effective Microorganisms (EM) Based Treatment”, IJENT, sy. Advanced Online Publication, ss. 88–98, Kasım2025.
ISNAD Gök, Gülden - Kireç, Merve. “Innovative Microorganisms in Waste Oil Contaminated Soil Cleaning: Effective Microorganisms (EM) Based Treatment”. Uluslararası Çevresel Eğilimler Dergisi Advanced Online Publication (Kasım2025), 88-98.
JAMA Gök G, Kireç M. Innovative Microorganisms in Waste Oil Contaminated Soil Cleaning: Effective Microorganisms (EM) Based Treatment. IJENT. 2025;:88–98.
MLA Gök, Gülden ve Merve Kireç. “Innovative Microorganisms in Waste Oil Contaminated Soil Cleaning: Effective Microorganisms (EM) Based Treatment”. Uluslararası Çevresel Eğilimler Dergisi, sy. Advanced Online Publication, 2025, ss. 88-98.
Vancouver Gök G, Kireç M. Innovative Microorganisms in Waste Oil Contaminated Soil Cleaning: Effective Microorganisms (EM) Based Treatment. IJENT. 2025(Advanced Online Publication):88-9.

Environmental Engineering, Environmental Sustainability and Development, Industrial Waste Issues and Management, Global warming and Climate Change, Environmental Law, Environmental Developments and Legislation, Environmental Protection, Biotechnology and Environment, Fossil Fuels and Renewable Energy, Chemical Engineering, Civil Engineering, Geological Engineering, Mining Engineering, Agriculture Engineering, Biology, Chemistry, Physics,