Araştırma Makalesi
BibTex RIS Kaynak Göster

Influence of Soil-Delivered Micronutrients (Iron and Zinc) on Soybean (Glycine max (L.) Merr.) Agronomic Performance and Quality under the Ecological Conditions of Central Anatolia, Türkiye

Yıl 2025, Sayı: Advanced Online Publication, 99 - 108

Öz

This study was carried out over a two-year period to evaluate the effects of soil-supplied iron (Fe) and zinc (Zn) on the agronomic traits and quality of soybean (Glycine max L.) under the ecological conditions of Central Anatolia, Türkiye. The study utilized the early-maturing Atakişi cultivar, which is well-adapted to the Central Anatolian and Mediterranean regions. FeSO₄·7H₂O (1.5 kg/da) and ZnSO₄·7H₂O (3 kg/da) fertilizers were incorporated into the soil prior to sowing. A randomized complete block design was utilized in the study, comprising four treatments (Fe, Zn, Fe+Zn, and control) with four replications, resulting in a total of 16 plots. Key agronomic parameters (such as branch number per plant, plant height, first branch height, first pod height, pod number per plant, seeds per pod, pod length, 1000-seed weight, and yield per decare) were measured alongside quality traits, including protein, ash, and oil contents (%). The findings demonstrated that soil applications of Fe and Zn significantly affected plant height number of branches (p<0.01), (p<0.05), and pod length (p<0.05) throughout the study period, while the number of seeds per pod was significantly influenced by both the treatments (p<0.01) and the interaction between year and treatment. Other agronomic traits did not show significant responses to either the year or treatments (p>0.05). The Fe+Zn treatment resulted in the highest protein content (37.59%), the Fe treatment produced the highest oil content (19.80%), and the greatest ash content (9.10%) was observed in the Fe+Zn treatment during the second year. Overall, combined Fe and Zn applications enhanced both seed number and quality-related traits. It was concluded that such applications can significantly enhance yield and quality in soybean cultivation, especially on micronutrient-deficient, calcareous, and alkaline soils.

Kaynakça

  • [1] Alloway, B. J. (2008). Zinc in soils and crop nutrition (2nd ed.), published by International Zinc Association (IZA) and International Fertilizer Industry Association (IFA), Brussels, Belgium and Paris, France, p 135.
  • [2] Bagchi, R., Diba, S. F., Saiful, S. A., Nahida Akter, M., Atikur Rahman, M., & Humayan Kabir, A. (2024). Nitric oxide facilitates the activation of iron acquisition genes in soybean (Glycine max L.) exposed to iron deficiency. Plant Trends, 2(2), 16 23. https://doi.org/10.5455/pt.2024.02
  • [3] Broadley, M., Brown, P., Cakmak, I., Rengel, Z., & Zhao, F. (2012). Function of nutrients: Micronutrients. In P. Marschner (Ed.), Marschner’s mineral nutrition of higher plants (3rd ed., pp. 191–248), Academic Press, London.
  • [4] Cakmak, I. (2000) Tansley review 111 Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytologist, 146(2), 185–205. https://doi.org/10.1046/j.1469-8137.2000.00630.x
  • [5] Cakmak, I. (2008). Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil, 302, 1–17. https://doi.org/10.1007/s11104-007-9466-3
  • [6] Colaizzi, P. D., O'Shaughnessy, S. A., Evett, S. R., & Howell, T. A. (2012). Using plant canopy temperature to improve irrigated crop management. [7] Fageria, N. K., Baligar, V. C., & Clark, R. B. (2002). Micronutrients in crop production. Advances in Agronomy, 77, 185–268. https://doi.org/10.1016/S0065-2113(02)77015-6
  • [8] Fageria, N. K., Baligar, V. C., & Clark, R. B. (2006). Physiology of crop production. CRC Press.
  • [9] Fehr, W. R. (1987). Principles of cultivar development: Vol. 1. Theory and technique. Macmillan Publishing.
  • [10] Guerinot, M. L., & Yi, Y. (1994). Iron: Nutritious, noxious, and not readily available. Plant Physiology, 104(3), 815–820. https://doi.org/10.1104/pp.104.3.815
  • [11] Hafeez, B., Khanif, Y. M., & Saleem, M. (2013). Role of zinc in plant nutrition—A review. American Journal of Experimental Agriculture, 3(2), 374–391. https://doi.org/10.9734/AJEA/2013/2746
  • [12] Hartman, G. L., West, E. D., & Herman, T. K. (2011). Crops that feed the world 2. Soybean—Worldwide production, use, and constraints caused by pathogens and pests. Food Security, 3(1), 5–17. https://doi.org/10.1007/s12571-010-0108-x
  • [13] Hungria, M., Franchini, J. C., Campo, R. J., Crispino, C. C., Moraes, J. Z., Sibaldelli, R. N. R., Mendes, I. C., & Arihara, J. (2006). Nitrogen nutrition of soybean in Brazil: Contributions of biological N2 fixation and N fertilizer. Soil Biology & Biochemistry, 38(6), 112–123.
  • [14] Jain, S., Tagore, G. S., & Sharma, B. L. (2021). Effect of zinc fertilization on yield, quality of soybean and zinc pools in a Typic Haplusterts. International Journal of Plant & Soil Science, 33(7), 11 19.
  • [15] Jat, G. A., Sharma, S. K., Meena, R. H., Jain, D., Choudhary, R., Choudhary, R. S., Yadav, S. K., Sumeriya, H.K. and Chhipa, B.G. (2021). Influence of soil applied zinc on productivity of soybean (Glycine max) in south western Rajasthan. Indian Journal of Agricultural Sciences, 91(6); 910 3. https://doi.org/10.56093/ijas.v91i6.114298
  • [16] Jiang, H., Li, Y., Qin, H., Li, Y.,Qi, H., Li, C., Wang, N., Li, R., Zhao, Y., Huang, S., Yu, J., Wan, X., Zhu, R., Liu, C., Hu, Z., Qi, Z., Xin, D., Wu, X., Chen, Q., 2018. Identification of Major QTLs Associated With First Pod Height and Candidate Gene Mining in Soybean. Frontiers Plant Science. 9:1280. doi:10.3389/fpls.2018.01280 [17] Kamble, B. M., Meena, R., & Gajbhiye, P. N. (2022). Influence of iron nutrition on soil properties, uptake and yield of soybean grown on iron deficient Inceptisol. Journal of Experimental Agriculture International, 44(11), 131 142. https://doi.org/10.9734/jeai/2022/v44i112059
  • [18] Karasu, A., Öz, M., Göksoy, A.T., 2002. Bazı soya fasulyesi (Glycine max L. Merill) çeşitlerinin Bursa koşullarına adaptasyonu konusunda bir çalışma. UÜZir. Fak. Derg. 16(2): 25-34.
  • [19] Kobraee, S., & Shamsi, K. (2014). Zinc, iron and manganese fertilizers application and Zn, Fe, and Mn concentration in roots and shoots of soybean plants in pot experiment. Asian Journal of Biological and Life Sciences, 3(3), 219 222.
  • [20] Lindsay, W. L., & Schwab, A. P. (1982). The chemistry of iron in soils and its availability to plants. Journal of Plant Nutrition, 5(4–7), 821–840. https://doi.org/10.1080/01904168209363012
  • [21] Liu, K. (1997). Soybeans: Chemistry, Technology, and Utilization. Springer. [22] Malakouti, M. J. (2008). The effect of micronutrients in ensuring efficient use of macronutrients. Turkish Journal of Agriculture and Forestry, 32(3), 215–220.
  • [23] Marschner, P. (2012). Marschner’s mineral nutrition of higher plants (3rd ed.). Academic Press. ISBN: 978-0-12-384905-2, DOI: 10.1016/C2009-0-63043-9
  • [24] NDSU Agriculture. (2022). Iron deficiency chlorosis in soybean. North Dakota State University Extension Service. Crop & Pest Report on June 30, 2022.
  • [25] Özbay Dede, I., & İmral Acar, A. (2024). Effects of foliar and soil applied of zinc on yield and its components in soybean (Glycine max L. Merr.). Akademik Ziraat Dergisi, 13(2), 362 368. https://doi.org/10.29278/azd.1589670
  • [26] Pedersen, Palle & Lauer, Joseph. (2004). Soybean Growth and Development in Various Management Systems and Planting Dates. Crop Science - CROP SCI. 44. 10.2135/cropsci2004.0508.
  • [27] Pioneer Seeds. (2023). Management of soybeans on soils prone to iron deficiency chlorosis. Pioneer® Agronomy. https://www.pioneer.com/us/agronomy/iron deficiency chlorosis.html
  • [28] Power, J. F., & Prasad, R. (1997). Soil fertility management for sustainable agriculture. CRC press.
  • [29] Rengel, Z. (2015). Availability of Mn, Zn and Fe in the rhizosphere. Journal of Soil Science and Plant Nutrition, 2015 15 (2), 397-409
  • [30] Rowntree, S. C., Suhre, J. J., Weidenbenner, N. H., Wilson, E. W., Davis, V. M., Conley, S. P., Casteel, S. N., Diers, B. W., Esker, P. D., & Specht, J. E. (2013). Genetic gain × management interactions in soybean: I. Planting date. Crop Science, 53(3), 1128–1138.
  • [31] Şahin, C. B., & İşler, N. (2023). The impact of foliar applied zinc and iron on quality of soybean. Journal of Plant Nutrition, 46(13), 2977 2989. https://doi.org/10.1080/01904167.2022.2161389
  • [32] Salvagiotti, F., Cassman, K. G., Specht, J. E., Walters, D. T., Weiss, A., & Dobermann, A. (2008). Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Research, 108(1), 1–13. https://doi.org/10.1016/j.fcr.2008.03.001
  • [33] Steel, R. G. D., & Torrie, J. H. (1981). Principles and procedures of statistics, a biometrical approach (No. Ed. 2, p. 633pp).
  • [34] Yamaguchi, T., Ohashi, Y., & Naito, A. (2017). Effects of light quality on pod elongation in soybean (Glycine max (L.) Merr.) and cowpea (Vigna unguiculata (L.) Walp.). Plant Growth Regulation, 82(1), 105-113. https://doi.org/10.1007/s10725-016-0215-8
  • [35] Yang, O., Lin, G., Huiyong, Lv., Wang, C., Yang, Y. & Liao, H. 2021. Environmental and genetic regulation of plant height in soybean. BMC Plant Biology, (2021)21:63, pp 2-15.
  • [36] Yılmaz, A., Ekiz, H., Torun, M.B.,Gültekin, İ., Karanlık, S., Bağcı, S.A., Cakmak, I. (1997). Effect of different zinc application methods on grain yield and zinc concentration in wheat cultivars grown on zinc-deficient calcareous soils. Journal of Plant Nutrition, cilt: 20, ss. 461-471. Doi: 10.1080/01904169709365267

Türkiye’nin Orta Anadolu Ekolojik Koşullarında Topraktan Uygulanan Mikrobesinlerin (Demir ve Çinko) Soya Fasulyesinin (Glycine max (L.) Merr.) Tarımsal Özelikleri ve Kalitesine etkisi

Yıl 2025, Sayı: Advanced Online Publication, 99 - 108

Öz

Bu çalışma, topraktan verilen demir (Fe) ve çinkonun (Zn) Türkiye’nin Orta Anadolu, Türkiye ekolojik koşullarında soya fasulyesi (Glycine max L.) üzerindeki agronomik özellikler ve kaliteye etkilerini değerlendirmek amacıyla iki yıl süreyle yürütülmüştür. Çalışmada, Orta Anadolu ve Akdeniz bölgelerine iyi adapte olmuş erken olgunlaşan Atakişi çeşidi kullanılmıştır. FeSO₄·7H₂O (1,5 kg/da) ve ZnSO₄·7H₂O (3 kg/da) gübreleri ekim öncesi toprağa karıştırılarak uygulanmıştır. Çalışmada, dört konu (Fe, Zn, Fe+Zn ve kontrol) ve dört tekerrürlü tesadüf blokları deneme deseni kullanılmış ve toplam 16 parselde yürütülmüştür. Tarımsal özellikler (bitki başına dal sayısı, bitki boyu, ilk dal boyu, ilk bakla boyu, bitki başına bakla sayısı, bakla başına tohum sayısı, bakla uzunluğu, 1000 tohum ağırlığı ve dekar başına verim) ile protein, kül ve yağ içeriği (%) gibi kalite özellikleri ölçülmüştür. Bulgular, topraktan uygulamalarda Fe ve Zn’un bitki boyu (p<0,05), dal sayısı (p<0,01) ve bakla uzunluğu (p<0,05) üzerinde yılın önemli etkileri olduğunu göstermiştir. Baklada dane sayısı ise hem uygulamalarda (p<0,01) hem de yıl × uygulama etkileşiminden önemli ölçüde etkilenmiştir. Diğer tarımsal özellikler, yıl veya uygulamalardan önemli ölçüde etkilenmemiştir (p>0,05). En yüksek protein içeriği Fe+Zn uygulamasının birinci yılında (%37,59), en yüksek yağ içeriği (%19,80) Fe uygulamasın ikinci yılında ve en yüksek kül içeriği (%9,10) ise ikinci yılın Fe+Zn uygulamasından gözlemlenmiştir. Genel olarak, Fe ve Zn’in birlikte uygulanması hem dane sayısını hem de kaliteyle ilgili özellikleri artırmıştır. Bu uygulamaların, özellikle mikro besin maddelerince eksik, kireçli ve alkalin topraklarda soya fasulyesi üretiminde verim ve kaliteyi önemli ölçüde artırabileceği sonucuna varılmıştır.

Kaynakça

  • [1] Alloway, B. J. (2008). Zinc in soils and crop nutrition (2nd ed.), published by International Zinc Association (IZA) and International Fertilizer Industry Association (IFA), Brussels, Belgium and Paris, France, p 135.
  • [2] Bagchi, R., Diba, S. F., Saiful, S. A., Nahida Akter, M., Atikur Rahman, M., & Humayan Kabir, A. (2024). Nitric oxide facilitates the activation of iron acquisition genes in soybean (Glycine max L.) exposed to iron deficiency. Plant Trends, 2(2), 16 23. https://doi.org/10.5455/pt.2024.02
  • [3] Broadley, M., Brown, P., Cakmak, I., Rengel, Z., & Zhao, F. (2012). Function of nutrients: Micronutrients. In P. Marschner (Ed.), Marschner’s mineral nutrition of higher plants (3rd ed., pp. 191–248), Academic Press, London.
  • [4] Cakmak, I. (2000) Tansley review 111 Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytologist, 146(2), 185–205. https://doi.org/10.1046/j.1469-8137.2000.00630.x
  • [5] Cakmak, I. (2008). Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil, 302, 1–17. https://doi.org/10.1007/s11104-007-9466-3
  • [6] Colaizzi, P. D., O'Shaughnessy, S. A., Evett, S. R., & Howell, T. A. (2012). Using plant canopy temperature to improve irrigated crop management. [7] Fageria, N. K., Baligar, V. C., & Clark, R. B. (2002). Micronutrients in crop production. Advances in Agronomy, 77, 185–268. https://doi.org/10.1016/S0065-2113(02)77015-6
  • [8] Fageria, N. K., Baligar, V. C., & Clark, R. B. (2006). Physiology of crop production. CRC Press.
  • [9] Fehr, W. R. (1987). Principles of cultivar development: Vol. 1. Theory and technique. Macmillan Publishing.
  • [10] Guerinot, M. L., & Yi, Y. (1994). Iron: Nutritious, noxious, and not readily available. Plant Physiology, 104(3), 815–820. https://doi.org/10.1104/pp.104.3.815
  • [11] Hafeez, B., Khanif, Y. M., & Saleem, M. (2013). Role of zinc in plant nutrition—A review. American Journal of Experimental Agriculture, 3(2), 374–391. https://doi.org/10.9734/AJEA/2013/2746
  • [12] Hartman, G. L., West, E. D., & Herman, T. K. (2011). Crops that feed the world 2. Soybean—Worldwide production, use, and constraints caused by pathogens and pests. Food Security, 3(1), 5–17. https://doi.org/10.1007/s12571-010-0108-x
  • [13] Hungria, M., Franchini, J. C., Campo, R. J., Crispino, C. C., Moraes, J. Z., Sibaldelli, R. N. R., Mendes, I. C., & Arihara, J. (2006). Nitrogen nutrition of soybean in Brazil: Contributions of biological N2 fixation and N fertilizer. Soil Biology & Biochemistry, 38(6), 112–123.
  • [14] Jain, S., Tagore, G. S., & Sharma, B. L. (2021). Effect of zinc fertilization on yield, quality of soybean and zinc pools in a Typic Haplusterts. International Journal of Plant & Soil Science, 33(7), 11 19.
  • [15] Jat, G. A., Sharma, S. K., Meena, R. H., Jain, D., Choudhary, R., Choudhary, R. S., Yadav, S. K., Sumeriya, H.K. and Chhipa, B.G. (2021). Influence of soil applied zinc on productivity of soybean (Glycine max) in south western Rajasthan. Indian Journal of Agricultural Sciences, 91(6); 910 3. https://doi.org/10.56093/ijas.v91i6.114298
  • [16] Jiang, H., Li, Y., Qin, H., Li, Y.,Qi, H., Li, C., Wang, N., Li, R., Zhao, Y., Huang, S., Yu, J., Wan, X., Zhu, R., Liu, C., Hu, Z., Qi, Z., Xin, D., Wu, X., Chen, Q., 2018. Identification of Major QTLs Associated With First Pod Height and Candidate Gene Mining in Soybean. Frontiers Plant Science. 9:1280. doi:10.3389/fpls.2018.01280 [17] Kamble, B. M., Meena, R., & Gajbhiye, P. N. (2022). Influence of iron nutrition on soil properties, uptake and yield of soybean grown on iron deficient Inceptisol. Journal of Experimental Agriculture International, 44(11), 131 142. https://doi.org/10.9734/jeai/2022/v44i112059
  • [18] Karasu, A., Öz, M., Göksoy, A.T., 2002. Bazı soya fasulyesi (Glycine max L. Merill) çeşitlerinin Bursa koşullarına adaptasyonu konusunda bir çalışma. UÜZir. Fak. Derg. 16(2): 25-34.
  • [19] Kobraee, S., & Shamsi, K. (2014). Zinc, iron and manganese fertilizers application and Zn, Fe, and Mn concentration in roots and shoots of soybean plants in pot experiment. Asian Journal of Biological and Life Sciences, 3(3), 219 222.
  • [20] Lindsay, W. L., & Schwab, A. P. (1982). The chemistry of iron in soils and its availability to plants. Journal of Plant Nutrition, 5(4–7), 821–840. https://doi.org/10.1080/01904168209363012
  • [21] Liu, K. (1997). Soybeans: Chemistry, Technology, and Utilization. Springer. [22] Malakouti, M. J. (2008). The effect of micronutrients in ensuring efficient use of macronutrients. Turkish Journal of Agriculture and Forestry, 32(3), 215–220.
  • [23] Marschner, P. (2012). Marschner’s mineral nutrition of higher plants (3rd ed.). Academic Press. ISBN: 978-0-12-384905-2, DOI: 10.1016/C2009-0-63043-9
  • [24] NDSU Agriculture. (2022). Iron deficiency chlorosis in soybean. North Dakota State University Extension Service. Crop & Pest Report on June 30, 2022.
  • [25] Özbay Dede, I., & İmral Acar, A. (2024). Effects of foliar and soil applied of zinc on yield and its components in soybean (Glycine max L. Merr.). Akademik Ziraat Dergisi, 13(2), 362 368. https://doi.org/10.29278/azd.1589670
  • [26] Pedersen, Palle & Lauer, Joseph. (2004). Soybean Growth and Development in Various Management Systems and Planting Dates. Crop Science - CROP SCI. 44. 10.2135/cropsci2004.0508.
  • [27] Pioneer Seeds. (2023). Management of soybeans on soils prone to iron deficiency chlorosis. Pioneer® Agronomy. https://www.pioneer.com/us/agronomy/iron deficiency chlorosis.html
  • [28] Power, J. F., & Prasad, R. (1997). Soil fertility management for sustainable agriculture. CRC press.
  • [29] Rengel, Z. (2015). Availability of Mn, Zn and Fe in the rhizosphere. Journal of Soil Science and Plant Nutrition, 2015 15 (2), 397-409
  • [30] Rowntree, S. C., Suhre, J. J., Weidenbenner, N. H., Wilson, E. W., Davis, V. M., Conley, S. P., Casteel, S. N., Diers, B. W., Esker, P. D., & Specht, J. E. (2013). Genetic gain × management interactions in soybean: I. Planting date. Crop Science, 53(3), 1128–1138.
  • [31] Şahin, C. B., & İşler, N. (2023). The impact of foliar applied zinc and iron on quality of soybean. Journal of Plant Nutrition, 46(13), 2977 2989. https://doi.org/10.1080/01904167.2022.2161389
  • [32] Salvagiotti, F., Cassman, K. G., Specht, J. E., Walters, D. T., Weiss, A., & Dobermann, A. (2008). Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Research, 108(1), 1–13. https://doi.org/10.1016/j.fcr.2008.03.001
  • [33] Steel, R. G. D., & Torrie, J. H. (1981). Principles and procedures of statistics, a biometrical approach (No. Ed. 2, p. 633pp).
  • [34] Yamaguchi, T., Ohashi, Y., & Naito, A. (2017). Effects of light quality on pod elongation in soybean (Glycine max (L.) Merr.) and cowpea (Vigna unguiculata (L.) Walp.). Plant Growth Regulation, 82(1), 105-113. https://doi.org/10.1007/s10725-016-0215-8
  • [35] Yang, O., Lin, G., Huiyong, Lv., Wang, C., Yang, Y. & Liao, H. 2021. Environmental and genetic regulation of plant height in soybean. BMC Plant Biology, (2021)21:63, pp 2-15.
  • [36] Yılmaz, A., Ekiz, H., Torun, M.B.,Gültekin, İ., Karanlık, S., Bağcı, S.A., Cakmak, I. (1997). Effect of different zinc application methods on grain yield and zinc concentration in wheat cultivars grown on zinc-deficient calcareous soils. Journal of Plant Nutrition, cilt: 20, ss. 461-471. Doi: 10.1080/01904169709365267
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hayvansal Üretim (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

İrfan Özer 0000-0001-5857-8938

Gönderilme Tarihi 30 Ekim 2025
Kabul Tarihi 2 Aralık 2025
Erken Görünüm Tarihi 2 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Sayı: Advanced Online Publication

Kaynak Göster

APA Özer, İ. (2025). Influence of Soil-Delivered Micronutrients (Iron and Zinc) on Soybean (Glycine max (L.) Merr.) Agronomic Performance and Quality under the Ecological Conditions of Central Anatolia, Türkiye. Uluslararası Çevresel Eğilimler Dergisi(Advanced Online Publication), 99-108.
AMA Özer İ. Influence of Soil-Delivered Micronutrients (Iron and Zinc) on Soybean (Glycine max (L.) Merr.) Agronomic Performance and Quality under the Ecological Conditions of Central Anatolia, Türkiye. IJENT. Aralık 2025;(Advanced Online Publication):99-108.
Chicago Özer, İrfan. “Influence of Soil-Delivered Micronutrients (Iron and Zinc) on Soybean (Glycine max (L.) Merr.) Agronomic Performance and Quality under the Ecological Conditions of Central Anatolia, Türkiye”. Uluslararası Çevresel Eğilimler Dergisi, sy. Advanced Online Publication (Aralık 2025): 99-108.
EndNote Özer İ (01 Aralık 2025) Influence of Soil-Delivered Micronutrients (Iron and Zinc) on Soybean (Glycine max (L.) Merr.) Agronomic Performance and Quality under the Ecological Conditions of Central Anatolia, Türkiye. Uluslararası Çevresel Eğilimler Dergisi Advanced Online Publication 99–108.
IEEE İ. Özer, “Influence of Soil-Delivered Micronutrients (Iron and Zinc) on Soybean (Glycine max (L.) Merr.) Agronomic Performance and Quality under the Ecological Conditions of Central Anatolia, Türkiye”, IJENT, sy. Advanced Online Publication, ss. 99–108, Aralık2025.
ISNAD Özer, İrfan. “Influence of Soil-Delivered Micronutrients (Iron and Zinc) on Soybean (Glycine max (L.) Merr.) Agronomic Performance and Quality under the Ecological Conditions of Central Anatolia, Türkiye”. Uluslararası Çevresel Eğilimler Dergisi Advanced Online Publication (Aralık2025), 99-108.
JAMA Özer İ. Influence of Soil-Delivered Micronutrients (Iron and Zinc) on Soybean (Glycine max (L.) Merr.) Agronomic Performance and Quality under the Ecological Conditions of Central Anatolia, Türkiye. IJENT. 2025;:99–108.
MLA Özer, İrfan. “Influence of Soil-Delivered Micronutrients (Iron and Zinc) on Soybean (Glycine max (L.) Merr.) Agronomic Performance and Quality under the Ecological Conditions of Central Anatolia, Türkiye”. Uluslararası Çevresel Eğilimler Dergisi, sy. Advanced Online Publication, 2025, ss. 99-108.
Vancouver Özer İ. Influence of Soil-Delivered Micronutrients (Iron and Zinc) on Soybean (Glycine max (L.) Merr.) Agronomic Performance and Quality under the Ecological Conditions of Central Anatolia, Türkiye. IJENT. 2025(Advanced Online Publication):99-108.

Environmental Engineering, Environmental Sustainability and Development, Industrial Waste Issues and Management, Global warming and Climate Change, Environmental Law, Environmental Developments and Legislation, Environmental Protection, Biotechnology and Environment, Fossil Fuels and Renewable Energy, Chemical Engineering, Civil Engineering, Geological Engineering, Mining Engineering, Agriculture Engineering, Biology, Chemistry, Physics,