Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 7 Sayı: 1, 3 - 13, 30.06.2023

Öz

Destekleyen Kurum

TÜBİTAK

Proje Numarası

1689B012242710

Kaynakça

  • [1] Björkner, B., Frick-Engfeldt, M., Pontén, A. and Zimerson, E. 2011. Plastic Materials Contact Dermatitis, Part 6:.695-728.
  • [2] Rajendran, N., Puppala, S., Sneha Raj, M., Ruth Angeeleena B., and Rajam, C. (2012). Seaweeds can be a new source for bioplastics. Journal of Pharmacy Research 5(3): 1476-1479.
  • [3] Purde, Ö. (2007). Endüstri Ürünleri Tasarımında Kullanılan Çevre Dostu Plastik Malzemeler ve Plastiğin Geri Kazanımı. istanbul, Marmara Üniversitesi G.S.Enstitüsü: yayımlanmamış yüksek lisans tezi.
  • [4] Kim, M. (2003). Evaluation of degradability of hydroxypropylated potato starch/ polyethylene blend films. Carbohydrate Polymers, 54(2), 173–181.
  • [5] Okada, M. (2002). Chemical syntheses of biodegradable polymers. Progress in Polymer Science, 27(1), 87–133.
  • [6] Parra, D. F., Tadini, C. C., Ponce, P. and Lagão, A. B. (2004). Mechanical properties and water vapor transmission in some blends of cassava starch edible films. Carbohydrate Polymers, 58(4), 475–481.
  • [7] Onay, T.T. ve Erses, A.S. (2006). Hazardous Waste Management. Journal of Chemistry and Industry, 39, 226, 36-37.
  • [8] Thompson W, Gordon N, Pescatello LS (2009). ACSM’s Guidelines for Exercise Testing and Prescription. 8th ed. Baltimore, MD: Lippincott Williams& Wilkins; Pp. 253-5, 2009.
  • [9] Prieto, M. A. 2007. From oil to bioplastics, a dream come true Journal of Bacteriology 189: 289–290.
  • [10] Song, J. H., Murphy, R. J., Narayan, R. and Davies, G. B. H. (2009). Biodegradable and compostable alternatives to conventional plastics. Philosophical Transactions of The Royal Society 364: 2127–2139.
  • [11] Köksal, Ö., Aydın Er, B., Ardalı, Y., & Sağlam, M. (2019). Biyoplastiklerin Biyodegradasyonu. Sinop Üniversitesi Fen Bilimleri Dergisi, s.151-167.
  • [12] Reddy M. M., Vivekanandhan S., Misra M., Bhatia S. K., Mohanty A. K, (2013). Biobased plastics and bionanocomposites: Current status and future opportunities, Progress in Polymer Science 38(10–11): 1653– 1689.
  • [13] Gironi, F., & Piemonte, V. (2011). Bioplastics and Petroleum-based Plastics: Strengths and Weaknesses. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, s.1949-1959.
  • [14] Emadian SM, Onay TT, Demirel B (2016). Biodegradation of bioplastics in natural environments. Waste Management, 59: 526-536.
  • [15] Bezirhan Arıkan, E., & Bilgen, H. (2019). Investigation of Biodegradation of Strach Based Bioplastic Spoon Wastes. Mühendislik Bilimleri ve Tasarım Dergisi, s.294-300.
  • [16] Hazer, B. (2012). Biyobozunur Plastik Ambalaj Malzemeleri. Sağlık Çevre Kültürü-Sayı 6, s.50-55.
  • [17] Gomez-Heincke D, Martirez I, Stading M, Gallegos C, Partal P (2017). Improvement of 48 mechanical and water absorption properties of plant protein based bioplastics, Food Hydrocolloids, 73,21-29.
  • [18] Felix M, Perez-Puyara V, Romero A, Guerrero A (2017). Development of protein-based bioplastics modified with different additives, journal of applied polymer science, 134 (42) Article number: 45430.
  • [19] Adenaike, O., Abakp. G.O. (2021) Antioxidant compounds and health benefits of citrus fruits. European Journal of Nutrition and Food Safety 13(2):65-74.
  • [20] Lee, W.J., Lee, M.H. ve Su, N.W. (2011). Characteristics of papaya seed oils obtained by extrusion–expelling processes. J. Sci. Food Agric., 91(13), 2348– 2354.
  • [21] Moy, J.H. (2003). Papayas. Amerika: Academic press. 4345-4351.
  • [22] Levecke, B., Buttle, D.J., Behnke, J.M., Duce, I.R. ve Vercruysse, J. (2014). Cysteine proteinases from papaya (Carica papaya) in the treatment of experimental Trichuris suis infection in pigs: two randomized controlled trials. Parasit Vectors, 7, 255.
  • [23] Davis, P.H., Mill, R.R., Tan, K. 1972. Flora of Turkey and Theeast Aegean Islands, Edinburgh Univ. Press, Vol. (4-10).
  • [24] Kayacık, H., (1981). Orman ve Park Ağaçlarının Özel Sistematiği, Cilt II, 4. Baskı, İ.Ü. Orman Fakültesi Yayın No: 2766, Bozak Matbaası, İstanbul.
  • [25] Seçmen, Ö., Gemici, Y., Leblebici, Y., Görk, G., Bekat, L. (1989). Tohumlu Bitkiler Sistematiği, E.Ü. Fen Fak. İzmir. No: 116, 2. Baskı, 396.
  • [26] Pamay, B. (1992). Bitki Materyali I Ağaç ve Ağaççıklar, İstanbul.
  • [27] Nas, M.N. (2007). Prof. Dr. Mehmet Nuri Nas Kişisel Görüşü
  • [28] Anonim, 2006. http://dosya.hurriyetim.com.tr/bitkilerleg elensaglik/alic.asp.
  • [29] Özdemir, F. & Ramazanoğlu, D. (2019). Farklı biyokütlelerden elde edilen nişasta ile akıllı biyoplastik malzeme ve odun biyoplastik kompozit üretimi. Bartın Orman Fakültesi Dergisi, 21 (2), 377-385. Retrieved from https://dergipark.org.tr/en/pub/barofd/issue/43738/551794.
  • [30] Siagian, M., & Tarigan, P. (2016). Production of Starch Based Bioplastic from Cassava Peel Reinforced with Microcrystalline Celllulose Avicel PH101 Using Sorbitol as Plasticizer. In Journal of Physics. Conference Series, 710(1), Article 012012.

ANTIBACTERIAL BIOPLASTIC PRODUCTION WITH HERBAL EXTRACT

Yıl 2023, Cilt: 7 Sayı: 1, 3 - 13, 30.06.2023

Öz

Plastic is the general name given to solid materials that are suitable for the production of industrial materials, have a wide usage area, synthetic or semi-synthetic, light, easily shaped and high chemical resistance. Petroleum-derived plastics are the most used and most important in the world. It is seen that the excessive production and consumption and the unconscious pollution of the environment increase in direct proportion. Since such plastics stay in the environment for a long time, the importance of plant-based plastic production is increasing. It is thought that the biodegradation time of plant-based plastics is short and it increases the quality of the living and non-living things in the environment instead of harming them. It can be produced with the desired durability, desired shape and flexibility like petroleum-based plastics in bioplastics. Although bioplastic production has come to the fore in recent years, the rate of bioplastic production remains lower due to the fact that petroleum-based plastic production is more factory-made. The increase in the use of chemical-containing plastics triggers the health of living things and global warming. It is thought that it is important to seek solutions by using antibacterial plants instead of using chemicals. If the antibacterial properties of herbal extracts can be brought to the fore, it is thought that the shelf life of the product can be increased.

Proje Numarası

1689B012242710

Kaynakça

  • [1] Björkner, B., Frick-Engfeldt, M., Pontén, A. and Zimerson, E. 2011. Plastic Materials Contact Dermatitis, Part 6:.695-728.
  • [2] Rajendran, N., Puppala, S., Sneha Raj, M., Ruth Angeeleena B., and Rajam, C. (2012). Seaweeds can be a new source for bioplastics. Journal of Pharmacy Research 5(3): 1476-1479.
  • [3] Purde, Ö. (2007). Endüstri Ürünleri Tasarımında Kullanılan Çevre Dostu Plastik Malzemeler ve Plastiğin Geri Kazanımı. istanbul, Marmara Üniversitesi G.S.Enstitüsü: yayımlanmamış yüksek lisans tezi.
  • [4] Kim, M. (2003). Evaluation of degradability of hydroxypropylated potato starch/ polyethylene blend films. Carbohydrate Polymers, 54(2), 173–181.
  • [5] Okada, M. (2002). Chemical syntheses of biodegradable polymers. Progress in Polymer Science, 27(1), 87–133.
  • [6] Parra, D. F., Tadini, C. C., Ponce, P. and Lagão, A. B. (2004). Mechanical properties and water vapor transmission in some blends of cassava starch edible films. Carbohydrate Polymers, 58(4), 475–481.
  • [7] Onay, T.T. ve Erses, A.S. (2006). Hazardous Waste Management. Journal of Chemistry and Industry, 39, 226, 36-37.
  • [8] Thompson W, Gordon N, Pescatello LS (2009). ACSM’s Guidelines for Exercise Testing and Prescription. 8th ed. Baltimore, MD: Lippincott Williams& Wilkins; Pp. 253-5, 2009.
  • [9] Prieto, M. A. 2007. From oil to bioplastics, a dream come true Journal of Bacteriology 189: 289–290.
  • [10] Song, J. H., Murphy, R. J., Narayan, R. and Davies, G. B. H. (2009). Biodegradable and compostable alternatives to conventional plastics. Philosophical Transactions of The Royal Society 364: 2127–2139.
  • [11] Köksal, Ö., Aydın Er, B., Ardalı, Y., & Sağlam, M. (2019). Biyoplastiklerin Biyodegradasyonu. Sinop Üniversitesi Fen Bilimleri Dergisi, s.151-167.
  • [12] Reddy M. M., Vivekanandhan S., Misra M., Bhatia S. K., Mohanty A. K, (2013). Biobased plastics and bionanocomposites: Current status and future opportunities, Progress in Polymer Science 38(10–11): 1653– 1689.
  • [13] Gironi, F., & Piemonte, V. (2011). Bioplastics and Petroleum-based Plastics: Strengths and Weaknesses. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, s.1949-1959.
  • [14] Emadian SM, Onay TT, Demirel B (2016). Biodegradation of bioplastics in natural environments. Waste Management, 59: 526-536.
  • [15] Bezirhan Arıkan, E., & Bilgen, H. (2019). Investigation of Biodegradation of Strach Based Bioplastic Spoon Wastes. Mühendislik Bilimleri ve Tasarım Dergisi, s.294-300.
  • [16] Hazer, B. (2012). Biyobozunur Plastik Ambalaj Malzemeleri. Sağlık Çevre Kültürü-Sayı 6, s.50-55.
  • [17] Gomez-Heincke D, Martirez I, Stading M, Gallegos C, Partal P (2017). Improvement of 48 mechanical and water absorption properties of plant protein based bioplastics, Food Hydrocolloids, 73,21-29.
  • [18] Felix M, Perez-Puyara V, Romero A, Guerrero A (2017). Development of protein-based bioplastics modified with different additives, journal of applied polymer science, 134 (42) Article number: 45430.
  • [19] Adenaike, O., Abakp. G.O. (2021) Antioxidant compounds and health benefits of citrus fruits. European Journal of Nutrition and Food Safety 13(2):65-74.
  • [20] Lee, W.J., Lee, M.H. ve Su, N.W. (2011). Characteristics of papaya seed oils obtained by extrusion–expelling processes. J. Sci. Food Agric., 91(13), 2348– 2354.
  • [21] Moy, J.H. (2003). Papayas. Amerika: Academic press. 4345-4351.
  • [22] Levecke, B., Buttle, D.J., Behnke, J.M., Duce, I.R. ve Vercruysse, J. (2014). Cysteine proteinases from papaya (Carica papaya) in the treatment of experimental Trichuris suis infection in pigs: two randomized controlled trials. Parasit Vectors, 7, 255.
  • [23] Davis, P.H., Mill, R.R., Tan, K. 1972. Flora of Turkey and Theeast Aegean Islands, Edinburgh Univ. Press, Vol. (4-10).
  • [24] Kayacık, H., (1981). Orman ve Park Ağaçlarının Özel Sistematiği, Cilt II, 4. Baskı, İ.Ü. Orman Fakültesi Yayın No: 2766, Bozak Matbaası, İstanbul.
  • [25] Seçmen, Ö., Gemici, Y., Leblebici, Y., Görk, G., Bekat, L. (1989). Tohumlu Bitkiler Sistematiği, E.Ü. Fen Fak. İzmir. No: 116, 2. Baskı, 396.
  • [26] Pamay, B. (1992). Bitki Materyali I Ağaç ve Ağaççıklar, İstanbul.
  • [27] Nas, M.N. (2007). Prof. Dr. Mehmet Nuri Nas Kişisel Görüşü
  • [28] Anonim, 2006. http://dosya.hurriyetim.com.tr/bitkilerleg elensaglik/alic.asp.
  • [29] Özdemir, F. & Ramazanoğlu, D. (2019). Farklı biyokütlelerden elde edilen nişasta ile akıllı biyoplastik malzeme ve odun biyoplastik kompozit üretimi. Bartın Orman Fakültesi Dergisi, 21 (2), 377-385. Retrieved from https://dergipark.org.tr/en/pub/barofd/issue/43738/551794.
  • [30] Siagian, M., & Tarigan, P. (2016). Production of Starch Based Bioplastic from Cassava Peel Reinforced with Microcrystalline Celllulose Avicel PH101 Using Sorbitol as Plasticizer. In Journal of Physics. Conference Series, 710(1), Article 012012.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm Makaleler
Yazarlar

Mehmet Selim Çobanoğlu 0000-0003-3659-2733

Proje Numarası 1689B012242710
Erken Görünüm Tarihi 21 Haziran 2023
Yayımlanma Tarihi 30 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 7 Sayı: 1

Kaynak Göster

APA Çobanoğlu, M. S. (2023). ANTIBACTERIAL BIOPLASTIC PRODUCTION WITH HERBAL EXTRACT. Uluslararası Çevresel Eğilimler Dergisi, 7(1), 3-13.
AMA Çobanoğlu MS. ANTIBACTERIAL BIOPLASTIC PRODUCTION WITH HERBAL EXTRACT. IJENT. Haziran 2023;7(1):3-13.
Chicago Çobanoğlu, Mehmet Selim. “ANTIBACTERIAL BIOPLASTIC PRODUCTION WITH HERBAL EXTRACT”. Uluslararası Çevresel Eğilimler Dergisi 7, sy. 1 (Haziran 2023): 3-13.
EndNote Çobanoğlu MS (01 Haziran 2023) ANTIBACTERIAL BIOPLASTIC PRODUCTION WITH HERBAL EXTRACT. Uluslararası Çevresel Eğilimler Dergisi 7 1 3–13.
IEEE M. S. Çobanoğlu, “ANTIBACTERIAL BIOPLASTIC PRODUCTION WITH HERBAL EXTRACT”, IJENT, c. 7, sy. 1, ss. 3–13, 2023.
ISNAD Çobanoğlu, Mehmet Selim. “ANTIBACTERIAL BIOPLASTIC PRODUCTION WITH HERBAL EXTRACT”. Uluslararası Çevresel Eğilimler Dergisi 7/1 (Haziran 2023), 3-13.
JAMA Çobanoğlu MS. ANTIBACTERIAL BIOPLASTIC PRODUCTION WITH HERBAL EXTRACT. IJENT. 2023;7:3–13.
MLA Çobanoğlu, Mehmet Selim. “ANTIBACTERIAL BIOPLASTIC PRODUCTION WITH HERBAL EXTRACT”. Uluslararası Çevresel Eğilimler Dergisi, c. 7, sy. 1, 2023, ss. 3-13.
Vancouver Çobanoğlu MS. ANTIBACTERIAL BIOPLASTIC PRODUCTION WITH HERBAL EXTRACT. IJENT. 2023;7(1):3-13.

Environmental Engineering, Environmental Sustainability and Development, Industrial Waste Issues and Management, Global warming and Climate Change, Environmental Law, Environmental Developments and Legislation, Environmental Protection, Biotechnology and Environment, Fossil Fuels and Renewable Energy, Chemical Engineering, Civil Engineering, Geological Engineering, Mining Engineering, Agriculture Engineering, Biology, Chemistry, Physics,