Derleme
BibTex RIS Kaynak Göster

Biochemical Dynamics and Sustainable Energy Production in Anaerobic Digestion: Microbial Insights and Innovations

Yıl 2025, Cilt: 9 Sayı: 1, 3 - 14, 30.06.2025

Öz

Regarding sustainable wastewater treatment and renewable energy production, anaerobic digestion (AD) is an important technology. This review presents the microbial and biochemical processes involved in methane production in AD systems, focussing mainly on AD of domestic wastewater. The four stages, hydrolysis, acidogenesis, acetogenesis, and methanogenesis are described with relation to microbial consortia, enzymatic activities and coenzymes such as Coenzyme M and F₄₂₀. Recent advances in interspecies electron transfer (IET), in particular direct IET (DIET), also suggest that conductive materials such as biochar increase methane production and system robustness. The metabolism and substrate specificity of methanogenic archaea are discussed and the function of electron carriers in maintaining redox balance. Biogas upgrading technologies, namely membrane separation, pressure swing adsorption, biological scrubbing and hybrid systems are assessed in relation to the methane content and tolerance of microbes. The study highlights the utilization of microbial optimization and technological advancements to enhance the biomethane production in a circular and low carbon spectrum.

Kaynakça

  • [1] Uddin, M. M., & Wright, M. M. (2023). 7. Anaerobic digestion fundamentals, challenges, and technological advances. Physical Sciences Reviews, 8(9), 2819–2837. https://doi.org/10.1515/psr-2021-0068
  • [2] O’Connor, S., Ehimen, E., Pillai, S. C., Black, A., Tormey, D., & Bartlett, J. (2021). 10. Biogas production from small-scale anaerobic digestion plants on European farms. Renewable and Sustainable Energy Reviews, 139, 110580. https://doi.org/10.1016/j.rser.2020.110580
  • [3] Rabii, A., Aldin, S., Dahman, Y., & Elbeshbishy, E. (2019). 9.A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration. Energies, 12(6), 1106. https://doi.org/10.3390/en12061106
  • [4] Silvestre, G., Fernández, B., & Bonmatí, A. (2015). 1. Significance of anaerobic digestion as a source of clean energy in wastewater treatment plants. Energy Conversion and Management, 101, 255–262. https://doi.org/10.1016/j.enconman.2015.05.033
  • [5] Bachmann, N. (n.d.). 4. Sustainable biogas production in municipal wastewater treatment plants.
  • [6] Molino, A., Nanna, F., Ding, Y., Bikson, B., & Braccio, G. (2013). 5. Biomethane production by anaerobic digestion of organic waste. Fuel, 103, 1003–1009. https://doi.org/10.1016/j.fuel.2012.07.070
  • [7] Xu, R., Yang, Z.-H., Zheng, Y., Liu, J.-B., Xiong, W.-P., Zhang, Y.-R., Lu, Y., Xue, W.-J., & Fan, C.-Z. (2018). 26. Organic loading rate and hydraulic retention time shape distinct ecological networks of anaerobic digestion related microbiome. Bioresource Technology, 262, 184–193. https://doi.org/10.1016/j.biortech.2018.04.083
  • [8] Lima, D., Appleby, G., & Li, L. (2023). 25. A Scoping Review of Options for Increasing Biogas Production from Sewage Sludge: Challenges and Opportunities for Enhancing Energy Self-Sufficiency in Wastewater Treatment Plants. Energies, 16(5), 2369. https://doi.org/10.3390/en16052369
  • [9] González, R., Peña, D. C., & Gómez, X. (2022). 11.Anaerobic Co-Digestion of Wastes: Reviewing Current Status and Approaches for Enhancing Biogas Production. Applied Sciences, 12(17), 8884. https://doi.org/10.3390/app12178884
  • [10] Zhao, Z.-J., Liu, X.-L., Wang, Y.-X., Wang, Y.-S., Shen, J.-Y., Pan, Z.-C., & Mu, Y. (2024). 24. Material and microbial perspectives on understanding the role of biochar in mitigating ammonia inhibition during anaerobic digestion. Water Research, 255, 121503. https://doi.org/10.1016/j.watres.2024.121503
  • [11] Wang, P., Wang, H., Qiu, Y., Ren, L., & Jiang, B. (2018). 14. Microbial characteristics in anaerobic digestion process of food waste for methane production–A review. Bioresource Technology, 248, 29–36. https://doi.org/10.1016/j.biortech.2017.06.152
  • [12] Amani, T., Nosrati, M., & Sreekrishnan, T. R. (2010). 16. Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects—A review. Environmental Reviews, 18(NA), 255–278. https://doi.org/10.1139/A10-011
  • [13] Kim, D., Lee, K., & Park, K. Y. (2015). 18. Enhancement of biogas production from anaerobic digestion of waste activated sludge by hydrothermal pre-treatment. International Biodeterioration & Biodegradation, 101, 42–46. https://doi.org/10.1016/j.ibiod.2015.03.025
  • [14] Su, K., Li, L., Wang, Q., & Cao, R. (2023). 15.A Review on the Interspecies Electron Transfer of Methane Production in Anaerobic Digestion System. Fermentation, 9(5), 467. https://doi.org/10.3390/fermentation9050467
  • [15] Wu, D., Li, L., Zhao, X., Peng, Y., Yang, P., & Peng, X. (2019). 17. Anaerobic digestion: A review on process monitoring. Renewable and Sustainable Energy Reviews, 103, 1–12. https://doi.org/10.1016/j.rser.2018.12.039
  • [16] Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). 6.Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34(6), 755–781. https://doi.org/10.1016/j.pecs.2008.06.002
  • [17] Gao, Q., Zhao, Q., Wang, K., Li, X., Zhou, H., Ding, J., & Li, L. (2024). 21. Promoting methane production during anaerobic digestion with biochar: Is it influenced by quorum sensing? Chemical Engineering Journal, 483, 149268. https://doi.org/10.1016/j.cej.2024.149268
  • [18] Ziganshin, A. M., Liebetrau, J., Pröter, J., & Kleinsteuber, S. (2013). 13.Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials. Applied Microbiology and Biotechnology, 97(11), 5161–5174. https://doi.org/10.1007/s00253-013-4867-0
  • [19] Zhang, B., Wang, G., Zhang, X., Fu, P., Chen, L., Chen, Y., Li, Q., & Chen, R. (2024). Regulatory mechanisms of biochar alleviating ammonia inhibition to methanogenesis during long-term operation of anaerobic membrane bioreactor treating swine wastewater. Chemical Engineering Journal, 493, 152591. https://doi.org/10.1016/j.cej.2024.152591
  • [20] Ning, J., Kamali, M., & Appels, L. (2024). 23. Advances in carbonaceous promoters for anaerobic digestion processes – Functions and mechanisms of action. Renewable and Sustainable Energy Reviews, 202, 114640. https://doi.org/10.1016/j.rser.2024.114640
  • [21 Ngo, T., Khudur, L. S., Hassan, S., Jansriphibul, K., & Ball, A. S. (2024). 20. Enhancing microbial viability with biochar for increased methane production during the anaerobic digestion of chicken manure. Fuel, 368, 131603. https://doi.org/10.1016/j.fuel.2024.131603
  • [22] Azarmanesh, R., Zarghami Qaretapeh, M., Hasani Zonoozi, M., Ghiasinejad, H., & Zhang, Y. (2023). 12. Anaerobic co-digestion of sewage sludge with other organic wastes: A comprehensive review focusing on selection criteria, operational conditions, and microbiology. Chemical Engineering Journal Advances, 14, 100453. https://doi.org/10.1016/j.ceja.2023.100453
  • [23] Nguyen, L. N., Kumar, J., Vu, M. T., Mohammed, J. A. H., Pathak, N., Commault, A. S., Sutherland, D., Zdarta, J., Tyagi, V. K., & Nghiem, L. D. (2021). 8.Biomethane production from anaerobic co-digestion at wastewater treatment plants: A critical review on development and innovations in biogas upgrading techniques. Science of The Total Environment, 765, 142753. https://doi.org/10.1016/j.scitotenv.2020.142753
  • [24] Le Pera, A., Sellaro, M., Pellegrino, C., Limonti, C., & Siciliano, A. (2024). 19. Combined Pre-Treatment Technologies for Cleaning Biogas before Its Upgrading to Biomethane: An Italian Full-Scale Anaerobic Digester Case Study. Applied Sciences, 14(5), 2053. https://doi.org/10.3390/app14052053

Anaerobik Sindirimde Biyokimyasal Dinamikler ve Sürdürülebilir Enerji Üretimi: Mikrobiyal Görüşler ve Yenilikler

Yıl 2025, Cilt: 9 Sayı: 1, 3 - 14, 30.06.2025

Öz

Regarding sustainable wastewater treatment and renewable energy production, anaerobic digestion (AD) is an important technology. This review presents the microbial and biochemical processes involved in methane production in AD systems, focussing mainly on AD of domestic wastewater. The four stages, hydrolysis, acidogenesis, acetogenesis, and methanogenesis are described with relation to microbial consortia, enzymatic activities and coenzymes such as Coenzyme M and F₄₂₀. Recent advances in interspecies electron transfer (IET), in particular direct IET (DIET), also suggest that conductive materials such as biochar increase methane production and system robustness. The metabolism and substrate specificity of methanogenic archaea are discussed and the function of electron carriers in maintaining redox balance. Biogas upgrading technologies, namely membrane separation, pressure swing adsorption, biological scrubbing and hybrid systems are assessed in relation to the methane content and tolerance of microbes. The study highlights the utilization of microbial optimization and technological advancements to enhance the biomethane production in a circular and low carbon spectrum.

Kaynakça

  • [1] Uddin, M. M., & Wright, M. M. (2023). 7. Anaerobic digestion fundamentals, challenges, and technological advances. Physical Sciences Reviews, 8(9), 2819–2837. https://doi.org/10.1515/psr-2021-0068
  • [2] O’Connor, S., Ehimen, E., Pillai, S. C., Black, A., Tormey, D., & Bartlett, J. (2021). 10. Biogas production from small-scale anaerobic digestion plants on European farms. Renewable and Sustainable Energy Reviews, 139, 110580. https://doi.org/10.1016/j.rser.2020.110580
  • [3] Rabii, A., Aldin, S., Dahman, Y., & Elbeshbishy, E. (2019). 9.A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration. Energies, 12(6), 1106. https://doi.org/10.3390/en12061106
  • [4] Silvestre, G., Fernández, B., & Bonmatí, A. (2015). 1. Significance of anaerobic digestion as a source of clean energy in wastewater treatment plants. Energy Conversion and Management, 101, 255–262. https://doi.org/10.1016/j.enconman.2015.05.033
  • [5] Bachmann, N. (n.d.). 4. Sustainable biogas production in municipal wastewater treatment plants.
  • [6] Molino, A., Nanna, F., Ding, Y., Bikson, B., & Braccio, G. (2013). 5. Biomethane production by anaerobic digestion of organic waste. Fuel, 103, 1003–1009. https://doi.org/10.1016/j.fuel.2012.07.070
  • [7] Xu, R., Yang, Z.-H., Zheng, Y., Liu, J.-B., Xiong, W.-P., Zhang, Y.-R., Lu, Y., Xue, W.-J., & Fan, C.-Z. (2018). 26. Organic loading rate and hydraulic retention time shape distinct ecological networks of anaerobic digestion related microbiome. Bioresource Technology, 262, 184–193. https://doi.org/10.1016/j.biortech.2018.04.083
  • [8] Lima, D., Appleby, G., & Li, L. (2023). 25. A Scoping Review of Options for Increasing Biogas Production from Sewage Sludge: Challenges and Opportunities for Enhancing Energy Self-Sufficiency in Wastewater Treatment Plants. Energies, 16(5), 2369. https://doi.org/10.3390/en16052369
  • [9] González, R., Peña, D. C., & Gómez, X. (2022). 11.Anaerobic Co-Digestion of Wastes: Reviewing Current Status and Approaches for Enhancing Biogas Production. Applied Sciences, 12(17), 8884. https://doi.org/10.3390/app12178884
  • [10] Zhao, Z.-J., Liu, X.-L., Wang, Y.-X., Wang, Y.-S., Shen, J.-Y., Pan, Z.-C., & Mu, Y. (2024). 24. Material and microbial perspectives on understanding the role of biochar in mitigating ammonia inhibition during anaerobic digestion. Water Research, 255, 121503. https://doi.org/10.1016/j.watres.2024.121503
  • [11] Wang, P., Wang, H., Qiu, Y., Ren, L., & Jiang, B. (2018). 14. Microbial characteristics in anaerobic digestion process of food waste for methane production–A review. Bioresource Technology, 248, 29–36. https://doi.org/10.1016/j.biortech.2017.06.152
  • [12] Amani, T., Nosrati, M., & Sreekrishnan, T. R. (2010). 16. Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects—A review. Environmental Reviews, 18(NA), 255–278. https://doi.org/10.1139/A10-011
  • [13] Kim, D., Lee, K., & Park, K. Y. (2015). 18. Enhancement of biogas production from anaerobic digestion of waste activated sludge by hydrothermal pre-treatment. International Biodeterioration & Biodegradation, 101, 42–46. https://doi.org/10.1016/j.ibiod.2015.03.025
  • [14] Su, K., Li, L., Wang, Q., & Cao, R. (2023). 15.A Review on the Interspecies Electron Transfer of Methane Production in Anaerobic Digestion System. Fermentation, 9(5), 467. https://doi.org/10.3390/fermentation9050467
  • [15] Wu, D., Li, L., Zhao, X., Peng, Y., Yang, P., & Peng, X. (2019). 17. Anaerobic digestion: A review on process monitoring. Renewable and Sustainable Energy Reviews, 103, 1–12. https://doi.org/10.1016/j.rser.2018.12.039
  • [16] Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). 6.Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34(6), 755–781. https://doi.org/10.1016/j.pecs.2008.06.002
  • [17] Gao, Q., Zhao, Q., Wang, K., Li, X., Zhou, H., Ding, J., & Li, L. (2024). 21. Promoting methane production during anaerobic digestion with biochar: Is it influenced by quorum sensing? Chemical Engineering Journal, 483, 149268. https://doi.org/10.1016/j.cej.2024.149268
  • [18] Ziganshin, A. M., Liebetrau, J., Pröter, J., & Kleinsteuber, S. (2013). 13.Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials. Applied Microbiology and Biotechnology, 97(11), 5161–5174. https://doi.org/10.1007/s00253-013-4867-0
  • [19] Zhang, B., Wang, G., Zhang, X., Fu, P., Chen, L., Chen, Y., Li, Q., & Chen, R. (2024). Regulatory mechanisms of biochar alleviating ammonia inhibition to methanogenesis during long-term operation of anaerobic membrane bioreactor treating swine wastewater. Chemical Engineering Journal, 493, 152591. https://doi.org/10.1016/j.cej.2024.152591
  • [20] Ning, J., Kamali, M., & Appels, L. (2024). 23. Advances in carbonaceous promoters for anaerobic digestion processes – Functions and mechanisms of action. Renewable and Sustainable Energy Reviews, 202, 114640. https://doi.org/10.1016/j.rser.2024.114640
  • [21 Ngo, T., Khudur, L. S., Hassan, S., Jansriphibul, K., & Ball, A. S. (2024). 20. Enhancing microbial viability with biochar for increased methane production during the anaerobic digestion of chicken manure. Fuel, 368, 131603. https://doi.org/10.1016/j.fuel.2024.131603
  • [22] Azarmanesh, R., Zarghami Qaretapeh, M., Hasani Zonoozi, M., Ghiasinejad, H., & Zhang, Y. (2023). 12. Anaerobic co-digestion of sewage sludge with other organic wastes: A comprehensive review focusing on selection criteria, operational conditions, and microbiology. Chemical Engineering Journal Advances, 14, 100453. https://doi.org/10.1016/j.ceja.2023.100453
  • [23] Nguyen, L. N., Kumar, J., Vu, M. T., Mohammed, J. A. H., Pathak, N., Commault, A. S., Sutherland, D., Zdarta, J., Tyagi, V. K., & Nghiem, L. D. (2021). 8.Biomethane production from anaerobic co-digestion at wastewater treatment plants: A critical review on development and innovations in biogas upgrading techniques. Science of The Total Environment, 765, 142753. https://doi.org/10.1016/j.scitotenv.2020.142753
  • [24] Le Pera, A., Sellaro, M., Pellegrino, C., Limonti, C., & Siciliano, A. (2024). 19. Combined Pre-Treatment Technologies for Cleaning Biogas before Its Upgrading to Biomethane: An Italian Full-Scale Anaerobic Digester Case Study. Applied Sciences, 14(5), 2053. https://doi.org/10.3390/app14052053
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kirlilik ve Kontaminasyon (Diğer)
Bölüm Makaleler
Yazarlar

İrem Kasapoglu Bu kişi benim

Birol Kayranlı

Erken Görünüm Tarihi 23 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 7 Mayıs 2025
Kabul Tarihi 28 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 1

Kaynak Göster

APA Kasapoglu, İ., & Kayranlı, B. (2025). Biochemical Dynamics and Sustainable Energy Production in Anaerobic Digestion: Microbial Insights and Innovations. Uluslararası Çevresel Eğilimler Dergisi, 9(1), 3-14.
AMA Kasapoglu İ, Kayranlı B. Biochemical Dynamics and Sustainable Energy Production in Anaerobic Digestion: Microbial Insights and Innovations. IJENT. Haziran 2025;9(1):3-14.
Chicago Kasapoglu, İrem, ve Birol Kayranlı. “Biochemical Dynamics and Sustainable Energy Production in Anaerobic Digestion: Microbial Insights and Innovations”. Uluslararası Çevresel Eğilimler Dergisi 9, sy. 1 (Haziran 2025): 3-14.
EndNote Kasapoglu İ, Kayranlı B (01 Haziran 2025) Biochemical Dynamics and Sustainable Energy Production in Anaerobic Digestion: Microbial Insights and Innovations. Uluslararası Çevresel Eğilimler Dergisi 9 1 3–14.
IEEE İ. Kasapoglu ve B. Kayranlı, “Biochemical Dynamics and Sustainable Energy Production in Anaerobic Digestion: Microbial Insights and Innovations”, IJENT, c. 9, sy. 1, ss. 3–14, 2025.
ISNAD Kasapoglu, İrem - Kayranlı, Birol. “Biochemical Dynamics and Sustainable Energy Production in Anaerobic Digestion: Microbial Insights and Innovations”. Uluslararası Çevresel Eğilimler Dergisi 9/1 (Haziran2025), 3-14.
JAMA Kasapoglu İ, Kayranlı B. Biochemical Dynamics and Sustainable Energy Production in Anaerobic Digestion: Microbial Insights and Innovations. IJENT. 2025;9:3–14.
MLA Kasapoglu, İrem ve Birol Kayranlı. “Biochemical Dynamics and Sustainable Energy Production in Anaerobic Digestion: Microbial Insights and Innovations”. Uluslararası Çevresel Eğilimler Dergisi, c. 9, sy. 1, 2025, ss. 3-14.
Vancouver Kasapoglu İ, Kayranlı B. Biochemical Dynamics and Sustainable Energy Production in Anaerobic Digestion: Microbial Insights and Innovations. IJENT. 2025;9(1):3-14.

Environmental Engineering, Environmental Sustainability and Development, Industrial Waste Issues and Management, Global warming and Climate Change, Environmental Law, Environmental Developments and Legislation, Environmental Protection, Biotechnology and Environment, Fossil Fuels and Renewable Energy, Chemical Engineering, Civil Engineering, Geological Engineering, Mining Engineering, Agriculture Engineering, Biology, Chemistry, Physics,