Derleme
BibTex RIS Kaynak Göster

Yıl 2025, Cilt: 10 Sayı: 3, 1229 - 1258, 25.09.2025

Öz

Kaynakça

  • [1] IPCC. Climate change 2023: synthesis report. Cambridge University Press 2023.
  • [2] Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, et al. Climate change 2021: the physical science basis. Cambridge University Press 2021.
  • [3] United Nations Framework Convention on Climate Change. Paris Agreement. United Nations Treaty Collection 2015.
  • [4] United Nations Framework Convention on Climate Change. COP28 agreement marks "beginning of the end" of the fossil fuel era. UNFCCC 2023.
  • [5] Republic of Türkiye. Türkiye's updated 1st nationally determined contribution. UNFCCC 2023.
  • [6] Turkish Statistical Institute. Greenhouse gas emission statistics, 1990-2021. TurkStat 2023.
  • [7] Şahin Ü, Tör OB, Kat B, Teimourzadeh S, Demirkol K, Künar A, et al. Türkiye's decarbonization roadmap: net zero in 2050. Istanbul Policy Center 2021.
  • [8] Anastas P, Eghbali N. Green chemistry: principles and practice. Chemical Society Reviews 2010; 39(1): 301-312.
  • [9] Sheldon RA. Green chemistry and sustainability metrics: past, present, and future. ACS Sustainable Chemistry and Engineering 2018; 6(1): 32-48.
  • [10] Zuin VG, Kümmerer K. Towards more sustainable curricula: integrating sustainability into chemistry courses in higher education. Current Opinion in Green and Sustainable Chemistry 2021; 31: 100508.
  • [11] Poliakoff M, Fitzpatrick JM, Farren TR, Anastas PT. Green chemistry: the science and politics of change. Science 2002; 297(5582): 807-810.
  • [12] Matlin SA, Mehta G, Hopf H, Krief A. The role of chemistry in inventing a sustainable future. Nature Chemistry 2015; 7(12): 941-943.
  • [13] Erythropel HC, Zimmerman JB, de Winter TM, Petitjean L, Melnikov F, Lam CH, et al. The Green ChemisTREE: 20 years after taking root with 12 principles. Green Chemistry 2018; 20(9): 1929-1961.
  • [14] Anastas PT, Warner JC. Green chemistry: theory and practice. Oxford University Press, 1998.
  • [15] CMCC. Türkiye - G20 climate risk atlas. 2023.
  • [16] Hockenos P. Türkiye faces a thirsty future as the climate scorches. Yale Environment 360 2021.
  • [17] G20 Climate Risk Atlas. Turkish agriculture. 2023.
  • [18] Ergur S. Extreme temperatures and forest fires in Türkiye reflect climate change. Climate Scorecard 2021.
  • [19] European Bank for Reconstruction and Development (EBRD). Türkiye's carbon market readiness and development of the emissions trading system. EBRD Report 2021.
  • [20] World Bank. Carbon pricing status and trends 2020. World Bank 2020.
  • [21] Alanli A. Evaluation of policies towards energy efficiency in Türkiye. Sirnak University Journal of Science and Technology 2022; 3(1): 1-18.
  • [22] Yılmaz O, Hotunluoğlu H. Incentives for renewable energy and Türkiye. Adnan Menderes University Journal of Institute of Social Sciences 2015; 2(2): 74-97.
  • [23] Republic of Türkiye Ministry of Environment, Urbanization, and Climate Change. Türkiye's climate change strategy annual activity reports. 2023-2025.
  • [24] SHURA Energy Transition Center. Net zero 2053: socioeconomic impacts of transition to carbon-free energy in Türkiye. 2024.
  • [25] European Bank for Reconstruction and Development. Turkish exporters could face steep extra costs under new EU carbon rules. 2021.
  • [26] ILO, UNDP. Social and employment impacts of climate change and green economy policies in Türkiye. 2022.
  • [27] Banks Association of Türkiye. Sustainable finance report 2024. 2024.
  • [28] Scientific and Technological Research Council of Türkiye (TÜBİTAK). Industrial R&D projects support program/climate status and sustainable environment priority area call programs. 2025.
  • [29] Toklu E. Biomass energy potential and utilization in Türkiye. Renewable Energy 2017; 107: 235-244.
  • [30] Sheldon RA. Biocatalysis and biomass conversion: enabling a circular economy. Philosophical Transactions of the Royal Society A 2020; 378(2176): 20190274.
  • [31] Ögmundarson Ó, Sukumara S, Laurent A, Fantke P. Environmental hotspots of different lactic acid production systems. GCB Bioenergy 2020; 12(1): 19-38.
  • [32] Keijer T, Bakker V, Slootweg JC. Circular chemistry to enable the circular economy. Nature Chemistry 2019; 11(3): 190-195.
  • [33] Kümmerer K, Clark JH, Zuin VG. Rethinking chemistry for the circular economy. Science 2020; 367(6476): 369-370.
  • [34] Avdiushchenko A, Zając P. Circular economy indicators as a supporting tool for European regional development policies. Sustainability 2019; 11(11): 3025.
  • [35] Ragaert K, Delva L, Van Geem K. Mechanical and chemical recycling of solid plastic waste. Waste Management 2017; 69: 24-58.
  • [36] Miandad R, Barakat MA, Aburiazaiza AS, Rehan M, Nizami AS. Catalytic pyrolysis of plastic waste: a review. Process Safety and Environmental Protection 2016; 102: 822-838.
  • [37] Artz J, Müller TE, Thenert K, Kleinekorte J, Meys R, Sternberg A, et al. Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chemical Reviews 2018; 118(2): 434-504.
  • [38] Nitopi S, Bertheussen E, Scott SB, Liu X, Engstfeld AK, Horch S, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chemical Reviews 2019; 119(12): 7610-7672.
  • [39] Álvarez A, Bansode A, Urakawa A, Bavykina AV, Wezendonk TA, Makkee M, et al. Challenges in greener production of formates/formic acid, methanol, and DME by heterogeneous catalyzed CO2 hydrogenation processes. Chemical Reviews 2017; 117(14): 9804-9838.
  • [40] Hepburn C, Adlen E, Beddington J, Carter EA, Fuss S, Mac Dowell N, et al. Technological and economic prospects for CO2 utilization and removal. Nature 2019; 575(7781): 87-97.
  • [41] Newell P, Mulvaney D. The political economy of 'just transition'. Journal of Geography 2013; 179(2): 132-140.
  • [42] Tournier V, Topham CM, Gilles A, David B, Folgoas C, Moya-Leclair E, et al. A PET depolymerase designed to shred and recycle plastic bottles. Nature 2020; 580(7802): 216-219.
  • [43] Borrello M, Pascucci S, Cembalo L. Three proposals to unify circular economy research: a review. Sustainability 2020; 12(10): 4069.
  • [44] Lehmann J, Cowie A, Masiello CA, Kammann C, Woolf D, Amonette JE, et al. Biochar in climate change mitigation. Nature Geoscience 2021; 14(12): 883-892.
  • [45] Kılıç AM, Kılıç Ö. The importance of boron minerals for Türkiye and their potential for sustainable development. Resources Policy 2021; 70: 101922.
  • [46] Friedlingstein P, O'Sullivan M, Jones MW, Andrew RM, Hauck J, Olsen A, et al. Global carbon budget 2020. Earth System Science Data 2020; 12(4): 3269-3340.
  • [47] Budak Y, Keçeci M. Green transformation with zero waste: eco-friendly cosmetics and cleaning products for Türkiye's future. Gaziosmanpaşa Scientific Research Journal 2024; 13(3): 145-155.
  • [48] Budak Y, Yaşar F. An experimental study on the efficacy of cleaning and cosmetic products using pH sensors. Turkish Journal of Sensors and Biosensors 2024; 1(1): 12-18.

Climate law: necessity or opportunity for Türkiye? sustainable environmental vision with green chemistry

Yıl 2025, Cilt: 10 Sayı: 3, 1229 - 1258, 25.09.2025

Öz

This study analyzes the relationship between Türkiye's pending Climate Law and green chemistry practices by combining technology, policy and economics perspectives. The findings suggest that the Climate Law could be a critical tool for the adoption and diffusion of green chemistry technologies through carbon pricing and emission reduction targets. However, realizing this potential depends on technological maturity levels (TRL), economic feasibility (especially economies of scale), infrastructure investments and effective policy design. The study aims to fill an important gap in the literature by examining the linkages between Türkiye's climate policies and green chemistry through a systematic and interdisciplinary approach. It also emphasizes the urgent need for further research, refinement and piloting on the sustainability of biobased chemicals, the energy intensity and net carbon reduction capacity of CCU technologies, and the technical and economic feasibility of chemical recycling.

Kaynakça

  • [1] IPCC. Climate change 2023: synthesis report. Cambridge University Press 2023.
  • [2] Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, et al. Climate change 2021: the physical science basis. Cambridge University Press 2021.
  • [3] United Nations Framework Convention on Climate Change. Paris Agreement. United Nations Treaty Collection 2015.
  • [4] United Nations Framework Convention on Climate Change. COP28 agreement marks "beginning of the end" of the fossil fuel era. UNFCCC 2023.
  • [5] Republic of Türkiye. Türkiye's updated 1st nationally determined contribution. UNFCCC 2023.
  • [6] Turkish Statistical Institute. Greenhouse gas emission statistics, 1990-2021. TurkStat 2023.
  • [7] Şahin Ü, Tör OB, Kat B, Teimourzadeh S, Demirkol K, Künar A, et al. Türkiye's decarbonization roadmap: net zero in 2050. Istanbul Policy Center 2021.
  • [8] Anastas P, Eghbali N. Green chemistry: principles and practice. Chemical Society Reviews 2010; 39(1): 301-312.
  • [9] Sheldon RA. Green chemistry and sustainability metrics: past, present, and future. ACS Sustainable Chemistry and Engineering 2018; 6(1): 32-48.
  • [10] Zuin VG, Kümmerer K. Towards more sustainable curricula: integrating sustainability into chemistry courses in higher education. Current Opinion in Green and Sustainable Chemistry 2021; 31: 100508.
  • [11] Poliakoff M, Fitzpatrick JM, Farren TR, Anastas PT. Green chemistry: the science and politics of change. Science 2002; 297(5582): 807-810.
  • [12] Matlin SA, Mehta G, Hopf H, Krief A. The role of chemistry in inventing a sustainable future. Nature Chemistry 2015; 7(12): 941-943.
  • [13] Erythropel HC, Zimmerman JB, de Winter TM, Petitjean L, Melnikov F, Lam CH, et al. The Green ChemisTREE: 20 years after taking root with 12 principles. Green Chemistry 2018; 20(9): 1929-1961.
  • [14] Anastas PT, Warner JC. Green chemistry: theory and practice. Oxford University Press, 1998.
  • [15] CMCC. Türkiye - G20 climate risk atlas. 2023.
  • [16] Hockenos P. Türkiye faces a thirsty future as the climate scorches. Yale Environment 360 2021.
  • [17] G20 Climate Risk Atlas. Turkish agriculture. 2023.
  • [18] Ergur S. Extreme temperatures and forest fires in Türkiye reflect climate change. Climate Scorecard 2021.
  • [19] European Bank for Reconstruction and Development (EBRD). Türkiye's carbon market readiness and development of the emissions trading system. EBRD Report 2021.
  • [20] World Bank. Carbon pricing status and trends 2020. World Bank 2020.
  • [21] Alanli A. Evaluation of policies towards energy efficiency in Türkiye. Sirnak University Journal of Science and Technology 2022; 3(1): 1-18.
  • [22] Yılmaz O, Hotunluoğlu H. Incentives for renewable energy and Türkiye. Adnan Menderes University Journal of Institute of Social Sciences 2015; 2(2): 74-97.
  • [23] Republic of Türkiye Ministry of Environment, Urbanization, and Climate Change. Türkiye's climate change strategy annual activity reports. 2023-2025.
  • [24] SHURA Energy Transition Center. Net zero 2053: socioeconomic impacts of transition to carbon-free energy in Türkiye. 2024.
  • [25] European Bank for Reconstruction and Development. Turkish exporters could face steep extra costs under new EU carbon rules. 2021.
  • [26] ILO, UNDP. Social and employment impacts of climate change and green economy policies in Türkiye. 2022.
  • [27] Banks Association of Türkiye. Sustainable finance report 2024. 2024.
  • [28] Scientific and Technological Research Council of Türkiye (TÜBİTAK). Industrial R&D projects support program/climate status and sustainable environment priority area call programs. 2025.
  • [29] Toklu E. Biomass energy potential and utilization in Türkiye. Renewable Energy 2017; 107: 235-244.
  • [30] Sheldon RA. Biocatalysis and biomass conversion: enabling a circular economy. Philosophical Transactions of the Royal Society A 2020; 378(2176): 20190274.
  • [31] Ögmundarson Ó, Sukumara S, Laurent A, Fantke P. Environmental hotspots of different lactic acid production systems. GCB Bioenergy 2020; 12(1): 19-38.
  • [32] Keijer T, Bakker V, Slootweg JC. Circular chemistry to enable the circular economy. Nature Chemistry 2019; 11(3): 190-195.
  • [33] Kümmerer K, Clark JH, Zuin VG. Rethinking chemistry for the circular economy. Science 2020; 367(6476): 369-370.
  • [34] Avdiushchenko A, Zając P. Circular economy indicators as a supporting tool for European regional development policies. Sustainability 2019; 11(11): 3025.
  • [35] Ragaert K, Delva L, Van Geem K. Mechanical and chemical recycling of solid plastic waste. Waste Management 2017; 69: 24-58.
  • [36] Miandad R, Barakat MA, Aburiazaiza AS, Rehan M, Nizami AS. Catalytic pyrolysis of plastic waste: a review. Process Safety and Environmental Protection 2016; 102: 822-838.
  • [37] Artz J, Müller TE, Thenert K, Kleinekorte J, Meys R, Sternberg A, et al. Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chemical Reviews 2018; 118(2): 434-504.
  • [38] Nitopi S, Bertheussen E, Scott SB, Liu X, Engstfeld AK, Horch S, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chemical Reviews 2019; 119(12): 7610-7672.
  • [39] Álvarez A, Bansode A, Urakawa A, Bavykina AV, Wezendonk TA, Makkee M, et al. Challenges in greener production of formates/formic acid, methanol, and DME by heterogeneous catalyzed CO2 hydrogenation processes. Chemical Reviews 2017; 117(14): 9804-9838.
  • [40] Hepburn C, Adlen E, Beddington J, Carter EA, Fuss S, Mac Dowell N, et al. Technological and economic prospects for CO2 utilization and removal. Nature 2019; 575(7781): 87-97.
  • [41] Newell P, Mulvaney D. The political economy of 'just transition'. Journal of Geography 2013; 179(2): 132-140.
  • [42] Tournier V, Topham CM, Gilles A, David B, Folgoas C, Moya-Leclair E, et al. A PET depolymerase designed to shred and recycle plastic bottles. Nature 2020; 580(7802): 216-219.
  • [43] Borrello M, Pascucci S, Cembalo L. Three proposals to unify circular economy research: a review. Sustainability 2020; 12(10): 4069.
  • [44] Lehmann J, Cowie A, Masiello CA, Kammann C, Woolf D, Amonette JE, et al. Biochar in climate change mitigation. Nature Geoscience 2021; 14(12): 883-892.
  • [45] Kılıç AM, Kılıç Ö. The importance of boron minerals for Türkiye and their potential for sustainable development. Resources Policy 2021; 70: 101922.
  • [46] Friedlingstein P, O'Sullivan M, Jones MW, Andrew RM, Hauck J, Olsen A, et al. Global carbon budget 2020. Earth System Science Data 2020; 12(4): 3269-3340.
  • [47] Budak Y, Keçeci M. Green transformation with zero waste: eco-friendly cosmetics and cleaning products for Türkiye's future. Gaziosmanpaşa Scientific Research Journal 2024; 13(3): 145-155.
  • [48] Budak Y, Yaşar F. An experimental study on the efficacy of cleaning and cosmetic products using pH sensors. Turkish Journal of Sensors and Biosensors 2024; 1(1): 12-18.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Kirliliği ve Önlenmesi
Bölüm Review Article
Yazarlar

Yakup Budak 0000-0001-7108-5548

Yayımlanma Tarihi 25 Eylül 2025
Gönderilme Tarihi 28 Nisan 2025
Kabul Tarihi 8 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 10 Sayı: 3

Kaynak Göster

APA Budak, Y. (2025). Climate law: necessity or opportunity for Türkiye? sustainable environmental vision with green chemistry. International Journal of Energy Studies, 10(3), 1229-1258.
AMA Budak Y. Climate law: necessity or opportunity for Türkiye? sustainable environmental vision with green chemistry. International Journal of Energy Studies. Eylül 2025;10(3):1229-1258.
Chicago Budak, Yakup. “Climate law: necessity or opportunity for Türkiye? sustainable environmental vision with green chemistry”. International Journal of Energy Studies 10, sy. 3 (Eylül 2025): 1229-58.
EndNote Budak Y (01 Eylül 2025) Climate law: necessity or opportunity for Türkiye? sustainable environmental vision with green chemistry. International Journal of Energy Studies 10 3 1229–1258.
IEEE Y. Budak, “Climate law: necessity or opportunity for Türkiye? sustainable environmental vision with green chemistry”, International Journal of Energy Studies, c. 10, sy. 3, ss. 1229–1258, 2025.
ISNAD Budak, Yakup. “Climate law: necessity or opportunity for Türkiye? sustainable environmental vision with green chemistry”. International Journal of Energy Studies 10/3 (Eylül2025), 1229-1258.
JAMA Budak Y. Climate law: necessity or opportunity for Türkiye? sustainable environmental vision with green chemistry. International Journal of Energy Studies. 2025;10:1229–1258.
MLA Budak, Yakup. “Climate law: necessity or opportunity for Türkiye? sustainable environmental vision with green chemistry”. International Journal of Energy Studies, c. 10, sy. 3, 2025, ss. 1229-58.
Vancouver Budak Y. Climate law: necessity or opportunity for Türkiye? sustainable environmental vision with green chemistry. International Journal of Energy Studies. 2025;10(3):1229-58.